CMOS Biosensor for Rapid Detection of Bacteria and Antibiotic Susceptibility by Nasim Nikkhoo A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto c Copyright 2015 by Nasim Nikkhoo � Abstract CMOS Biosensor for Rapid Detection of Bacteria and Antibiotic Susceptibility Nasim Nikkhoo Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto 2015 The development of a low-cost, specific and sensitive integrated system for the detection and identification of bacteria, that can provide results rapidly has been a major research challenge. This thesis introduces a systematic approach to the selection and design of appropriate biological components combined with a microelectronics system, that pro- vides rapid and highly specific detection results at a low sensor cost and using a small sample volume. The bacterial detection system achieves specific identification through the use of two types of biological recognition elements: bacteriophages and bacteriocins. Both systems utilize the rapid e✏ux of potassium ions to the sample as a result of the infection ofthespecificbacteriain thesamplebythebiological recognition elements. The potassium e✏ux is a transducing event detectable by a potassium selective field e↵ect transistor implemented in CMOS, providing conclusive results in less than 10 minutes. Di↵erent strains of Gram-negative E. coli were tested using bacteriophages, and both Gram-negative and Gram-positive bacterial species were tested using bacteriocins. Mea- surement protocols and processing techniques are implemented to cancel the e↵ect of ion-selective system DC baseline variations and drift. The implemented sensors achieve the minimum detection limit of 3 107 cfu/ml at 10-minute detection time using the ⇥ PVC-based potassium-sensitive membranes with the sensitivity of 10 6M of potassium. � Processing of the raw sample has been simplified to a less-than-5 minute assay that sim- ply resuspends the raw sample into a constant suspension medium for measurements using a 100µl sample volume. ii A predictive model is presented for the bacterial sensor system that captures the ef- fects of biological, chemical and environmental parameters on the system output signal. The bacterial detection system can be repurposed to equivalently determine bacteria sus- ceptibilitytopore-formingantibiotics. ExperimentalresultsusingpolymyxinBantibiotic and di↵erent strains of Gram-negative E. coli are presented. iii Acknowledgements The work presented in this thesis could not be completed without guidance, help support and encouragement of so many people that I had the privilege of getting to know and interacting with during my years at University of Toronto. I hope to acknowledge them in a small way. I would like to thank my supervisor professor Glenn Gulak for his invaluable guidance and support throughout this journey. His broad vision and encouragement has been a source of inspiration for me. I would also like to thank my thesis committee members professor Roman Genov, professor Yu Sun, professor Amr Helmy, professor Wai Tung Ng and external examiner professor Vamsy Chodavarapu for their valuable insights and comments that improved this thesis tremendously. I had the privilege of collaborating with Dr. Karen Maxwell’s group at department of molecular genetics and I feel greatly indebted to her for her support, kind mentorship and patience. I would like to thank Diane Bona that helped me with all biological setup and experiments step by step with kindness and patience. Special thanks to Alan Gulak for his help in designing antibiotic experiments. I feel blessed to get to know so many friends throughout my years at University of Toronto. I learned many valuable lessons from each one of them. I would like to specially thank Kelly Reimer, Nichole Cumby, Senjuti Saha and Mostafa Fatehi for their true friendship, enjoyable discussions and encouragements. They generously taught me how to perform biological assays, spent so much time explaining the science and lent me their recipes, bu↵ers, hard-made plates and more. I would like to thank Meysam Zargham and Michal Fulmyk for their true friendship, memorable moments and fun we had. Their presence made my final Ph.D years more productive and enjoyable. I would like to thank my fellow BA5000 and BA5158 graduate students, Mario Milicevic, KevinBanovic, AlirezaNilchi, SadeghJalali, MahdiShabany, SamiraKarimelahi, Dustin Dunwell, Mike Bichan, Alhassan Khedr, Aynaz Vatankhah, Behzad Dehghani, Zeynep Lulec, Dawei Song, Rosana Murugesu, Arshya Feyz for their friendship and support. Special thanks to Sara Scharf for her wonderful comments on the thesis and Jeetendar Narsinghani for his help and support with lab setup and equipments. No words are su�cient to express my gratitude and love for my mom and dad who have always been supportive, loving and have encouraged me to achieve the better and my sister, Neda, who has been cheering me up. I could never complete this work without their help. Iwouldliketothankmyhusband,Ali,whowasalwaysthereformeandsupportedme. He helped me through the tough times during this work through his love and kindness. iv Last but not the least, special thanks to my lovely little son, Elias, who has brought greatest joy and excitement in my life. He entered this world just in time to defend this thesis with me. v Contents List of Figures xi List of Tables xix List of Acronyms xx List of Symbols xxii 1 Introduction 1 1.1 Motivation for Bacterial Detection and Antibiotic Testing . . . . . . . . . 1 1.2 Bacterial Detection and Antibiotic Testing Systems and Their Specifications 2 1.3 Challenges and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Fundamentals of Bacterial Sensing Systems 7 2.1 Introduction to Basic Biological Components . . . . . . . . . . . . . . . . 7 2.1.1 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Antibiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Current Techniques for Bacterial Detection and Identification . . . . . . 10 2.2.1 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Culturing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Enzyme-Linked Immunosorbent Assay (ELISA) . . . . . . . . . . 13 2.2.4 Phage Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.5 DNA Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Biosensors and Their System Block Diagrams . . . . . . . . . . . . . . . 15 2.3.1 Biological Recognition Element (BRE) . . . . . . . . . . . . . . . 16 2.3.2 Recognition-Event Translator . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Electrical Transducer . . . . . . . . . . . . . . . . . . . . . . . . . 17 vi 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 System Design and Modelling of the Bacteria Biosensor 21 3.1 Biological Recognition Element (BRE) . . . . . . . . . . . . . . . . . . . 22 3.1.1 Bacteriophages (“Phages”) . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 Bacteriocins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Recognition-Event Translator . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Sensors Utilizing Bacteriophages . . . . . . . . . . . . . . . . . . . 25 3.2.2 Sensors Utilizing Bacteriocins . . . . . . . . . . . . . . . . . . . . 27 3.3 Ion-Selective Electrode Systems as Electrical Transducers . . . . . . . . . 28 3.3.1 Ion-Selective Electrode Systems (ISE Systems) . . . . . . . . . . . 29 3.3.2 Non-Idealities in ISE Systems . . . . . . . . . . . . . . . . . . . . 31 3.4 Analog Front-End and Processing Unit . . . . . . . . . . . . . . . . . . . 31 3.5 Complete Bacterial Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6 Modelling the System Behaviour . . . . . . . . . . . . . . . . . . . . . . . 35 3.6.1 Ion-Selective Electrode System Output Voltage versus Potassium Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6.2 Maximum Ion-Selective Electrode Output Voltage Signal Varia- tions with Bacterial Cell Concentration . . . . . . . . . . . . . . . 37 3.6.3 ISE System Output Signal Over Time . . . . . . . . . . . . . . . 39 3.6.4 Biosensor Calibration Curve . . . . . . . . . . . . . . . . . . . . . 42 3.6.5 Extracting System Model Parameters from Measurement Results 43 3.6.6 System Model Predictability . . . . . . . . . . . . . . . . . . . . . 46 3.6.7 System Model Summary . . . . . . . . . . . . . . . . . . . . . . . 48 3.7 Experimental Design and Errors . . . . . . . . . . . . . . . . . . . . . . . 49 3.7.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.7.2 Control Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.7.3 False Positive and False Negatives . . . . . . . . . . . . . . . . . . 50 3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 ISFET and Analog Front-End Design 52 4.1 Introduction to Ion-Selective Field E↵ect Transistors (ISFETs) . . . . . . 53 4.1.1 Ion-Selective Membrane . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 ISFET Design and Characterization and ISFET Readout Circuitry . . . 59 4.2.1 Single-Ended vs. Di↵erential ISFET System . . . . . . . . . . . . 61 4.2.2 ISFET Readout Circuitry . . . . . . . . . . . . . . . . . . . . . . 64 4.2.3 Analog to Digital Conversion . . . . . . . . . . . . . . . . . . . . 67 vii 4.3 Design of the First Test IC . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Design of the Second IC . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.1 ISFETsConnectedtoaVoltage-ModeDrain-SourceFollowerRead- out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4.2 ISFETs Connected to Current-Mode Fixed Source and Drain . . . 80 4.4.3 Di↵erential ISFET plus Drain-Source Follower Readout . . . . . . 82 4.5 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Detection of E. coli Using Bacteriophages 84 5.1 Sample preparation and Processing . . . . . . . . . . . . . . . . . . . . . 85 5.2 Initial Experiments using Commercial ISE . . . . . . . . . . . . . . . . . 85 5.3 System Model Parameter Extraction and Predictive Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.1 EstimationofISEOutputVoltageSignalversusBacterialCellCon- centration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.2 ISE System Output Signal Over Time . . . . . . . . . . . . . . . 91 5.4 Test Chip Experimental Setup and Procedures . . . . . . . . . . . . . . . 95 5.4.1 Chip Implementation and Preparation . . . . . . . . . . . . . . . 95 5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.2 Group A Experiments using T Phage as the biological recognition 6 element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.3 Group B Experiments using � Phage at 37 C . . . . . . . . . . . 99 � 5.5.4 Group C Experiments using � Phage at 23.7 C . . . . . . . . . . 99 � 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Detection of Bacteria Using Bacteriocins 102 6.1 Initial Plating Experiments of the Bacteriocin . . . . . . . . . . . . . . . 103 6.2 Selection of Biological Probes Using a Commercial ISE . . . . . . . . . . 104 6.3 System Model Parameter Extraction and Predictive Model Estimation . 108 6.3.1 Estimation of the ISE Output Voltage Signal versus Bacterial Cell Concentration . . . . . . . . . . . . . . . . . . . . . 108 6.3.2 Calibration Curve Using Commercial ISE . . . . . . . . . . . . . . 111 6.3.3 ISE system Output Signal Over Time . . . . . . . . . . . . . . . . 112 6.4 CMOS Chip Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5 Experimental Results Using the CMOS Chip . . . . . . . . . . . . . . . . 118 6.5.1 CMOS Biosensor Specifications at 10-Minute Detection Time . . . 122 viii 6.5.2 Comparison to State-of-the-Art . . . . . . . . . . . . . . . . . . . 122 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7 Biosensor Application for Antibiotic Susceptibility Testing 125 7.1 Antibiotic Categories and Resistance . . . . . . . . . . . . . . . . . . . . 125 7.2 Model Antibiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.3 Experimental Design using Polymyxin B (PMB) Antibiotics . . . . . . . 127 7.4 Measurement Results Using CMOS Chip . . . . . . . . . . . . . . . . . . 131 7.4.1 CMOS Biosensor Specifications at 10-Minute Testing Time . . . . 133 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8 Contributions and Future Work 135 8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.3.1 Biological Recognition Elements . . . . . . . . . . . . . . . . . . . 139 8.3.2 Multiple Detection and Identification on a Single CMOS Chip . . 139 8.3.3 Integration of ADC and Processing Unit . . . . . . . . . . . . . . 139 8.3.4 Membrane Optimization . . . . . . . . . . . . . . . . . . . . . . . 140 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Appendix A Protocols 141 A.1 Bu↵ers and Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.1.1 Lennox Broth (LB) . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.1.2 SM Bu↵er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.1.3 N-Minimal Medium . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.1.4 Phosphate Bu↵er Saline . . . . . . . . . . . . . . . . . . . . . . . 142 A.2 Bacteriophage Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 142 A.2.1 T Phage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6 A.2.2 � Phage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 A.3 Bacteriocin Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.4 Raw Bacteria Sample Preparation . . . . . . . . . . . . . . . . . . . . . . 145 A.5 Bacetria Sample Processing . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.6 Potassium-Sensitive Membrane Preparation, Chip Preparation and Mem- brane Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.6.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.6.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ix A.6.3 Suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Appendix B Bacteria Sensing Using Ion-Induced Voltage Fluctuations 148 B.0.4 Experimental Results Using � Phage . . . . . . . . . . . . . . . . 151 B.0.5 Experimental Results Using Pyocin . . . . . . . . . . . . . . . . . 152 B.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 156 x
Description: