ebook img

CMOS Current Amplifiers: Speed versus Nonlinearity PDF

305 Pages·2000·2.78 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CMOS Current Amplifiers: Speed versus Nonlinearity

HelsinkiUniversityofTechnologyElectronicCircuitDesignLaboratory Report30,Espoo2000 CMOS Current Amplifiers: Speed versus Nonlinearity KimmoKoli DissertationforthedegreeofDoctorofScienceinTechnologytobepresentedwithdueper- mission of the Department of Electrical and Communications Engineering for public exami- nationanddebateinAuditoriumS1atHelsinkiUniversityofTechnology(Espoo,Finland)on the13thofNovember,2000,at12o’clocknoon. HelsinkiUniversityofTechnology DepartmentofElectricalandCommunicationsEngineering ElectronicCircuitDesignLaboratory Teknillinenkorkeakoulu Sähkö-jatietoliikennetekniikanosasto Piiritekniikanlaboratorio Distribution: HelsinkiUniversityofTechnology DepartmentofElectricalandCommunicationsEngineering ElectronicCircuitDesignLaboratory P.O.Box3000 FIN-02015HUT Finland Tel. +35894512271 Fax: +35894512269 ISBN951-22-5193-0 ISSN1455-8449 OtamediaOy Espoo2000 Abstract The tradition of implementing analogue circuits by means of voltage amplifiers is al- mostasoldastheconceptofelectroniccircuitdesign. Theintegratedelectroniccircuit, however, is a relatively new concept. Furthermore, integrated electronic circuits have significantlydifferentlimitationsandstrengthstotheconventionaldiscreteelectronic circuitshave. Sincetheactivedevicesinintegratedcircuitsamplifycurrentratherthan voltage,variouscurrent-modecircuitideashaveemergedaftertheintroductionofthe integratedcircuit. This work deals with analogue integrated circuit design using various types of current-modeamplifiers. ThesecircuitsareanalysedandrealisedusingmodernCMOS integrationtechnologies. Thedynamicnonlinearitiesofthesecircuitsarediscussedin detailasintheliteratureonlylinearnonidealitiesandstaticnonlinearitiesareconven- tionallyconsidered. The most important open-loop current-mode amplifier is the second-generation current-conveyor (CCII). For this amplifier, a macromodel is derived that accurately describes all linear nonidealities. Unlike other reported macromodels, this model can accuratelypredictthecommon-modebehaviourofdifferentialcurrent-conveyorappli- cations. The accuracy of the model is experimentally verified in the case of current- mode instrumentational amplifiers. This model is also used to describe the nonide- alities of several other current-mode amplifiers because circuit structures similar to second-generationcurrent-conveyorsarecommoninsuchamplifiers. Push-pullclass-ABrealisationsofthesecond-generationcurrent-conveyorandthe current-feedbackoperationalamplifierperformefficientlywhenimplementedincom- plementarybipolarintegrationtechnologies. However,inmodernlow-voltageCMOS integrationtechnologiesbothamplifiertypessufferfromlimitedinputandoutputvolt- age swing. Similarly, adequate distortion and input impedance levels are difficult to reach. Therefore,othercurrent-modeamplifiers,suchasthecurrent-modeoperational amplifier and the high-gain current-conveyor (CCII¥ ), are more suitable for modern CMOS-processes. Simple calculations show that, unlike with conventional voltage- modeoperationalamplifiers,thelarge-signalsettlingbehaviourofthesetwoamplifier typesdoesnotdegradeasCMOSintegrationtechnologiesarescaleddown. ii Abstract Twoillustrativeapplicationsofcurrent-modecircuitsareinvestigated: continuous- rd time analogue filters and logarithmic amplifiers. Two 1 MHz 3 -order low-pass continuous-time filters are designed and fabricated with a 1.2 µm CMOS-process. These filters use differential high-gain conveyors with linearised, dynamically biased output stages resulting in performance superior to most OTA-C filter realisations re- ported. Additionally, a current reference is designed that reduces the temperature de- pendencyofthefiltercornerfrequencydownto-100ppm/K. Similarly, two logarithmic amplifier chips are designed and fabricated. The first circuit, implemented with a 1.2 µm BiCMOS-process, uses again a CCII¥ . The op- eration of this circuit relies on the logarithmic behaviour of the pn-junction used as a feedback element. With a CCII¥ the constant gain-bandwidth product, typical of voltage-mode operational amplifiers, is avoided resulting in a constant 1 MHz band- widthwitha60dBsignalamplituderange. The second current-mode logarithmic amplifier is realised in a standard 1.2 µm CMOS-process. In this case, a piece-wise linear approximation of the logarithmic function is realised with a cascade of limiting current amplifier stages. The limiting level in these current amplifiers is less sensitive to process variation than in limiting voltageamplifiersresultinginexceptionallylowtemperaturedependencyoftheloga- rithmicoutputsignal. Additionally,alongwiththislogarithmicamplifieranewcurrent peakdetectorisdeveloped. Keywords: analogueintegratedcircuit,CMOS,currentamplifier,current-mode,am- plifierdistortion,nonlinearity,continuous-timefilter,logarithmicamplifier. Preface Writing this thesis has been a lengthy process. It is difficult to estimate how long this process exactly was, since the beginning is almost impossible to pinpoint. How- ever, this event may even be traced back to my first conference presentation in 1991 (ECCTD’91 in Copenhagen), when I first realised that even my research may have anaudience. ThewritingprocesswasfurtherprolongedbecauseIpreferredwritinga book which could additionally be used as a handbook on current-mode analogue in- tegrated circuit design to writing exclusively a doctoral thesis. I hope that this book servesatleastoneofthesepurposes. IwouldliketoexpressmygratitudetomysupervisorProfessorKariHalonenfor recruitingmetoElectronicCircuitDesignLaboratoryandintroducingtotheintriguing field of analogue integrated circuit design, otherwise I might have ended up doing something less imaginative. In addition, I would like to thank both Professor Kari HalonenandProfessorVeikkoPorraforthevariousinterestingprojectsandthestate- of-the-art design and measurement facilities in the laboratory, an effort that was not easytoachieveparticularlyintheearlyyearsofthelaboratory,inlate1980’sandearly 1990’s. Although work is often hard and even unsolvable problems are occasionally en- countered,notadaygoesbywithoutlaughteratElectronicCircuitDesignLaboratory. For that I owe my gratitude to the entire staff at the laboratory. In addition, during thesealmostelevenyearsatthelaboratoryIhavehadnumerouscolleagueswhohave similarlyhelpedmeinvariousotherways. Sincethislistofacknowledgementswould be extremely long and I would unavoidably miss a name or two, as a compromise, I must thank You all collectively and name individually here only persons who have directly contributed to the content of this thesis. Esa Tiiliharju Tero Wahlroos have helpedmeinvariousfiltersynthesisrelatedproblems. Similarly,MarkoKosunenand Tero Wahlroos have made excellent continuous-time filter implementations using the filter building blocks described in this thesis. The experience gained in projects with Harri Kimppa, Harri Riihihuhta, Esa Rantanen, Jarkko Routama and Pasi Ruhanen has also been valuable in writing this thesis. In addition, I have had numerous fruit- ful discussions involving circuit theory and distortion calculations in particular with iv Preface Saska Lindfors. These discussion have given my ideas which otherwise would not have ended up in this thesis. Finally, without several long discussion about effective and accurate layout design with Jukka Riihiaho, Jukka Wallinheimo, Tero Sillanpää, OlliSalminenandKariHalonen, afewdesibelsworseperformancefiguresmayhave resultedinthechipsIhavedesigned. Professors Chris Toumazou and Gordon Roberts are acknowledged for reviewing mythesis. Iwouldliketoexpressmywarmestthanksfortheirencouragingcomments. The thesis is based on research financed by Technology Development Centre of Finland,AcademyofofFinland,NokiaNetworksandNokiaMobilePhones. Inaddi- tion, Foundation for Financial Aid at the Helsinki University and Wihuri Foundation havegivensignificantsupportforthiswork. Allofthemaregratefullyacknowledged. KimmoKoli Espoo,October2000 Contents 1 Introductiontocurrent-modecircuittechniques 1 1.1 Developmentofintegrationtechnologies . . . . . . . . . . . . . . . . 1 1.2 Motivationforcurrent-modecircuitdesign . . . . . . . . . . . . . . . 2 1.3 Evolutionofcurrent-modebuildingblocks . . . . . . . . . . . . . . . 3 1.4 Adjointprinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Scopeofthisbook . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Contributionsbytheauthor . . . . . . . . . . . . . . . . . . . . . . . 8 2 Basiccurrentamplifiers 15 2.1 Current-mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 Nonidealitiesduetothechannellengthmodulation . . . . . . 17 2.1.2 Nonidealitiesduetothethresholdvoltagemismatch . . . . . 20 2.1.3 Highfrequencynonidealities . . . . . . . . . . . . . . . . . 22 Lineareffects . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Nonlineareffects . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.4 Distortionreductionmethods . . . . . . . . . . . . . . . . . . 30 Transconductancelinearisation . . . . . . . . . . . . . . . . . 30 Nonlinearcurrentreduction . . . . . . . . . . . . . . . . . . 31 Nonlinearcurrentcancellation . . . . . . . . . . . . . . . . . 31 2.1.5 Noiseanddynamicrange . . . . . . . . . . . . . . . . . . . . 33 2.1.6 Othermirrortopologies . . . . . . . . . . . . . . . . . . . . 36 Accuratecurrent-mirrortopologiesforlargesignalamplitudes 36 Resistivelycompensatedmirror . . . . . . . . . . . . . . . . 38 2.2 Currentbuffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.1 Linearnonidealities . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.4 Alternativetopologies . . . . . . . . . . . . . . . . . . . . . 44 vi Contents 3 Open-loopcurrentamplifiers 49 3.1 Firstgenerationcurrent-conveyorCCI . . . . . . . . . . . . . . . . . 49 3.1.1 Linearnonidealities . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.3 ApplicationsoftheCCI . . . . . . . . . . . . . . . . . . . . 53 3.1.4 Push-pullCCItopologies . . . . . . . . . . . . . . . . . . . 54 3.1.5 LowvoltageCCItopologies . . . . . . . . . . . . . . . . . . 58 3.2 Secondgenerationcurrent-conveyorCCII . . . . . . . . . . . . . . . 59 3.2.1 Linearnonidealities . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.2 CCIImacromodel. . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.3 ApplicationsoftheCCII . . . . . . . . . . . . . . . . . . . . 65 3.2.4 Nonlinearityoftheclass-ACCII . . . . . . . . . . . . . . . . 71 3.2.5 Alternativeclass-ACCIItopologies . . . . . . . . . . . . . . 72 3.2.6 Push-pullCCIItopologies . . . . . . . . . . . . . . . . . . . 76 Basicoperationofapush-pullCCII+ . . . . . . . . . . . . . 76 Basicoperationofapush-pullCCII- . . . . . . . . . . . . . . 78 X-terminalimpedance . . . . . . . . . . . . . . . . . . . . . 79 Currentgainnonlinearity . . . . . . . . . . . . . . . . . . . . 80 3.3 Thirdgenerationcurrent-conveyorCCIII . . . . . . . . . . . . . . . . 84 4 Current-modefeedbackamplifiers 89 4.1 Current-feedbackoperationalamplifier . . . . . . . . . . . . . . . . 89 4.1.1 Closedloopbandwidth . . . . . . . . . . . . . . . . . . . . . 91 4.1.2 Integratorimplementations . . . . . . . . . . . . . . . . . . . 94 4.1.3 Self-compensationofvoltagefollowers . . . . . . . . . . . . 96 4.1.4 Common-moderejection . . . . . . . . . . . . . . . . . . . . 97 4.1.5 CMOSimplementations . . . . . . . . . . . . . . . . . . . . 99 4.2 Operationalfloatingconveyor . . . . . . . . . . . . . . . . . . . . . 101 4.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2 Compositeconveyors . . . . . . . . . . . . . . . . . . . . . 103 4.3 Current-modeoperationalamplifiers . . . . . . . . . . . . . . . . . . 105 4.3.1 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.2 Slewrateandfullpowerbandwidth . . . . . . . . . . . . . . 108 4.3.3 Alternativetopologies . . . . . . . . . . . . . . . . . . . . . 109 4.4 High-gaincurrent-conveyor . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.1 Linearnonidealities . . . . . . . . . . . . . . . . . . . . . . . 112 4.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4.3 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Designexample . . . . . . . . . . . . . . . . . . . . . . . . . 119 Contents vii 5 Systemaspectsofcurrent-modecircuits 127 5.1 Inputvoltage-to-currentconversion . . . . . . . . . . . . . . . . . . . 127 5.2 Outputcurrent-to-voltageconversion . . . . . . . . . . . . . . . . . . 130 5.3 Differentialvoltageinputstructures . . . . . . . . . . . . . . . . . . 133 5.3.1 CMRRenhancementtechniques . . . . . . . . . . . . . . . . 134 Common-modebootstrapping . . . . . . . . . . . . . . . . . 135 Outputcurrentsubtraction . . . . . . . . . . . . . . . . . . . 135 Compositeconveyors . . . . . . . . . . . . . . . . . . . . . . 139 5.4 Differentialcurrentinputstructures . . . . . . . . . . . . . . . . . . . 141 5.5 Single-endedtodifferentialconversion . . . . . . . . . . . . . . . . . 142 5.6 Noiseincurrent-modecircuits . . . . . . . . . . . . . . . . . . . . . 145 5.6.1 Class-ACMOSCCII+ . . . . . . . . . . . . . . . . . . . . . 145 5.6.2 Otherlow-gainconveyortopologies . . . . . . . . . . . . . . 149 5.6.3 High-gaincurrent-conveyor . . . . . . . . . . . . . . . . . . 149 5.6.4 Othercurrent-modefeedbackamplifiers . . . . . . . . . . . . 152 5.6.5 Generalnotesoncurrentamplifiernoise . . . . . . . . . . . . 153 6 Current-modecontinuous-timefilters 157 6.1 Integratorqualityfactor . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2 Voltage-modeactive-RCintegrators . . . . . . . . . . . . . . . . . . 159 6.3 OTA-basedintegrators . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.3.1 Theeffectsofprocessvariationandtemperaturedrift . . . . . 162 6.3.2 Transconductancelinearity . . . . . . . . . . . . . . . . . . . 164 6.4 IntegratorswithMOS-resistors . . . . . . . . . . . . . . . . . . . . . 166 6.5 Current-conveyorbasedfilters . . . . . . . . . . . . . . . . . . . . . 167 6.6 Current-mirrorbasedfilter . . . . . . . . . . . . . . . . . . . . . . . 171 6.7 High-gaincurrent-conveyorbasedfilters . . . . . . . . . . . . . . . . 176 6.8 Multi-outputcurrentintegratorwithalinearisedtransconductor . . . . 180 6.8.1 Linearizationbydraincurrentdifference. . . . . . . . . . . . 181 6.8.2 Linearisationbydynamicbiasing . . . . . . . . . . . . . . . 185 6.9 Designcase: A1MHzcurrent-modelow-passfilter . . . . . . . . . 187 6.9.1 Filterbuildingblocks . . . . . . . . . . . . . . . . . . . . . . 187 Thetransimpedancedriveramplifier . . . . . . . . . . . . . . 188 Multiple-outputlinearisedtransconductanceelement . . . . . 191 Temperaturedriftcompensationoftheintegratortimeconstant 191 6.9.2 Thefirstfilterrealisation . . . . . . . . . . . . . . . . . . . . 194 IntegratorQ-enhancement . . . . . . . . . . . . . . . . . . . 196 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . 199 6.9.3 Thesecondtestchip . . . . . . . . . . . . . . . . . . . . . . 202 viii Contents Alternatedriverimplementation . . . . . . . . . . . . . . . . 205 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . 209 6.10 Finalremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7 Current-modelogarithmicamplifiers 217 7.1 Diode-feedbacklogarithmicamplifiers . . . . . . . . . . . . . . . . 218 7.1.1 Voltage-modeoperationalamplifierbasedrealizations . . . . 218 7.1.2 Designcase: High-gainconveyorbasedlogamp . . . . . . . . 220 BiCMOSimplementationofaCCII¥ . . . . . . . . . . . . . 221 Logarithmicpeakdetectorimplementation . . . . . . . . . . 221 Postprocessingofthelogarithmicoutputvoltage . . . . . . . 226 Finalremarksonthedesign . . . . . . . . . . . . . . . . . . 233 7.2 Pseudologarithmicamplifiers . . . . . . . . . . . . . . . . . . . . . . 234 7.2.1 LimitingCMOSvoltageamplifiers . . . . . . . . . . . . . . 235 7.2.2 LimitingCMOScurrentamplifiers . . . . . . . . . . . . . . . 237 7.2.3 Accuracyofthepseudologarithmicamplifier . . . . . . . . . 239 7.2.4 Amplitudedetectioninpseudologarithmicamplifiers . . . . . 240 CMOSrectifiers . . . . . . . . . . . . . . . . . . . . . . . . 240 CMOSsquarers . . . . . . . . . . . . . . . . . . . . . . . . . 242 CMOSpeakdetectors . . . . . . . . . . . . . . . . . . . . . 242 7.2.5 Design case: A 2.5 V CMOS pseudologarithmic current am- plifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Limitingamplifier . . . . . . . . . . . . . . . . . . . . . . . 247 Currentreference . . . . . . . . . . . . . . . . . . . . . . . . 249 Currentpeakdetector . . . . . . . . . . . . . . . . . . . . . . 251 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . 251 7.3 Otherapproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Current peak detector with enhanced discharging time con- stantadjustment . . . . . . . . . . . . . . . . . . . 256 Conclusions 263 A Basicdistortiondefinitions 265 A.1 Harmonicdistortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 A.2 Intermodulationdistortion . . . . . . . . . . . . . . . . . . . . . . . 266 A.3 Distortioninfeedbackamplifiers . . . . . . . . . . . . . . . . . . . . 267 A.3.1 Distortioninquasi-staticfeedbackamplifiers . . . . . . . . . 267 A.3.2 Distortionindynamicfeedbackamplifiers . . . . . . . . . . . 268

Description:
However, new solutions invariably entail new problems. voltage-mode operational amplifier is not necessarily the best solution to all analogue . erate without any global feedback, the linearity of the amplifier becomes an important . [7] A. Sedra, K. Smith, “A second-generation current-conveyo
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.