ebook img

CMOS Integrated Capacitive DC-DC Converters PDF

218 Pages·2013·5.371 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CMOS Integrated Capacitive DC-DC Converters

Analog Circuits and Signal Processing Series Editors Mohammed Ismail Mohamad Sawan For furthervolumes: http://www.springer.com/series/7381 Tom Van Breussegem • Michiel Steyaert CMOS Integrated Capacitive DC–DC Converters 123 TomVan Breussegem Michiel Steyaert K.U.Leuven ESAT-MICAS Department of Elektrotechniek Kasteelpark Arenberg 10bus 2443 K.U.Leuven 3001 Kardinaal Mercierlaan 94 Leuven 3001 Belgium Heverlee Belgium ISBN 978-1-4614-4279-0 ISBN 978-1-4614-4280-6 (eBook) DOI 10.1007/978-1-4614-4280-6 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012940719 (cid:2)SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Monolithic integration is the paramount trend in both consumer and industrial electronics.Inonlyfivedecadescomputersturnedfromroom-fillingmachinesinto devicesthatfitinthepalmofourhand.Butacomputerisonlyasingleexampleof the large number of electronic devices that surround us in everyday life. The monolithic integration of electronic circuits—i.e. radio-transceivers data-con- verters complete digital signal-processing systems—has led to a tremendous increase in portability of the state-of-the-art electronic appliances. But a single building block remains difficult to be integrated in a monolithic electronic system: the switched-mode DC–DC converter. The DC–DC converter provides an interface between the power source—whether it is a battery, a high- voltage DC bus or a loosely regulated supply—and the different voltage rails required in an electronic system. In most cases the switched-mode DC–DC con- verterisimplementedbymeansofaseparatechip,withdiscrete-typecomponents or a monolithically integrated linear regulator is used instead. Each of these solutionsleadstoeitherabulky,expensiveorlowpower-efficiencysolution.This is unacceptable intimeswhere power savings andcost reduction is the governing social paradigm. Switched-modeDC–DCconvertersareroughlydividedintotwocategories:the inductive type and the capacitive type. The first using both an inductor and a capacitor to convert the input voltage into a regulated output voltage, the latter using nothing but capacitors to achieve this. In theory inductive-type DC–DC converters provide a lossless DC–DC conversion for a continuous input-output voltage range. Capacitive DC–DC converters fail to meet this expectation. And therefore inductive-type of DC–DC converters are the dominant type of DC–DC conversionapparatusinbothcommercialandindustrialprototypes.Foralongtime inductive-typeDC–DCconverterswerethoughttomaintaintheirsuperiorityeven for monolithically integrated prototypes. But in an integrated case the inductive converters are cut short by the poor quality of the integrated inductors, the key- components in the design. Therefore the intuitive preference for inductive con- verters does not hold anymore. Moreover, integrated capacitors—crucial for the operation of the capacitive converters—are native devices in CMOS technology v vi Preface andcanbeconstructedathighquality.Therefore,despitetheirobviouslimitations, capacitiveDC–DCconvertersareviablealternativesfortheinductivecounterparts. ButtheadoptionofmonolithiccapacitiveDC–DCconvertersrequiresanextensive analysis of the conversion characteristics. This book describes the background requiredfordesigningafullyintegratedDC–DCconverterinCMOSandprovidesa detailed discussionof anumber of CMOS prototypes. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 System-on-Chip Power Management . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Power Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Voltage Gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Energy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Power-Management Techniques . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Power Consumption in CMOS . . . . . . . . . . . . . . . . . . . 7 1.2.2 Clock Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.3 Voltage and Frequency Scaling. . . . . . . . . . . . . . . . . . . 10 1.2.4 Adaptive Voltage Body Biasing . . . . . . . . . . . . . . . . . . 12 1.2.5 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 DC–DC Voltage Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Requirements and Characteristics . . . . . . . . . . . . . . . . . 15 1.3.3 Linear Series Conversion. . . . . . . . . . . . . . . . . . . . . . . 20 1.3.4 Capacitive Conversion. . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.5 Inductive Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.6 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4 State-of-the-Art Integrated Converters . . . . . . . . . . . . . . . . . . . 28 1.4.1 Inductive Converters. . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.4.2 Capacitive Converters . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.3 Figures of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.4 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5 Summary and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 Converter Topologies and Fundamentals . . . . . . . . . . . . . . . . . . . 39 2.1 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.1 DC–DC Converter Structure. . . . . . . . . . . . . . . . . . . . . 39 2.1.2 Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 vii viii Contents 2.1.3 Example: The Series-Parallel 1 Converter . . . . . . . . . . . 41 2 2.2 Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.1 Charge Flow Analysis. . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.2 Charge Balance Analysis. . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Branch Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.3 Topologies: Taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.1 Topology Occurrence Theorem. . . . . . . . . . . . . . . . . . . 51 2.3.2 Up Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3 Down Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.4 Multi-Topology Converters . . . . . . . . . . . . . . . . . . . . . 58 2.4 Topologies: Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.4.1 Dickson Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.2 Voltage Doubler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4.3 Voltage Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4.4 Fractional Converter . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3 Modeling and Design of Capacitive DC–DC Converters . . . . . . . . 65 3.1 Output Impedance Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Design of Single-Topology Single-Operation-Point Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.1 Implementation Parameters . . . . . . . . . . . . . . . . . . . . . 69 3.2.2 Output Impedance Requirements. . . . . . . . . . . . . . . . . . 71 3.2.3 Output Impedance Balance. . . . . . . . . . . . . . . . . . . . . . 72 3.2.4 Parameter Substitution. . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.5 Loss Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.6 Loss Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2.7 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3 Design of Multi-Topology Converters . . . . . . . . . . . . . . . . . . . 77 3.3.1 Model Refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.2 Optimization Space. . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.3 Multi-Objective Optimization. . . . . . . . . . . . . . . . . . . . 82 3.4 Accuracy Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.1 Conventional Model . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4.2 Modified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4.3 Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4.4 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Noise Reduction by Multi-Phase Interleaving and Fragmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1 Noise in Systems on Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Noise Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2.1 Noise in the Slow Switching Limit. . . . . . . . . . . . . . . . 93 Contents ix 4.2.2 Noise in the Fast Switching Limit. . . . . . . . . . . . . . . . . 96 4.2.3 Additional Noise Sources. . . . . . . . . . . . . . . . . . . . . . . 97 4.3 Noise Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.1 Analog Point-of-View . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.2 Digital Point-of-View . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.4 Noise Mitigation Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4.1 Series Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4.2 Multi-Phase Interleaving . . . . . . . . . . . . . . . . . . . . . . . 104 4.4.3 Capacitance Modulation by Means of Fragmentation. . . . 108 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 Control of Fully Integrated Capacitive Converters . . . . . . . . . . . . 111 5.1 Control Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2 Frequency-Domain Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2.1 Frequency-Domain Analysis in FSL . . . . . . . . . . . . . . . 113 5.2.2 Frequency-Domain Analysis in SSL . . . . . . . . . . . . . . . 117 5.3 Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.3.1 Topology Reconfiguration . . . . . . . . . . . . . . . . . . . . . . 119 5.3.2 Capacitance Modulation. . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.3 Pulse-Width Modulation . . . . . . . . . . . . . . . . . . . . . . . 123 5.3.4 Pulse-Frequency Modulation . . . . . . . . . . . . . . . . . . . . 124 5.4 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.4.1 Lead Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.4.2 Lead Compensation for Multi-Phase Converters. . . . . . . 133 5.4.3 Hysteretic Discrete-Time Control . . . . . . . . . . . . . . . . . 133 5.4.4 Multi-Phase Hysteretic Discrete-Time Control . . . . . . . . 134 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6 Monolithic Integration of DC–DC Converters in CMOS . . . . . . . . 141 6.1 Technology Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Solid-State Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.2.1 Operation Regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.2.2 Transistor Flavors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.2.3 Parasitic Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.4 Dealing with Voltage Limitations. . . . . . . . . . . . . . . . . 148 6.3 Passive Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.1 Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.2 Metal-Oxide-Metal Capacitors . . . . . . . . . . . . . . . . . . . 152 6.3.3 Metal-Insulator-Metal Capacitors . . . . . . . . . . . . . . . . . 153 6.3.4 Metal-Oxide-Semiconductor Capacitors. . . . . . . . . . . . . 153 6.3.5 Technology Assessment. . . . . . . . . . . . . . . . . . . . . . . . 157 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 x Contents 7 DC–DC Converter Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.1 Multi-Phase High-Efficiency Voltage Doubler . . . . . . . . . . . . . 159 7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.1.2 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.1.3 Converter Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.1.4 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.1.5 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.1.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.2 Reconfigurable Hysteretic DC–DC Converter. . . . . . . . . . . . . . 165 7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.2.2 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.2.3 Converter Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.2.4 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2.5 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.3 Single-Boundary Multi-Phase Hysteretic Converter . . . . . . . . . . 175 7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.3.2 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.3.3 Converter Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.3.4 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.3.5 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.4 Phase-Handover Hysteretic Capacitive Converter with Feed-Forward Topology Control . . . . . . . . . . . . . . . . . . . 185 7.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.4.2 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.4.3 Converter Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.4.4 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.4.5 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.1 Need for On-Chip DC–DC Conversion . . . . . . . . . . . . . . . . . . 201 8.2 DC–DC Converter Types for Fully Integrated Power Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8.3 Noise Reduction in Fully Integrated DC–DC Converters . . . . . . 203 8.4 Control of Fully Integrated DC–DC Converters. . . . . . . . . . . . . 204 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Abbreviations, Symbols and Quantities Abbreviations ABB Adaptive body biasing AVS Adaptive voltage scaling AC Alternating current CMOS Complementary metal-oxide-semiconductor DC Direct current DDSM Deep deep sub micron DUT Device under test DVS Dynamic voltage scaling EEF Effciency enhancement factor ESD Electro static discharge FF Feed-forward FSL Fast switching limit FBB Forward body biasing FOM Figure of merit GBW Gain-bandwidth IC Integrated circuit ITRS International technology roadmap for semiconductors IVCR Ideal voltage conversion ratio LDO Low drop out regulator LUT Look up table MIM Metal-insulator-metal, type of capacitor MOM Metal-oxide-metal, type of capacitor N/PMOS n-type/p-type MOS transistor N Voltage conversion ratio OLG Open loop gain OIB Output impedance balancing PCB Printed circuit board POL Point of load xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.