Mon.Not.R.Astron.Soc.000,1–22(2015) Printed12January2016 (MNLATEXstylefilev2.2) Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey Christopher A. J. Duncan1(cid:63), Catherine Heymans1, Alan F. Heavens2, Benjamin Joachimi3 1ScottishUniversitiesPhysicsAlliance,InstituteforAstronomy,UniversityofEdinburgh,RoyalObservatory,BlackfordHill,Edinburgh,EH93HJ,UK 2ImperialCentreforInferenceandCosmology,DepartmentofPhysics,ImperialCollegeLondon,BlackettLaboratory,PrinceConsortRoad,London,SW72AZ,UK. 3DepartmentofPhysicsandAstronomy,UniversityCollegeLondon,GowerPlace,London,WC1E6BT,UK. 6 1 Accepted1January2016 0 2 ABSTRACT n Wepresentthefirstmeasurementofindividualclustermassestimatesusingweaklensingsize a J andfluxmagnification.UsingdatafromtheHST-STAGESsurveyoftheA901/902superclus- 8 terwedetectthefourknowngroupsinthesuperclusterathighsignificanceusingmagnifica- tionalone.WediscusstheapplicationofafullyBayesianinferenceanalysis,andinvestigatea ] broadrangeofpotentialsystematicsintheapplicationofthemethod.Wecompareourresults O to a previous weak lensing shear analysis of the same field finding the recovered signal-to- C noiseofourmagnification-onlyanalysistorangefrom45%to110%ofthesignal-to-noisein . the shear-only analysis. On a case-by-case basis we find consistent magnification and shear h constraints on cluster virial radius, and finding that for the full sample, magnification con- p straintstobeafactor0.77±0.18lowerthantheshearmeasurements. - o Keywords: gravitationallensing:weak-cosmology:darkmatter-dataanalysis-galaxies: r t clusters s a [ 1 1 INTRODUCTION with the shape distortion of distant sources and as a result much v 3 time has been invested in developing the tools to accurately use Galaxyclusterscomprisethelargestknowngravitationallybound 2 shear measurements. As an example, competitive analyses of the objectsintheUniverse.Theycangiveinformationontheforma- 0 accuracyandprecisionofweaklensingobservablemeasurement, tionofstructureandthecosmologicalmodelthroughknowledgeof 2 suchastheSTEP(Heymansetal.2006;Masseyetal.2007)and theunderlyingdensityfield.Inordertointerpretgalaxyclustersin 0 GREAT(Bridleetal.2009;Kitchingetal.2010;Mandelbaumetal. 1. acosmologicalscenario,onemusthaveknowledgeoftheindivid- 2014) programs, have primarily focussed their attention on test- ualmassesoftheclustersthatenterintothesample.Manydifferent 0 ingtheabilityofparticularalgorithmsinmeasuringsourceellip- observablesarecommonlyusedasaproxyforclustermass,includ- 6 ticity with estimates of source size a secondary concern. Ideally, ingclustermembercounts(clusterrichness)whichrelyondiscrete 1 onewouldliketoutilisethemaximumnumberofprobesinweak observablesourcesastracersoftheunderlyingmatterdistribution, : lensing analyses, as a means of reducing the statistical errors on v or X-ray luminosity and temperature and the Sunyaev-Zeldovich measurements for a given source sample, but also as a means of i effectwhichutilisetheeffectsofhotgasinthevicinityoftheclus- X mitigatingsystematicsineachindividualanalysis. ter.Ineachofthesecases,onemustmakesimplifyingassumptions r a abouthowthesetracersfollowtheunderlyingdominantdarkmatter distribution,andtakethisintoaccountwheninterpretingthemea- There has been a recent increasing trend to investigate the surementasaproxyforthemassofthecluster.Fortheuseofclus- use of other weak lensing observables, including numerous con- ter members in the optical this requires knowledge of the galaxy vincingdetectionsoffluctuationsinsourcecountsduetolensing bias.ForX-rayderivedmassesonemustassumehydrostaticequi- byforegroundmatter,mostfrequentlydubbed‘fluxmagnification’ librium,althoughrecentstudiessuggestthatX-rayderivedmasses or‘magnificationbias’.Theseanalysesmeasuredangularcorrela- may be biased low (Simet et al. 2015). By contrast, gravitational tionfunctionsbetweenradiallyseparatedbins(Myersetal.2003; lensingusesmeasurementsofbackgroundgalaxysize,shapeorlu- Scrantonetal.2005;Hildebrandt,Waerbeke&Erben2009;Morri- minositytoprobethelensingtotalmatterdistribution,andisinsen- sonetal.2012),andaroundstackedforegroundover-densitiesasa sitivetothenatureofthelensingmatteritself. meansofmeasuringstackedmassprofiles(Fordetal.2014,2015; Theuseofgravitationallensingmeasurementsasamethodof Baueretal.2011;Umetsuetal.2015;Hildebrandtetal.2011)or mass reconstruction to date have predominantly dealt exclusively determining dust profiles (Me´nard et al. 2010; Hildebrandt et al. 2013).Ofparticularnote,theanalysesofHildebrandtetal.(2011, 2013) measure the mass profiles for high redshift lenses, using a (cid:63) Email:[email protected] high redshift background source sample where shape determina- (cid:13)c 2015RAS 2 C.Duncanetal. tion would be expected to fail, and thus utilises one of the main function.Theyconcludedthathighresolutionspace-basedimaging strengthsofanumber-countsmagnificationanalysis. isidealforasize-magnificationanalysis. Contemporaneously,therehavebeenaseriesoftheoreticalin- Arecentobservationalapplicationoftheuseofthesizeand vestigationsintotheuseofthemagnificationsignaltomeasurecos- magnitudemagnificationeffectistheapplicationinSchmidtetal. mologicalparameters,throughtheclusteringofaphotometricsam- (2012)tostackedgrouplensingintheCOSMOSfield.Inthispa- pleinDuncanetal.(2014);Joachimi&Bridle(2010);vanWaer- per, authors claim a detection of the magnification effect with a bekeetal.(2010);vanWaerbeke(2010)oraspartofajointanaly- signal–to–noise ratio of ∼ 40% of the shear using a maximum- sisusingaphotometricandspectroscopicsample(Gaztan˜agaetal. likelihoodestimatorbasedaroundtheassumptionoflog-normality 2012;Eriksen&Gaztanaga2015).Itisgenerallyfoundthatwhilst inthesizedistributionandGaussianityinthemagnitudedistribu- magnificationaloneisuncompetitivewithshearwhenanunknown tion.Inthispaper,weinsteadapplyourmethodofmassestimation galaxy bias must be simultaneously measured with the data, the using galaxy sizes and magnitudes to individual large clusters of combinationofclusteringandshearcangiveasignificantincrease M =O(1014)M(cid:12)/hintheSTAGESsupercluster. inconstrainingpowerovertheshear-onlysignalthroughdegener- In section 2 we detail relevant weak lensing theory, and de- acy lifting between the clustering, shear and galaxy-galaxy lens- tail a Bayesian method for determining cluster model parameters ing.Further,Joachimi&Bridle(2010)foundthattheadditionof for a given lens from source size, magnitude and ellipticity mea- existingnumberdensityinformationtoashearanalysisonapho- surementswhilstavoidingsomeofthesimplifyingassumptionsof tometric sample can successfully counteract the loss of informa- previousanalyses.Wediscusshowajointanalysisusingallthree tiondue tothemarginalisation overaflexibleintrinsic alignment observables could be combined in a self-consistent way. In Sec- model. Such a combined analysis was adopted as part of the pri- tion3wedescribetheSTAGESdatasetandselectionofthesource mary science driver in Euclid (Laureijs et al. 2011), however in sample.InSection4,themethodisappliedtomockcataloguesde- Duncanetal.(2014)itwasshownthatsystematicuncertaintiesin signedtoreflectthemainfeaturesofthedata-set,andconclusions themagnificationsignalcanleadtocatastrophicbiasesincosmo- are drawn on the ability to utilise the method to measure cluster logicalmodelparameters. modelparametersondifferentmasslenses,andquantifytheeffect oflimitationsinthedata-setandsimplifyingassumptions.Finally, Similarly,therehasbeenarecentuptakeininvestigationsinto inSection5themethodisappliedtotheSTAGESdataset,andre- thedirectuseofsizeandmagnitudemeasurementstoinferlensing sultsarepresentedfortheSTAGESclustersandcomparedtopre- properties,eitherthroughacomparisoninstatisticsoflensedsam- existingshearmeasurements.WeconcludeinSection6. ples to unlensed samples (Heavens, Alsing & Jaffe 2013; Alsing Throughout this paper we assume a flat fiducial cosmology etal.2015b;Casaponsaetal.2013),orthroughtheuseofthefun- withw=−1,Ω =0.3,Ω =0.7andh=0.7.Magnitudesare damentalplanerelation(Huff&Graves2014;Sonnenfeld,Bertin M λ givenintheABsystem. &Lombardi2011;Bertin&Lombardi2006).Ineachcase,ma- jorastrophysicalsystematics,similartointrinsicalignmentsfora shear analysis, may be present through intrinsic size-density cor- relations(Ciarlariello,Crittenden&Pace2015),orthecorrelation 2 THEORYANDMETHOD betweenfundamentalplaneresidualsanddensity(Joachimi,Singh 2.1 WeakLensingTheory &Mandelbaum2015). In Heavens, Alsing & Jaffe (2013) it was demonstrated that Asphotonspropagatepastaforegroundmatterdensitycontrast,its substantialgainscouldbemadeinthecombinationofsizemagni- path is deflected according to the Jacobian mapping between the ficationwithshear,particularlywhennoisedominated,andnoted sourceplaneandtheobservedskyas that the noise-free size measurement can be made to be uncorre- (cid:18) (cid:19) 1−g −g latedtotheshearmeasurementprovidedthatthesizeismeasured A=(1−κ) 1 2 , (1) −g 1+g asthesquare-rootofameasuredsourcearea. 2 1 Rozo&Schmidt(2010)forecastanimprovementof∼ 50% inthelinearlimit.Theconvergence(κ)andcomplexreducedshear inclustermassestimatesfromajointsize-magnification,cluster- (g=g1+ig2 =γ/[1−κ])varywithangularpositiononthesky ing and shear analysis over shear-only. Eifler et al. (2014) found andarefunctionsofgravitationalpotentialofthelensandgeometry that constraints on a set of cosmological parameters from a non- ofthelens-sourcesystem.Boththeconvergenceandtheshear(γ) tomographic COSEBI shear analysis were significantly improved canberelatedtotheprojectedsurfacemassdensityofthelensing withtheadditionofprojectedclusteringinformation,butthatthe matteras furtherinclusionofdirectmagnificationdidnotgivesignificantfur- κ(ξ) = Σ−1 Σ[ξ], (2) therimprovement. Crit γ(ξ) = Σ−1 [(cid:104)Σ(cid:105)(<ξ)−Σ(ξ)], (3) InAlsingetal.(2015b)theauthorsforecastusingatheoreti- Crit callymotivatedlinearalignmentandintrinsic-size-densitycorrela- whereξ isthedistancebetweenthesourceandlenscentreonthe tionmodelthatthecombinationofsizeandmagnitudemagnifica- sourceplane,andthemeansurfacemassdensitywithinξisgiven tionwithshearcangiveimprovementsindarkenergyparameters by(cid:104)Σ(cid:105)(<ξ).Thecriticalsurfacemassdensityisgivenby of∼ 25 → 65%,whilstquantifyingthetypicaldispersiononthe inferredconvergencefieldusinganintrinsicsize-magnitudedistri- Σ = c2 Ds , (4) butionmeasuredwithCFHTLenS. Crit 4πGDdDds InCasaponsaetal.(2013)itwasshownthroughtheuseofim- whereD andD istheangulardiameterdistancetothesourceand s d agesimulationsthatsizemeasurementsusinglensFit(Milleretal. lens,andD istheangulardiameterdistancebetweenthesource ds 2007)couldestimatetheconvergencefieldinanunbiasedwaypro- andlens. videdthesourcesamplewasselectedtobeaboveafluxsignal–to– Theconvergencedenotesanisotropicstretchingofthesource noiseratioof10,andthegalaxiesarelargerthanthepointspread image, with a corresponding change in the observed size of the (cid:13)c 2015RAS,MNRAS000,1–22 Massprofilereconstructionwithmagnification 3 source.AsaresultoftheapplicabilityofLiouville’sTheorem,this magnification is not unity, and can be avoided by calculating the changeinsourcesizecorrespondsdirectlytoachangeintheob- fieldmeanoveralargeareaoronablankfield.Thirdly,wherea servedfluxofthesource.Consequently,thelensedsizeandfluxof singlesourceisconsidered,orthesourcesampleischosenwithin asourcecanberelatedtoitsunlensedquantitiesaccordingto flux of size ranges, any intrinsic size-luminosity relation must be consideredtoaccountfortheflux-lensingofthesample,andtoen- 1 R = µ2R0, (5) surethattheestimatorcomparesmeansizesofequivalentsamples. S = µS , (6) Finally,suchanestimatorgivesanestimatefortheaveragemag- 0 m = m +2.5log µ, (7) nificationfactorforthesourcesample.It’sphysicalinterpretation 0 10 is therefore only straight-forward where the sources are selected whereR,S andmrepresentthesourcesize1,fluxandmagnitude locally, or on a region where they are expected to experience the respectively, subscript “0” denotes intrinsic (or unlensed) quanti- same magnification, such as in an annulus around a spherically- ties,andthelocalmagnificationfactorµisgivenby symmetriclensmassdistribution. µ=[det(A)]−1 =[(1−κ)2−γ2]−1. (8) Thispapermotivatesadeparturefromsuchaformalism,and inthenextsectionwedetailaBayesianinterpretationofthemag- Theactionofamagnificationfieldisthereforetoalterthesizeand nificationfieldsimilartothatdetailedinAlsingetal.(2015b),but brightness of a lensed source, or locally shift the size-magnitude withanemphasisoninferringthemassmodelparametersforanin- distributionforthesourcesample.Equivalently,onemayconsider dividuallensassumingknowledgeoftheintrinsicsize-magnitude theactionofthemagnificationfieldasalocalshiftintheimposed andredshiftdistributionsofthesourcesample.Wediscussindetail source size and flux limits of the analysis or data: together with theadvantageofsuchamethod,andextendittoincludeelliptici- changesintheobservedpositionofthesources,thisformsthebasis ties,aswellasdiscussiontheapplicationofafulljointshearand offlux-magnificationanalysesthroughclusteringstatistics. magnificationanalysiswithinthisframework. Figure1showsasanexampletheactionofaconstantposi- tiveconvergencefield(associatedwithalensingforegroundover- density)onamodelsize-magnitudedistributioninthepresenceof 2.2.2 Ajointsizeandfluxmagnificationanalysis abrightmagnitudelimit,andlargeandsmallsizelimits.Theaction Considerasingleobservationofthesizeandmagnitude(R,m)ofa ofsuchafieldistomaketheobservedsourceslargerandbrighter lensedsource,fromwhichwewanttoplaceconstraintsonthemass than their intrinsic values (blue crosses to red on the left panel), profileofthelensingmedium.InBayesiannomenclature,wewish consequentlylocallyremovingoraddingsourcestothesample(red toconstructaposteriordistributionforasetofparameterswhich andblueregionsintherightpanel). definethelensingclustermassprofile(hereafterdenotedusingα) fromanobservationoflensedquantities.ApplyingBayes’theorem, 2.2 BayesianMassProfileReconstruction thiscanbeformulatedas 2.2.1 Motivation p(R,m|α)p(α) p(α|R,m)= ∝p(R,m|α)p(α). (10) p(R,m) In Heavens, Alsing & Jaffe (2013); Alsing et al. (2015b); Cas- aponsa et al. (2013); Schmidt et al. (2012) the authors presented The likelihood [p(R,m|α)] describes the probability of making theframeworkfortheuseofafrequentistestimatorbasedmethod suchanobservationgivenamodelforthelensingmassprofile,and ofprobingthemagnificationfieldindifferingcontexts.Generally, priorknowledgeontheclustermassprofilemaybesetusingp(α). insuchananalysis,oneconstructsanestimatorbasedonthemag- Fortheremainderofthisdiscussionweassumeaflatprior,andthe nificationrelationsgiveninequations5to7.Forexample,forthe evidence[p(R,m)]istakenasanormalisingconstant,howeverthis sizeinformationonecanconstructanestimatoras canbeeasilyrelaxed. (cid:18) R (cid:19)2 The likelihood can be related to intrinsic quantities by µˆ= (9) marginalisingoverthesequantitiesasnuisanceparameters (cid:104)R(cid:105) field (cid:90) where the numerator corresponds to the size of the source or the p(R,m|α) = dm0 dR0 dzp(R,m|α,R0,m0,z) meanofalocallyselectedsourcesample,andthedenominatorcor- × p(R ,m ,z|α), (11) respondstothemeansizeoverthewholefield,assumedtobean 0 0 (cid:90) unbiasedestimatorofthemeanofthedistributionofintrinsicsizes = dm dR dzp(R,m|α,R ,m ,z) 0 0 0 0 forthesampleconsidered. Theuseofsuchanestimatorrequiresspecialcare.Firstly,one × p(R0,m0|α)p(z|R0,m0,α). (12) musttakeintoaccountthepresenceofsizeofflux/magnitudecuts By integrating over an assumed redshift distribution where the requires an alteration of the relations in equations 5 to 7 using sourceredshiftisnotknown,themethodautomaticallytakesinto magnification ‘responsivity’ factors to account for sources being accountthepossibilitythesourceliesradiallyclose-toorinfrontof boostedoutsidetheselimits,andthesefactorsmustbethemselves thelens.Theintrinsicsize,magnitudeandredshift(R ,m ,z)of estimated from the data (see Alsing et al. 2015b; Schmidt et al. 0 0 thesourcearetakentobeindependentofthelensingforegroundso 2012, forfurtherdiscussion).Secondly,theestimatorreliesonthe p(R ,m |α)→p(R ,m )andp(z|R ,m ,α)→p(z|R ,m ). assumptionthatthefieldmean((cid:104)R(cid:105) inthisexample)isrepre- 0 0 0 0 0 0 0 0 field By enforcing this simplification, one assumes that there are no sentativeoftheunlensedmeanofthesourcesample.Thiscanoccur intrinsicsize-,magnitude-norredshift-densitycorrelationswhich whenthe‘field’sampleischosenoveranareawheretheaverage could cause a general change in size or magnitude of a popula- tionofsourcesphysicallyclosetothelens.Thisassumptionshould 1 Thesourcesizeistypicallydefinedasthesquare-rootoftheareaofthe giveaccurateresultsifthesourcesampleisselectedtoberadially source distantfromthelenssothatthelensingeffectdominates,however (cid:13)c 2015RAS,MNRAS000,1–22 4 C.Duncanetal. = 0.3 20 15 e z Si el x10 Pi 5 26 24 22 20 18 16 26 24 22 20 18 16 Apparent Magnitude Apparent Magnitude Figure1.IllustrativefigureshowingtheeffectoflensingonabodyofsourceswhosesizesandmagnitudesaresampledfromamultivariateGaussian.Blue crossescorrespondtounlensedsources,whilstredcrosses(leftpanelonly)showlensedcounterpartsafteraconstantconvergencefieldofκ=0.3isapplied. Dashedlines(andarrows)showthedirectionofshiftinthesize-magnitudeparameterplanceaftertheapplicationoftheconvergencefield.Horizontaland verticallinesshowlimitsontheobservedsourcesizeandmagnituderespectively.Therightpanelshowstheequivalentlocalchangeinenforcedsourcesize andmagnitudelimits:redareasshowregionsofparameterspacenowunobservableonthelensedpatchofsky,whilstgreenareasshowregionsonlyobservable duetotheactionofthelocalconvergencefield.Sourcesinthered(green)patcharethereforeremoved(added)totheobservedsourcesample. such separation is not always possible. The implications of such theform coonreremlaatyionnostiestthaaktegnivtoenbeaosuuittwabitlhetmheodsceolpfoerotfhtihsirsewlaotirokn,,hoonweecvaenr p(R,m|α)=(cid:90) dzµ−12p[R0,m0|z](cid:16)µ−12R,m+2.5log10µ(cid:17) naturally incorporate this model into the intrinsic size-magnitude relationbykeepingtheαdependenceofthistermexplicit. × p[z|m0,R0](z|m+2.5log10µ,µ−12R), Wheretheintrinsicsize,magnitudeandredshiftofthesource (14) are known, the final line of equation 12 is described by a prod- wherethenotationp (y)denotestheprobabilitydensityfunction uct of Dirac Delta functions centred on these values. In this case [x] of x evaluated at x = y. The likelihood for each galaxy is then themagnificationfactorassociatedwiththatlens-sourcesystemis constructed by sampling the intrinsic size-magnitude distribution well known. In practice, such quantities are not observable, and alonga‘de-lensing’line,i.e.takingtheprobabilitythatthesource onemayinsteadmarginaliseoverthedistributionoftrueproperties hasanintrinsicsizeandmagnitudegivenbyitsmeasuredquantities conditioned on observed values. This distribution must be repre- correctedforthemodelledlocalmagnificationfieldgivenbycluster sentativeofthesourcesampleconsidered,andthereforeaccurately parametersα.Asimilarresultisgiveninequation9ofAlsingetal. reflecttheselectioncriteriainproducingthesourcesamplebeing (2015b) where the likelihood is constructed for the convergence consideredtoensureparametervaluesareunbiased:forexample, assumingthelinearisationofthelensingrelations. wherethesampleisconsideredinatomographicredshiftbin,the Theposterioronlensmassprofileparameterscanthenbecon- redshiftdistributionshouldreflectthischoice.Theextensiontoto- structedforasinglesourcebyreapplicationofBayes’Theorem(as mographicsamplesistrivial,howeverthiscomeswiththecaveat inequation10),andjointconstraintsusingthewholesourcesam- thattheformalismpresentedhereassumesthattheredshiftdistribu- ple can be obtained by multiplying single-source likelihoods (or tionisthatofthetrueredshiftforthesample:whereanuncertainty summinglog-likelihoods)intheusualway. isassociatedwiththemeasuredredshift,thiscanbeincorporated by integrating over a latent variable (discussed further in section 2.2.6). 2.2.3 Normalisationofthelikelihood Intheabsenceofmeasurementnoise,theformerterminequa- tion12containsinformationonthelensingofthesourceandcan Ifthesourcesampleischosenusingsomeselectionbasedonpa- bedeterminedusingtherelationsgiveninEquations5to6as rametersalteredbythemagnificationfield(e.g.size,magnitudeor fluxsignal–to–noise)thismustbetakenintoaccountintheevalua- tionofthelikelihoodtoavoidinaccurateparametermeasurements. 1 p(R,m|α,R0,m0,z) = δD(R−R0µ2[α,ξ,z]) (13) Insuchacase,theapplicationofanon-zeromagnificationfactor × δD(m−m0+2.5log10{µ[α,ξ,z]}), willshiftthetrueunderlyingintrinsicsize-magnitudedistribution inthesizeandmagnitudeplanes,alteringthenormalisationofthe likelihood(seeFigure1).Wherehardsizeandmagnitudecutsare whereξdenotesthephysicaltransverseseparationofthelensand usedthelikelihoodmustbenormalisedsuchthat sourceandissuppressedfortheremainderofthistextforclarity. Usingachangeinvariables,themarginalisationovertheintrinsic (cid:90) mu (cid:90) Ru dm dRp(R,m|α)=1, (15) sizeandmagnitudecanbecarriedoutsothatthelikelihoodtakes ml Rl (cid:13)c 2015RAS,MNRAS000,1–22 Massprofilereconstructionwithmagnification 5 where the integrals are understood to extend over lensed quanti- measuredsizeandmagnitudeandtheirunlensedcounterparts,the ties,betweenlowerandupperlimitsdenotedbysubscriptlandu magnification-dependentnatureofthenormalisationcanbemade respectively. By substituting the form of the likelihood in equa- moreexplicit: tion 14 and assuming an deterministic relationship between the (cid:90) dzµ−12 (cid:90) mudm(cid:90) RudRp[R0,m0|z](cid:16)µ21R,m+2.5log10{µ}(cid:17)p[z|m0,R0](cid:16)z|m+2.5log10{µ},µ12R(cid:17), ml Rl (cid:90) (cid:90) mu+2.5log10{µ} (cid:90) µ−21Ru = dz dm dR p(R ,m )p(z|m ,R )=1. ml+2.5log10{µ} 0 µ−12Rl 0 0 0 0 0 Thenormalisationvarieswithmagnificationfactor,andconsequently integratingoverintrinsicquantitiesasnuisanceparameters with the set of cluster mass profile parameters (α) for a given (cid:90) source. In contrast to the case where no cuts are applied, such a p(R,m,e|α) = dzdR0 dm0 d2e0 p(R,m,e|α,R0,m0,e0,z) normalisation will change the shape of the recovered likelihood, × p(R ,m ,e )p(z|R ,m ,e ), (20) and thus neglecting this effect will bias recovered cluster profile 0 0 0 0 0 0 parameters. whereedenotesthesetof bothellipticitycomponentsinagiven Here,wehaveconsideredonlyhardcutsonthedata,however co-ordinate frame. As before, the second term gives the redshift inrealityitmayoftenbethecasethatasmoothselectionfunction distribution of the population from which the source was a sam- isappliedtothedata.Suchacaseisconsideredinmoredetailin pled,andanyredshiftdependenceoftheintrinsicellipticity,sizeor Alsing et al. (2015b) and can be easily extended to the analysis magnitudecanbeincorporatedintothisterm.Thefirstterminthis presentedherewheretheformoftheselectionfunctionisknown. equationgivestherelationbetweentheobservedquantitiesandthe intrinsicquantities,whichisassumedtobedeterministicandsolely duetolensinginthelimitofnegligiblemeasurementerrors 2.2.4 Analysisusingsizesormagnitudesonly Whereonlyreliablemagnitudeinformationisavailable,posteriors p(R,m,e|α,R0,m0,e0,z)=δD(R−R0µ12[α,ξ,z]) maybeproducedbymarginalisingthelikelihoodgiveninequation ×δ (m−m +2.5log {µ[α,ξ,z]}) 14overthefullrangeofsourcesizesconsideredinthesample D 0 10 ×δ (e−E[e ,g]), (21) D 0 p(m|α)=(cid:90) dz(cid:90) µ−21Ru dR0p (R ,m+2.5log {µ}) where E denotes the action of the lensing reduced shear on µ−21Rl µ12 [R0,m0] 0 10 the nuisance intrinsic ellipticity parameter considered, such that E−1(e,g) = e andE(e ,g) = e.Intheweaklensinglimit,the ×p (z|m+2.5log {µ},R ), (16) 0 0 [z|m0,R0] 10 0 observedellipticitymayberelatedtotheintrinsicellipticityofthe and sourceandtheappliedshearfieldbywayofaTaylorExpansion (cid:90) mu+2.5log10{µ}dm0 p(m0|α)=1. (17) eα(e0,g)=eα0 + ∂∂eeαγβ+O(|γ|2)=eα0 +Pαγβγβ, (22) ml+2.5log10{µ} β wherethecoefficientofthelineartermisfrequentlyreferredtoas In the final relation, we have again assumed a deterministic, the ‘shear responsivity’, and details how the measured ellipticity lensing-only relation between observed magnitude and intrinsic respondstotheappliedshearfield,andEinsteinsummationisas- magnitude, to make the magnification-factor-dependent nature of sumed.Intheparlanceusedhere,thiscanbeexpressedas thenormalisationexplicit. Similarly,asize-onlylikelihoodmaybeformedbymarginal- E =eα+Pγ γ α 0 αβ β isingoverthelensedmagnitude,giving E−1 =eα−Pγ γ . α αβ β p(R|α) = (cid:90) dzµ−21 (cid:90) mu+2.5log10{µ}dm0 (18) Similar expressions can be determined where the weak lensing ml+2.5log10{µ} limithasnotbeenapplied,asinSeitz&Schneider(1995,1997). × p[R0,m0](cid:16)µ−12R,m0(cid:17)p[z|m0,R0](z|m0,µ−21R), Usingtheseexpressions,thelikelihoodisthengivenby with p(R,m,e|α) = (cid:90) dz(cid:32)(cid:89)2 ∂E−1(cid:33) p(µ−12R,m+2.5log µ,E−1) ∂e 10 i (cid:90) µ−1/2Ru i=1 dR0 p(R0|α)=1. (19) × p(z|µ−12R,m+2.5log µ,E−1). (23) µ−1/2Rl 10 Whenellipticitymeasurementsonlyareconsidered,thiscanbere- ducedto 2.2.5 Extensiontoellipticities Whereellipticityinformationisalsoavailable,theaboveformalism p(e|α)=(cid:90) dz(cid:32)(cid:89)2 ∂E−1(cid:33) p(E−1)p(z|E−1) (24) ∂e i canbeextendedtoconstructajointshearandmagnificationanal- i=1 ysisofthelensmassprofile.Thelikelihoodcanbeconstructedby andtheposteriorforthesourcesampleconstructedasbefore. (cid:13)c 2015RAS,MNRAS000,1–22 6 C.Duncanetal. 2.2.6 Includingmeasurementnoise 2.2.7 AdvantagesandCaveats Sofar, wehaveconsideredthe case wherethedatais considered We have motivated a way to produce full posterior distributions exact,howeverinrealitythedatawillconsistofnoisyestimators of cluster parameters based on the assumption of an underlying ofthetrueunderlyingquantityofinterest.Inthiscase,therelation mass profile model which can be related to lensing observables, betweentheobservedsize,magnitude,ellipticityorredshiftandthe andaprioriknowledgeoftheintrinsicsize-magnitudedistribution. intrinsicvaluesassociatedwiththesourcegalaxiesisnotlongera The main strengths in utilising such a technique lies in the flexi- deterministicrelationshipdependentonlyonthelensingmass,and bility of the method: complications and extensions can be easily therelationsgiveninequation21and13nolongerhold. addedthroughexplicitmarginalisationoflatentvariablesprovided Noiseinthedatacanbeintegratedwithinthisformalismby theycanberelatedtotheobservablesandintrinsicquantities,and marginalisingoveralatentvariablewhichdenotesthetruelensed thisisdone explicitlyinthemarginalisation overanapriori red- quantity.Forthesourcesize,magnitudeandellipticity,thisrequires shift distribution. In contrast to the frequentist analysis described that in section 2, in this formalism any intrinsic correlation between the size and magnitude measures is encompassed in the intrinsic (cid:90) size-magnitudedistribution,negatingtheneedforanycorrection. p(R,m,e|α,R ,m ,e ,z)= dmˆ dRˆ d2eˆp(R,m,e|Rˆ,mˆ,eˆ) 0 0 0 Further, the method can be applied to produce lens mass profile ×p(Rˆ,mˆ,eˆ|α,R ,m ,e ,z), constraintsforeachsourceindividually,simplifyingtheinterpreta- 0 0 0 tionofthemeasurementsforachosensampleofsources. (25) The use of a priori distributions means that the method can beeasilyimplementedusingwell-motivatedtheoreticalmodels,or where variables with a hat denote latent variables which are usingmeasurementsfromthedatawhereavailable.Assuch,theap- marginalisedover.Inthisrelation,thep(R,m,e|Rˆ,mˆ,eˆ)therefore plicationcanbeentirelyself-consistent.However,wherethemodel reflectstheuncertaintyinthemeasureddata,andthelatterrelation ismeasuredfromdata,onemustbeawarethatnoiseorsystematic givestheusuallensingrelations(givenbyequation21)). uncertainties in the measurements can enter the analysis through Similarly,uncertaintyintheredshiftestimatecanbeabsorbed theireffectontheaprioridistributionsthemselves.Wherethisis intotheanalysistaking thecase,onlysystematicerrorsinthemeasuredintrinsicquantities which vary in a spatially dependent way will be problematic, as (cid:90) constantoffsetsacrossthewholefieldwillcauseaidenticalshift p(z|R ,m ,e )→ dzˆp(z|zˆ)p(zˆ|R ,m ,e ). (26) 0 0 0 0 0 0 inboththeaprioridistributionsandthesample,providedtheyare bothequallyaffected.Thiswillthereforenotaffecttherecovered mass profile parameter interpretation. Noise in the measured dis- Wherethemeasurementnoiseisadditiveonthequantityofinter- tributionscanbedealtwithbysmoothing,orfittingatheoretically est,eachofthesecasesconsiderstheconvolutionofthenoise-free motivated model to the data. Similarly, the intrinsic distributions likelihoodwithadistributiondescribingtheuncertaintyonthepa- shouldbeconstructedfromasamplewhichisrepresentativeofthe rameterofinterest,wherethewidthofthedistributionvarieswith de-lensedsourcesample.Thiscanbedonebyconstructingthedis- eachsource.Assuch,theapplicationofsuchamarginalisationin tribution across a large area, where the average magnification is brute force will extend the run-time of the likelihood evaluation by a factor of N for each noisy redshift, size or magnitude esti- unity,orusingasampleoffieldgalaxies. matorpersource,whereN describesthenumberoftimesthatthe Aparticularadvantageoftheuseofthismethodisthefactthat noise-freelikelihoodmustbesampledtoensureconvergenceofthe posteriorscanbeconstructedindividuallyforeachsourcegalaxy, convolution.Wherethenoise-freelikelihoodisexpensivetocalcu- andindividuallyforeachforegroundlensbeforefurthercombina- late(forexampleduetoalargesourcesample,ortherequirement tion.Assuch,forananalysiswhichaimstomaximisesignal–to– tomarginaliseovermanylatentvariables),thismayresultinapro- noisebystackinglenses,theapplicationofthismethodallowsone hibitivelylongruntimewhichrequiresmoreadvancedtechniques tofitthechosenmassprofilemodeltoeachlensindividuallyand toovercome. producemodelparameterconstraintsforthelenssamplebycom- Alimitationintheextensiontosuchamarginalisationliesin biningtheselikelihoods.Thisthereforeavoidstheneedtofitamass the fact that the noise-free likelihood has a high dimensionality, profile to the stacked measurement, whose shape can be affected asitdependsonthesourcepositionandclustermodelparameters bysystematicsineachindividuallensmeasurement.Anexample aswellaslatentsize,magnitude,andredshift,sothattheevalua- wouldbeinsmearingouttheprofiletowardsthecentrecausedby tionofthenoise-freelikelihoodonagridwhichcanbeappliedto mis-centeringoneachlensofthestack.Withourapproach,theun- allsources(removingthisasabottle-neck)isintractable.Alterna- certaincentroidcanbetakenasafreeparameterinthefitforeach tively, the dependancy on cluster model parameters, source posi- individualclusterinthesample. tionandredshiftcanbeabsorbedintothelocalmagnificationfac- In the application of this method, we choose to work with tor, thus significantly reducing the dimensionality of the problem full recovered model parameter PDFs until the final stage where and allowing the measurement-noise-free likelihood to be evalu- a maximum-posterior estimator is used to visualise the results in atedonagridoflatentlensedsize,magnitudeandlocalmagnifica- different contexts. Doing so increases the run-time over the case tionfactor(andredshiftifunknown)whichcanbereferencedfor wherestatisticsareformedfromfrequentistestimators.Especially eachclustermodelparameterchoiceandsourceconsidered.Whilst in the case where multiple latent variables are marginalised over, theevaluationofsuchagridisexpensivewheretheevaluationof this can be computationally expensive, however we note that re- thelikelihoodpersourceisalsoexpensive,suchacasecouldspeed- cent work in advanced statistical techniques such as Hierarchical uptheapplicationwhenappliedtolargesourcesamplessincethe BayesianInference(e.g.Alsingetal.2015a;Schneideretal.2015) convolutionitselfisfastusingFFT,givingarun-timescalingfaster andadvancedsamplingmethodscangosomewaytoreducingthe thanthatdetailedhere. necessaryrun-time. (cid:13)c 2015RAS,MNRAS000,1–22 Massprofilereconstructionwithmagnification 7 3 THEHSTSTAGESSURVEY along the line of sight using the analytic relations of Wright & Brainerd(2000).Thebasemodelprofileisafunctionoffourpa- The Space Telescope A901/902 Galaxy Evolution Survey rameters,namelythepositionofthecentreoftheprofile(centroid), (STAGES),(Grayetal.2009)utilisedtheF606WfilteroftheAd- theredshiftofthelens,thevirialradius/virialmassandtheconcen- vancedCameraforSurveys(ACS)oftheHubbleSpaceTelescope tration.WiththeexceptionofCB1atz=0.46(Tayloretal.2004) (HST)toimageaquartersquaredegreecentredontheA901/2su- alllensesareplacedatafixedredshiftz=0.165(Grayetal.2009). percluster. The supercluster is made up of four structures at red- Followingtheshearanalysis,weusethemass-concentrationrela- shiftz =0.165,A901aandA901binthenorthandA902andthe tionofDolagetal.(2004),andtaketheclustercentrepositionsto SWgroupinthesouth.Inaddition,thereisabackgroundcluster bethosequotedinHeymansetal.(2008).Asaresult,theNFWfit (CB1) seen in projection with A902 at redshift z = 0.46, deter- isafunctiononlyofthevirialmass/virialradius.Whilstwenote minedwiththeapplicationofa3DlensinganalysisinTayloretal. thatmorerecentmass-concentrationrelationsexist,andemphasise (2004).STAGESimagesarecomplementedbyopticalimagingus- that the centroid position and concentration could be simultane- ingCOMBO-17(Wolfetal.2003)withfivebroadbandsandtwelve ouslyfittedusingthismethod,theover-ridingaimofthisanalysis narrow bands, and which provides high quality photometric red- istocompareclusterprofileestimatesbetweentheshearandmag- shifts,withtheprecisionσ ∼0.02(1+z)forabout∼10%ofthe z nificationanalyses,andsowechoosetosetuptheanalysisusing brightestgalaxies(R <24)intheSTAGESsample.Wolfetal. Vega thesameassumptionsasHeymansetal.(2008)tofacilitatecom- (2004)recommendsthatthelimitofR < 24isappliedinor- Vega parison. dertokeepthephotometricredshifterrorscatteratlessthan7%.In Hildebrandt,Wolf&Ben´ıtez(2008),ananalysisoftheCOMBO- 17 data in the magnitude range 23 < RVega < 24, showed that 3.2 SourceSelection excluding the narrow band data causes the redshift scatter to in- WeanalysisthesourcecatalogueusedintheanalysisofHeymans creaseby30%andthecatastrophicoutlierratetoincreaseby20%. et al. (2008) (hereafter referred to as H08), matched to the pub- Thisshowstheimportanceofthenarrow-bandinformationinac- licly available STAGES catalogue Gray et al. (2009) (hereafter curate redshift estimation, and also suggests that there would be G09).TheH08catalogueconsistsof79,366sources(n =96.5 littlegaininusingonlybroad-bandinformationtoextendthepho- gal sourcespersquarearcminute)withSExtractor(Bertin&Arnouts tometric redshift range beyond R = 24. STAGES provides Vega deep(m (cid:46)27.5),highresolutionHSTimagesof∼70,000 1996)MAG BESTmagnitudeinformation,whilsttheG09source F606W catalogue with a higher detection threshold contains a total of extendedsources,fromwhichalargesamplesetofrobustgalaxy 46,471sources(n =56.5)withSExtractorandGALFIT(Peng shapes,sizesandfluxescanbeobtained.Themaskedobservational gal etal.2002)sizeandmagnitudemeasures,aswellasCOMBO-17 footprint of the survey covers ∼ 0.22 square degrees, giving a globalnumberdensityofsourcesof∼ 85 gal/arcminute2 using redshiftestimationfor10,790sourcesaftermatching. Aninvestigationintosizemeasurementwithquadrupolemo- the whole sample of extended sources. Observations were taken ments (detailed further in Appendix A) found that model-fitting withinasmallobservationaltimeframe,withgreaterthan50%of methodsprovideamoreaccuratesizedeterminationforlowsurface thetilesobservedinonefive-dayperiod,andover90%within21 brightnesssourcesincomparisontonon-parametricmeasuressuch days,whilstseventileswereobservedsixmonthslater,minimising asquadrupolemomentsoraperturesizeswhichcannotdistinguish temporal(andthereforespatial)variationinthepointspreadfunc- betweenfaint,largegalaxiesandbright,smallgalaxies.Thefinal tionacrossthefield.Themosaicof80ACStileswhichconstitutes sourcesamplethereforeconsistsoftheSExtractoraperturemagni- theSTAGESfieldisshowninHeymansetal.(2008),groupedin tudeinformation(MAG BEST)asgivenintheH08catalogue,cho- colourbyobservationperiod. sentogivethelargestsourcesamplewithmagnitudeinformation, The application of the analysis outline in section 2.2 to the withGALFIThalf-lightradiusdeterminedusingtheGALAPAGOS STAGESdataprovidesauniquesetofidiosyncraticcomplications. datapipelineandskysubtractionBardenetal.(2012)usedasthe Thebiggestcomplicationisthelackofredshiftinformationforap- sourcesizewhereavailable(see Heymansetal.2008;Grayetal. proximately90%ofthesourcesample.Thisaffectstheanalysisas 2009, for further details on the source catalogue and the source presentedintwoways:firstly,thelackofmulti-bandphotometry magnitudeandsizedetermination.).Itisassumedthatgalacticdust for this sample complicates the removal of cluster members, de- variationacrossthefieldisnegligibleduetothesmallsurveyarea. tailedfurtherinthenextsection;andsecondly,withoutredshiftin- Thea-priorisizeandmagnitudedistributionsareconstructed formationwemustmarginaliseoveranaprioriredshiftdistribution from the full catalogue after masking conservative 3 arc-minute forthesourcestoconvertlensingobservablestoclustermasspro- apertures around the brightest central galaxy (BCG) cluster cen- fileparameters.FollowingtheshearapplicationinHeymansetal. trestoremoveclustermembers.Themeasureddistributionisgiven (2008),wemodeltheredshiftdistributionas inFigure2,andformstheaprioridistributionforthisanalysis.The p(z|m )= 3 (cid:18) z (cid:19)2e−(z/z0)1.5, (27) bottompanelofFigure2showsthemarginalisedmagnitudedistri- F606W 2z0Γ(2) z0 butionbetweentheH08andG09catalogues.Onecanseethatthe marginalisedmagnitudedistributionfortheH08catalogueextends with z = z /1.412, and using the median-redshift magni- 0 median tofaintermagnitudesthanthepublicG09catalogue,reflectingthe tuderelationofSchrabbacketal.(2007) differentselectionofthesourcesample,wheretheH08catalogue zmedian =0.29[mF606W−22]+0.31. (28) includes smaller and faintersources used in the shear analysis of H08. Intheapplicationofthemethod,theapriorisize-magnitude 3.1 MassProfileModelling distributionisconstructedandsmoothedusingKernelDensityEs- We model the mass profile of the lensing clusters as spherically timation(KDE),usingabivariate-Gaussiansmoothingwindowin symmetric NFW profiles (Navarro, Frenk & White 1997), and size and magnitude, with covariance equal to 0.01 times the co- relate the profile parameters to lensing parameters by projecting variance of the data sample. KDE-smoothed apparent magnitude (cid:13)c 2015RAS,MNRAS000,1–22 8 C.Duncanetal. 6.00 5.00 4.00 x pi 3.00 R n l 2.00 1.00 0.00 -1.00 9000 0 1000 2000 3000 4000 5000 All 8000 Size Sample 7000 6000 5000 4000 3000 2000 1000 0 20 21 22 23 24 25 26 27 m F606W Figure2.Thejointsizemagnitude(upperleft)andmarginalisedsize(upperright)andMF606Wmagnitude(lower)distributionsusedtofortheapriori size-magnitudedistribution.BlacksolidlinesshowthedistributionsobtainedfromthesourcesinthematchedH08andG09catalogues,whilstthebluedashed lineshowsthemagnitudedistributionfortheH08catalogueonly andsizedistributionsconstructedinthismannercomparewellto accountedforfrommagnificationbiasalone.Thissuggeststhatthe histogramsofthesamequantities. appliedbrightmagnitudeandredshiftcutsareinsufficienttofully The inadvertent inclusion of cluster members in the source removeclustermembers. sample can introduce a bias in the derived cluster model param- Thetoppanelsoffigure3showsthedifferencebetweenthe eters, as they are mistakenly interpreted as lensed sources in the meanmagnitudeinradialbinsaroundtheBCGofeachclusterto analysis. This is a particular problem in the application to the the field mean (after the masking of the four clusters) as a func- STAGESdataset,asCOMBO-17redshiftinformationisonlyavail- tionofvaryingthefaintlimitingmagnitudeofthesourcesample. able for ∼ 10% of the sample, meaning a simple redshift cut is Each magnitude difference can be related to the average magni- unlikely to remove all cluster members from the sample. We cut ficationfactorforsourceswithinthatannulus,howeveronemust sourcewithz < 0.2whereredshiftinformationisavailable,and notethatthismeasurehasnotbeencorrectedfortheapplicationof sourcesbrighterthanm=23,correspondingtoamedianredshift sizeandmagnitudecuts,andisthereforenotanunbiasedestimate ofz = 0.6inthemedian-redshift-magnituderelationofequation of the cluster mass. However, the use of this estimate can give a 28, following H08. The lower panels of Figure 3 show the num- usefuldiagnosticonthebehaviourofthesignalaroundthecluster berdensitycontrastofsourcesinannularbinsaroundtheBCGfor centre.Onecanseethat,forA901a,A902andSWthemagnitude eachofthefourmainclustersconsidered,aftertheapplicationof differenceinradialbinsiswellbehavedatlargeradii,withagen- redshiftandmagnitudecutsonthesample.Onecanseethateven eral trend towards more negative values as the faint limit used is aftertheapplicationofsuchcuts,thenumberdensityofsourcesis relaxed. This behaviour may be attributed to the lack of correc- higherthanthefieldaveragetowardsthecentreofthecluster,most tion for the use of a magnitude cut: where a global faint cut is noticeablyforA901bandSW,withanamplitudelargerthancanbe applied, the mean measured around a magnification field will be (cid:13)c 2015RAS,MNRAS000,1–22 Massprofilereconstructionwithmagnification 9 underestimated.Bycontrast,forA901b,theuseofabrighterfaint ofanapplicationofthemethodtoHSTdata,andtoquantifyany cutshowstheoppositetrend,andweseethatforA901bthemagni- inherentbiasesintheanalysis. tudedifferenceusingthem < 26sampleisdiscrepantwithmore relaxedcuts.ThisindicatesthatthesignalaroundA901bissensi- 4.1 MockCatalogueConstruction tivetothelimitingmagnitude,andprovidesaflagtothereliability ofthemagnitudeestimationofthefaintsourcesinthatregion.We MockcataloguesareconstructedtomimictheSTAGESdatasetus- notethatA901bshowsthelargestextendedX-rayemissiononthe ingthefollowingprocess: STAGES field, and consequently the reliability of the magnitude (i) Galaxiesarerandomlypositionedinthemocksurveyfield. determination of the faint sources could be compromised by the (ii) Each mock galaxy is assigned an intrinsic magnitude, size presenceofunaccounted-forintra-clusterlighterroneouslyadding andsignal–to–noiseratiorandomlysampledsimultaneouslyfrom fluxtothegalaxiesbehindA901b.Asaresult,thesourceschosen the STAGES catalogue. This preserves the form of the size and around A901b are taken to be those which satisfy m < 26 such magnitude distributions in the STAGES field, including any size, thattheextraintra-clusterlightissub-dominanttothegalaxyflux. magnitudeandsignal–to–noiseratiocorrelation.Weconsidertwo Inthiscase,thesampleofsourcesaroundA901bareconsideredas samples here: the “GALFIT sample” samples GALFIT sizes and aseparatesampletotheremainingsample,andtheapplicationofa SExtractormagnitudesdirectlyfromtheMastercatalogue,andas strictermagnitudecutrequiresthattheposteriorsobtainedforeach suchconsidersthecasewhereasubsetoftheSTAGESsourceshave ofthesegalaxiesmustbecorrectlynormalisedtoaccountforthis. valid size measurements, and therefore most closely reflects the Motivated by the trends described here, we therefore apply core cuts on the sample of 1.2(cid:48),1.2(cid:48),0.5(cid:48), and 0.9(cid:48) around the application to the STAGES field; the “All Sizes” sample samples quadrupolemeasuredsizes(seeAppendixA)andSExtractormag- A901a, A901b, A902and SW BCGsrespectively (shown as dot- nitudes from the H08 catalogue, and considers the idealised case dashed vertical lines in Figure 3). Sources are selected in 3 arc- whereallsourceshavevalidsizemeasurements. minute apertures around the cluster BCG, taken from Table 1 of (iii) Eachgalaxywithm > 23isassignedaredshiftrandomly H08.InthecaseofA901bthenumberover-densityofsourcesex- sampledfromaredshiftdistributiongivenbyequation27withme- tends across the whole angular scale considered here suggesting dian redshift given by the median-redshift-magnitude relation of that cluster member contamination may persevere in spite of the Schrabbacketal.(2007)measuredontheGOODSfield. applicationofsourceremovalwithinthisaperture,howeverstricter (iv) Unlensed distributions are output, where all redshifts are cutswillremoveprogressivelymoreofthesourcesample,andwill discarded for the unlensed STAGES mock catalogue, and where leaveonlythosesourcesfurthestfromtheclustercentrewhichare a mock “COMBO” subset of galaxies is constructed by ran- leastlensedandwhoselensingparameterdeterminationisexpected domlysamplingasub-setof10%ofthefullSTAGESmock.The tobemostnoisy. COMBOmockswillthereforevaryqualitativelyfromtheobserved Theapplicationofthemaskaroundtheclustercoreprovides COMBO-17sub-sampleofSTAGESgalaxieswithredshiftinfor- anaturalminimumphysicallengthscaleonsource-clustersepara- mation: in the observations, redshifts are obtained only for the tion, as the removal of the cone around the centre of the cluster brightestgalaxies,whilstnomagnitudecutsareappliedinthecon- meansthatnosourcecanbecloserthanthephysicaldistancebe- struction of the COMBO mock catalogue; as such the mock will tweentheclustercentreandtheedgeofthemaskedregiononthe have an overall larger median redshift than the observations. The clusterredshiftplane.Aswellaslimitingclustermembers,sucha COMBO mock catalogues considered here are constructed with cuthasthefurtheradvantageofreducingtheeffectofanyintrinsic thepurposeoftestingthesensitivityofthemethodtothechange size-ormagnitude-densitycorrelationsinadditiontotheredshift innumbercountsandredshiftknowledgethatresultsfromtheap- andmagnitudecutsappliedtolimitthepresenceofsourcesradi- plication of the method to the sub-set of STAGES galaxies with allyclosetothelens. COMBO-17 redshift information, and are not constructed to be Theapplicationofsuchcutsremovesasignificantfractionof fullyrepresentativeofthatsample. thesourcesforwhichthelensingsignalwillbestrongest,remov- (v) Eachgalaxyhasitssizeandmagnitudealteredaccordingto ing402,515,70and282galaxiesfromthesourcesamplearound thelensingrelations giveninequations 5and7respectively. The eachclusterrespectively,withafurther1194faintsourcesremoved weaklensinglimitisthereforenotenforcedforthemagnification aroundA901baftertheapplicationofafaintcutofm < 26.The relations. Each galaxy is assigned a local magnification due to a needtoapplysuchstrictcorecutsshouldbeconsideredaparticular set of foreground clusters, modelled as NFW profiles, where the limitationofthedata-setused,andclustermodelparametervalues redshiftinformationfromthepreviousstepisretainedandusedto wouldbeconstrainedtohighersignificanceinadata-setwithmore evaluateΣ (equation4)foreachgalaxy.Eachlensingclusteris completeredshiftinformationbyallowingthesampletobesuffi- Crit placedataredshiftofz =0.165,whichisthemeasuredredshift cientlycleanedofsourcesclosetothelenswithouttheapplication lens of the four largest STAGES clusters. Where only a single mock ofconservativeblanketcuts,orallowingtheapplicationofamodel cluster is considered, the cluster is placed with its centre on the toaccountforthepresenceofunlensedclustermembersorintrinsic BCGoftheA901acluster.Nolimitationsonthesizeofthemagni- sizeandmagnitude-densitycorrelations.Alternativestothesource ficationfactorareenforced.Therareoccasionalsourcewhichlies selectioncriteriaherewhichavoidtheremovalofsourcesfromthe withinthecausticofthecluster,andthereforeexperienceanega- sampleareconsideredinAppendixB. tivemagnificationequivalenttoaflipinparity,areremovedfrom thesample. Unless otherwise stated, the intrinsic size-magnitude distri- bution is constructed from the unlensed catalogue, using the full 4 APPLICATIONTOMOCKS STAGES dataset even when the COMBO redshift subsample is In this section, the method described in Section 2.2 is applied to considered,toreducenoise.Nosize-redshiftrelationisenforced, mockcatalogues,toascertainthelevelofstatisticalerrorexpected howeveraredshift-magnitudedependenceisenforcedbysampling (cid:13)c 2015RAS,MNRAS000,1–22 10 C.Duncanetal. 0.1 AAAA999900001111aaaa AAAA999900001111bbbb d fiel fi0.0 m › − 0.1 ) θ ( m fi0.2 › 0.3 2.0 1.5 n fi n(θ)−nfi›1›fi.0 › 0.5 0.0 0.1 AAAA999900002222 SSSSWWWW d fiel fi0.0 m › − 0.1 ) θ m( fi0.2 mm<<2256..50 › m<27.0 0.3 m<28.0 2.0 1.5 n fi n(θ)−nfi›1›fi.0 › 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 θ [arcmin] θ [arcmin] Figure3.Plotshowingthedifferencebetweenthemeanmagnitudeandfractionalnumberover-densityofsourcesinradialbinsfromtheBCGagainstthe fieldmean,forA901a(topleft),A901b(top-right),A902(bottom-left)andSW(bottom-right),asafunctionoflimitingfaintmagnitude. source redshift using the median-redshift-magnitude relation of sistency.Nocutsareimposedonsourcesize,noronfaintmagni- Schrabbacketal.(2007)inpoint(iii). tudes. Source sizes and magnitudes have negligible measurement Mock clusters are modelled as spherically symmetric NFW error,andassuchthemethoddetailedinsection2.2canbeapplied profiles,wheretheΛ-CDMmass-concentrationrelationofDolag exactly.Thisapplicationthereforeconstitutesanidealisedcase,and etal.(2004)isenforced:thusthemodelassumedforthemasspro- one must note that the application of size cuts, PSF confusion or fileparameterrecoveryisexactintheapplicationtothemocksam- measurementerrormaycauseadecreaseintheconstrainingpower ple. oftheanalysis. Posteriors are evaluated on the virial radius by default, and posteriors on the virial mass determined from these results using 4.2 ApplicationofMethod conservationofprobability: Theapplicationofthemethodischosentomatchitslateruseonthe p(M )∝ p(r200) ∝ p(r200), (29) STAGESfield.Resultsareshownusingamaskof0.5(cid:48)aroundeach 200 r2200 M23 200 clusterBCG:whilsttheuseofacoremaskisunnecessaryforthe idealisedcasespresentedhere,thismaskingoftheclustercentreis whereM ∝ r3 wasassumed.Asaresult,evenwheremass 200 200 thesmallestofthecorecutsusedintheapplicationtotheSTAGES constraintsarepresented,aflatprioronvirialradiushasbeenas- fieldtoremoveclustercontaminants,andisincludedhereforcon- sumed:thistranslatestoaprioronvirialmasswhichdown-weights (cid:13)c 2015RAS,MNRAS000,1–22