ebook img

Cluster AgeS Experiment. CCD photometry of SX Phoenicis variables in the globular cluster M 55 PDF

22 Pages·0.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cluster AgeS Experiment. CCD photometry of SX Phoenicis variables in the globular cluster M 55

A&Amanuscriptno. (willbeinsertedbyhandlater) Yourthesauruscodesare: (08.02.7;08.04.1;08.15.1;08.16.3;08.22.2;10.07.3) Cluster AgeS Experiment. CCD photometry of SX Phoenicis variables in the globular cluster M 55 WojtekPych1,JanuszKaluzny1,WojtekKrzeminski1,2,A.Schwarzenberg-Czerny1,3and 1 IanB.Thompson2, 0 0 2 1 CopernicusAstronomicalCenter,ul.Bartycka18,00-716Warszawa,Poland n 2 CarnegieInstitutionofWashington,813SantaBarbaraStreet,Pasadena,CA91101 a J 3 AstronomicalObservatoryofAdamMickiewiczUniversity,ul.Sloneczna36,60-286Poznan,Poland 9 Received.................,2000;Accepted...............,2000 1 v 6 2 Abstract. We presentCCD photometryofSXPhevariablesinthefieldoftheglobularcluster 1 M55.Wehavediscovered27variables,threeofwhichareprobablemembersoftheSagittarius 1 0 dwarfgalaxy.AlloftheSXPhestarsinM55lieinthebluestragglerregionoftheclustercolor- 1 0 magnitudediagram.Usingperiodratioinformationwehaveidentifiedtheradialpulsationmodes / h for one of the observed variables. Inspection of the period-luminositydistribution permits the p - probableidentificationsofthepulsationmodesformostoftherestofthestarsinthesample.We o r havedeterminedtheslopeoftheperiod-luminosityrelationforSXPhestarsinM55pulsatingin t s a thefundamentalmode.UsingthisrelationandtheHIPPARCOSdataforSXPheitself,wehave : v estimatedtheapparentdistancemodulustoM55tobe(m M) =13.86 0.25mag. i − V ± X r a Keywords:globularclusters:individual:M55–stars:bluestragglers:variables:SXPhe 1. Introduction TheClustersAgeSExperiment(CASE)isalongtermprojectwithamaingoalofdetermining accurate ages and distances of globular clusters by using observations of detached eclipsing binaries (Paczyn´ski1997). As a byproductwe obtain time series photometryof other variable starslocatedinthesurveyedclusters. M 55(NGC6809)isa metal-poorglobularclusterin theGalactic halo(l=9 ,b= 23 ). ◦ ◦ − Becauseofitsproximityandsmallreddening((m M) =13.76,E(B V)=0.07,Harris1996) V − − it was selected as one of the targets in our survey for eclipsing binaries in globular clusters. Olechetal.(Olechetal.1999)presentedourinvestigationofRRLyraevariablesinthiscluster. Inthiscontributionwepresenttheresultsfortheshortperiodpulsatingvariables.Therelatively 2 Pychetal.:CASE-SXPhevariablesinM55 largenumberofSXPhevariablesinM55allowsustomakeabasicstatisticalanalysisoftheir propertiesandanewdeterminationoftheslopeoftheperiod-luminosityrelation. 2. Observationsanddatareduction In the interval from 1997 May 8/9 to 1997 August 16/17 we carried out CCD photometry on the1.0-mSwopetelescopeatLasCampanasObservatory.Thetelescopewasequippedwiththe SITe32kx4kCCDcamerawithaneffectivefieldofview14.5x23arcmin(2048x3150pixels wereused),atascaleof0.435arcsec/pixel.Theclusterwasmonitoredon13nightsforatotalof 36.4hours.Thelightcurvestypicallyhaveabout750datapointsinJohnsonV andabout60data pointsinJohnsonB. Exposuretimeswere150sec to300sec fortheV filterandfrom200sec to 360 sec for the B filter, depending on the atmospheric transparency and seeing conditions. On photometric nights several fields of standard stars (Landolt1992) were observed to obtain transformation coefficients to the photometric standard system. We used procedures from the IRAF noao.imred.ccdproc package for de-biasing and flat-fielding the raw data. Instrumental photometrywasobtainedusingDoPHOT(Schechter,Mateo&Saha1993). 3. LightCurves 3.1. Identificationofvariables We identified 27 SX Phe variables in the field of M 55. Following the nomenclature of Olech et al. (Olechetal.1999) the stars are designated as NGC 6809 LCO V16 through NGC6809LCOV42.Here-afterweusethedesignationsV16–V42respectively.Findingcharts forthesevariablesarepresentedinFigs.1,2and3. The positions of these objects in the color-magnitude diagram are shown in Fig. 4. All of the SX Phe stars belonging to M 55 lie on the blue straggler sequence. Three of the ob- served SX Phe type stars: V28, V29, V30, are 3.5 – 4 mag fainter than the rest of our sam- ple stars. This difference in magnitude places these 3 stars in the Sagittarius dwarf galaxy (Ibata,Gilmore&Irwin1994, Fahlmanetal.1996). The 24 remaining SX Phe variables con- stituteapproximately50percentofallthebluestragglerstarspresentinourdata. 3.2. FourierAnalysis Preliminary period estimates were obtained using the CLEAN algorithm (Robertsetal.1987). We used a method developedby Schwarzenberg-Czerny(Schwarzenberg-Czerny1997) to im- provetheperioddeterminationandtofitaFourierseriestotheV-bandlightcurvesintheform: k V =A +(cid:229) A sin(jw t+f ) (1) o j j j=1 where w =2p /P and P is the pulsation period of the star. The number of harmonics (k) was chosen so that the formal errors of their amplitudes were smaller than the determined values. Pychetal.:CASE-SXPhevariablesinM55 3 Since the amplitudes of most of the SX Phe variables in M 55 are smaller than 0.1 mag, for 18/27starswewere abletomeasureonlythebase harmonic(k=1).Forthosestarsforwhich moreharmonicscouldbemeasuredwecalculatedtheFourierparameters: R = A/A (2) ij i j F = iF jF . (3) ij i i − InordertohelpthereadersunfamiliarwiththeAoVperiodogramanalysistoappreci- atetheeffectsofnoiseandaliasingonourperiodanalysisweprovidehereasanexample description of the light variations of a double mode pulsating star V41 in the terms of theclassicalpowerspectrumandwindowfunction.The windowfunctionlookswellasits highestside-lobesduetodayandmooncyclesdonotexceed83and60percentofthecen- tralpeakrespectively.The windowpatternscorrespondingtotheprimaryandsecondary pulsation frequency in the respective originaland prewhitened power spectrum are little disturbed and symmetric. Hence our period identifications are unambiguous. The power spectrumremainingafterprewhiteningwiththetwodetectedfrequenciesandtheir5har- monics is rather flat, consistent with the low frequency calibration errors not exceeding 0.005magandnoperiodicoscillationswithamplitudesexceeding0.004magatfrequencies exceeding 3 c/d. This is consistent with the theoretical expectations, as any combination amplitudesshouldbeoforderoftheproductofthedetectedamplitudesi.e.of0.001mag. Thesevaluesforotherstarsremainwithinfactorof2oftheirrespectivevaluesforV41. Standarddeviationoftheresidualsis0.014mag,consistentwiththatexpectedforthe sizeofthetelescopeandstellarmagnitude.Thusobservationalerrorsofanaveragevalue of1/4allobservationsshouldbeassmallass 0.014/√180 0.001mag.However,theav- ∼ ∼ eragescalculatedbyselecting1/4ofpointsaroundminimumandmaximumphasesshould differbymorethanthe(half)amplitudeoftheoscillation,consistentwithwellover10s sig- nificancelevelofdetectionevenforthesecondaryoscillation.TheAoVstatisticsusedbyus tendstoyieldhighersignificancelevelsthantheabovesimpleestimate. 3.3. SinglemodeSXPhestars Thebasicparametersderivedforthesingle-modeoscillatorsarelistedinTable1,includingthe variable number, equatorial coordinates (J2000.0), derived periods, meanV-band magnitudes, meanB-bandmagnitudes,meancolors(<B> <V>),andfullamplitudesoftheoscillationsin − V.Table2presentsvaluesofA ,R ,F ,R ,F measuredforthesingle-modevariables.By 1 21 21 31 31 analogytoCepheids,wecanlookforthesignatureoftheresonancebetweentheradialpulsation modes in a F -period plot (Fig. 5). This plot suggests that F is either constant within the 21 21 observedperiodrangewitha weightedmeanof2.183 0.013orslightlyincreasingwiththe ± period,sinceaccordingtotheFisher-SnedecortestthelinearfitF =1.954+2.4( 1.0)P 21 ± 4 Pychetal.:CASE-SXPhevariablesinM55 ismarginallybetterthanaconstantatconfidencelevel0.95.Ourphasescorrespondtothe sineFourierseries(Eq.1),forthecosineseriesthemeanphaseshouldbeincrementedby p /2.Thistakenintoaccount,bothourconstantandlinearsolutionsagreewithPoretti1999. Notethatourresultisbasedonamuchbroaderperiodintervalandhencehasproportion- allystrongerweight.Thesmoothnessofthephasedoesnotrevealthepresenceofanyresonance withintherangeofperiodsobservedhere.Curiously,withintheerrorsthesamephasedifference holdsfortheprincipaloscillationofthedoublemodestarsV31andV32.Thesewereincluded inthemeanvaluequotedabove. Fig.6presentsthelightcurvesofthesingle-modeSXPhevariablesobservedinthefieldof M55. 3.4. DoublemodeSXPhestars We constructedasyntheticlightcurveforeachofthevariablesusingthemeasuredFourierpa- rameters for that variable. After subtractingthis light curve from the observeddata points, we searchedforanewperiodwithanewfitofaFourierseries.Ifthefullamplitudeoftheresulting lightcurvewaslargerthananarbitrarilychosenvalueof0.01mag,thentheobjectwasclassified asadoublemodevariable.Twomodesofpulsationweredetectedinthelightcurvesof12ofour variables.Theparametersforthesedouble-modeSXPhevariablesarelistedinTable3,includ- ingthevariablenumber,equatorialcoordinates(J2000.0),periodsofpulsationsforbothmodes, meanV-bandmagnitudes,meanB-bandmagnitudes,meancolors,andfullamplitudesinV for thelongerperiod.Table4presentsthevaluesofAA,RA ,F A ,ABmeasuredforthedouble-mode 1 21 21 1 variables.WeusethedesignationsAandBforthelongerandshorterperiods,respectively. Fig.7presentsthelightcurvesofthedouble-modevariablesphasedwiththeperiodsofeach modeafterprewhiteningwiththeothermode. 4. ModeIdentification Amplitudesgenerallyyieldnodefinitivecluesfortheidentificationofmodes,exceptthatlarge amplitudesare more likely to occur in radialpulsations. Our identification of pulsation modes reliesontheperiodratiosandonthedistributionofstarsintheperiod-luminosity(P–L)plot. 4.1. Amplitudes Weobserveamplitudesrangingfrom0.016mag.to0.899mag.TheamplitudeofV25(A =0.899 V mag)is oneofthe largestknownamongallSX Phetypevariables.Itisnotlikelythatsuchan amplitudearisesinnon-radialoscillations.Formostofthedouble-modevariablestheamplitude ofthelongerperiodoscillationsislargerthanthatfortheshorterone.AnexceptionisV38which hasa largeramplitudeforthe shorterperiod.For thisreasonit isverylikelythatinthe double modestarstheoscillationswithlargerperiodsandamplitudesareradial(Gillilandetal.1998). Pychetal.:CASE-SXPhevariablesinM55 5 InFig.8wepresentacolor-amplituderelationforthestarsinoursample.Notethatthelarger amplitudesareexhibitedbystarsclosetothecenteroftheinstabilitystrip.Theamplitudesofthe double mode stars tend to be smaller than the amplitudes of the single mode stars, but a few singlemodestarsdisplayverysmallamplitudesaswell.Botheffects,ifreal,areconsistentwith theoretical expectations. However, the large scatter in Fig. 8 makes any detailed discussion of amplitudeeffectspremature. 4.2. PeriodRatios TheperiodsoftheSXPhevariablesinM55spantherange0.033to0.136days.WeuseP for A the longerperiodsandP forthe shorterperiodsof the doublemodevariables.Fig. 9 presents B P /P plotted against P for the double-mode variables. The P /P ratio does not depend on B A A B A theperiodofthepulsations.TheweightedmeanofP /P forV31,V32,V33,V34,V37,V38, B A andV42is0.975 0.005.TheperiodratiosofV35,V36,V39andV40exhibitalargerscatter ± lyinginthe range0.92 0.96.Sincethereareno radialmodesspacedso closelyin frequency, − atleastoneofthemodesinourdouble-modeSXPhevariablesisnon-radialinorigin.However weareunabletosaywithassurancewhichofthetwomodesisradial,ifany,usingonlyperiod information. 4.3. OurRosettaStone:V41 V41 is an exceptional case in that its period ratio is extreme compared to other double mode SXPhestarsinM55(Fig.9).Thisperiodratiohelpsustoidentifyitspulsationmodeswithsome confidence.Theobservedvalueof0.807 0.009is close tothe first andsecondovertoneratio ± forSXPhestars(0.801,seePetersen&Høg1998foradiscussion).Forthisreasonweidentify P andP withthefirstandsecondradialovertones,respectively.InFig.10weplottheperiod- A B luminosityrelationfortheprincipalperiodsofallofthestarsinoursample.ExceptforV41all ofthesecondaryperiodsofthedouble-modestarslayclosetotheirprimaryperiodsandarenot plottedtoavoidconfusion.ForV41thesecondaryperiodP liesoffofthegeneralP–Lrelation, B toward lower periods. It is consistent with our identification of P with the second overtone. B Thisistrue forallslopesofP–L relationsdiscussedin the literature,rangingfrom-3.3to-3.7 (McNamara1995, McNamara1997). However, we caution that these results are extremely sensitiveagainstselectionoftheobservationaldata.Thelatterpaperclaims5-folddecrease ofscatterofM withoutexplainableimprovementinthequalityoftheobservations. V 5. TheFirstOvertoneP–LRelation In Fig. 10 the stars V20, V35,V36, V38 andV41 are markedwith filled symbols. These stars formadistinctbranchawayfromthemaingroupofSXPhestars,shiftedtowardslowerperiods. 6 Pychetal.:CASE-SXPhevariablesinM55 FollowingouridentificationofV41asafirstovertonepulsatorweextendthisidentificationonto thewholegroup. PreviousinvestigationshavenotrevealedsuchaclearseparationoftheradialmodesofSX Phestarsinglobularclusters.Theseinvestigationshavehadtorelyonsmallsamplesfromdiffer- entclusters,andsorelativedistanceerrorsandspatiallyvariablereddeningbothintroducesignif- icantscatterintheperiod-luminositydiagram(McNamara1995,Kaluzny&Krzeminski1993). ThedottedlineinFig.10representsalinearleastsquaresfittothefirstovertoneP–Lrelation: <V >= 3.1 logP + 12.32, (4) 1 − 0.6 0.03 ± ± withastandardresidualofthefitof0.05mag. 6. TheFundamentalModeP–LRelationforSXPheStars 6.1. Slope WeclassifyallremainingstarsinFig.10(plottedwithopensymbols)asSXPhestarspulsating in the fundamentalmode.The continuousline in Fig. 10representsa linearleast squaresfitto thisP–Lrelation: <V >= 2.88 logP +13.09 (5) 0 − 0.17 0.03 ± ± withastandardresidualofthefitof0.12mag. Our fundamentalmode P–L relation is less steep than the overtone relation. However the relativelylargeerroroftheslopederivedforthefirstovertoneP–Lrelation,doesnotreject thehypothesisofequalslopes.ThisisinagreementwiththediscussionbyNemecetal.1994. ThisP–Lrelationforthefundamentalmodestarsexhibitsafairamountofscatter.Thecauseof thismightbemisidentificationamongcloseradialandnon-radialmodes.Theaverageperiodratio of0.97inbimodalstarsisconsistentwithascatterof0.03inlogPduetomodemisidentification. Inaddition,somescatteristobeexpectedfromthefinitewidthoftheinstabilitystrip. McNamara1995 derived a P–L relation with a slope a= 3.3 from a compilation of cluster SX Phe stars. − Thiscompilationreliesonasmallerandlesshomogeneousdatasetthanthatpresentedhere,and hencearealisticestimateoftheerrorofthislattervalueisexpectedtobelargecomparedtoour error of 0.17. Thus the McNamara1995 value for the slope is marginally consistent with our value.AcomparisonoftheseresultsindicatesthedegreeoftheexternalerrorsinvolvedinP–L relationsforSXPhestars. Our P–L slope of a = 2.9 is inconsistent with the value a = 3.7 obtained by − − Petersen&Høg1998 from the parallaxes of d Scuti stars observed by HIPPARCOS. This is Pychetal.:CASE-SXPhevariablesinM55 7 not surprisinggiven the observedscatter in the P–L relation for the HIPPARCOS stars. In ad- dition, these calibrations do not take into account the fact that SX Phe itself is the star in the samplewiththeshortestperiodandthelowestmetallicityat[Fe/H]=–1.37(Hintzetal.1998). The other 5 d Scuti stars from the HIPPARCOS sample have high metallicities ([Fe/H] 0.0). ≃ Nemecetal.1994 demonstrated that SX Phe stars follow a period-luminosity-metallicityrela- tionwithacoefficientof0.32forthe[Fe/H]term,andsotheslopeoftheP–Lrelationfromthe HIPPARCOS starswill beover-estimated.Our P–Lslope is alsoinconsistent withthe value of –3.7 obtainedby McNamara1997for the highly inhomogeneoussample 26 HADS, for whichP–Ldependencewasfoundindirectly,viamanyintermediatesteps. 6.2. Zeropoint On the other hand the HIPPARCOS parallax of SX Phe is crucial for a determination of the zero point of the P–L relation for our M 55 stars. The metallicity of SX Phe is similar to M 55 ([Fe/H]= 1.54, Rutledgeetal.1997). The parallax of SX Phe (p =12.91 miliarcsec) − is well determined with a relative error s p /p =0.06. The absolute magnitude of the SX Phe, derived using the HIPPARCOS parallax, is M = 2.88 0.13 mag (Petersen&Høg1998). V ± Oudmajieretal.1998 determined that when the relative error of the parallax is smaller than about0.15,the Lutz-Kelkercorrection(Lutz&Kelker1973) accuratelydescribesthe probable shiftinthederivedabsolutemagnitude.InthecaseofSXPhe,theLutz-Kelkercorrectionisequal to 0.02mag,sothecorrectedabsolutemagnitudeis2.86mag.Thisvalue,whencombinedwith − Eq.(5)forthefundamentalmodeperiodofSXPheofP =0.0550days(Petersen&Høg1998), 0 yieldsourfinalP–Lrelation: M = 2.88 logP 0.77 (6) V 0 − − 0.17 0.25 ± ± Using our calibrationwe determinethe apparentdistance modulusto M 55 to be (m M) = V − 13.86 0.25mag.ThisresultisconsistentwiththeapparentdistancetoM55determinedfrom ± theanalysisofRRLyraestarsinM55byOlechetal.1999. 7. ThePeriod–ColorRelation d Scuti and SX Phe stars close to the red border of the instability strip have periods signifi- cantlylongerthantheperiodsofstarsatthecenterofthestrip(Pamiatnykh2000).Theperiod- color (logP/(V I)) dependence for d Scuti stars from the Galactic Bulge was described by − Mcnamaraetal.2000. Alinearleastsquaresfitto ourdata,presentedinFig.11yieldsthefol- lowingrelation: <B V >=0.15 logP +0.543 (7) − 0.05 0.008 ± ± 8 Pychetal.:CASE-SXPhevariablesinM55 Thestandardresidualsfromthefitamountto 0.05mag.Notethatthestar towardslowerright inFig.10isV21,whichisfoundattheextremeredborderoftheinstabilitystrip(Fig.4). Any attempt to account for this by including a color term in the P–L relation failed to improvethe qualityofthefit. 8. Conclusions SX Phe type variables seem to be good distance indicators. Although their luminosities are too low for investigationsin distant galaxies, they are bright enoughto be observed in nearby galaxies. The largest number of SX Phe variables in one globular cluster was found in w Cen (Kaluznyetal.1996, Kaluznyetal.1997a), but due to its varying metallicity this clusterisnotsuitable fordistancecalibration.InM55wediscoveredtherichestpopulation ofSXPheamongtherestofglobularclusters.M55isthoughttobechemicallyhomogeneous (Richter,Hilker&Richtler1999).Thisenabledaseparationofthefundamentalandfirstover- tone stars and an estimate of the errorscaused by misidentificationof nearbyradialnon-radial frequencies. In this way we obtained a reliable slope of the P–L relation for the fundamental modestars.CombinedwiththeHIPPARCOSparallaxforSXPheitself,weobtainanimproved P–L relation(Eq. 6).Despite beingbased onjust one star, ourzeropointshouldbe reliable as HIPPARCOS parallax of SX Phe has an error of 6 percentand metallicities of SX Phe and of M 55 are as close as 1.37 and 1.54. Using our revised P–L relation for SX Phe stars we − − measuretheapparentdistancetoM55tobe(m M) =13.86 0.25mag. V − ± Acknowledgements. WewouldliketothankAloshaPamiatnykhandWojciechDziembowskifortheiren- lighteningcomments.JKandWKweresupportedbytheKBNgrant2P03D.003.17.WPwassupportedby theKBNgrant 2P03D.010.15. JKwassupported alsobyNSFgrant AST9819787 toB.Paczyn´ski. IBT andWKweresupportedbyNSFgrantAST-9819786.ASCwassupportedbytheKBNgrantNo.2P03D 01818. References FahlmanG.G.,MandushevG.,RicherH.B.,ThompsonI.B.,SivaramakrishnanA.,1996,ApJL,459,L65. GillilandR.L,BonoG.,EdmondsP.D.,CaputoF.,CassisiS.,PetroL.D.,SahaA.,SharaM.M.,1998,ApJ, 507,818 HarrisW.E.,1996,AJ,112,1487 HintzM.L.,JonerM.D.,HintzE.G.,1998,AJ,116,2993 IbataR.A.,GilmoreG.,&IrwinM.J.,1994,Nature,370,194 KaluznyJ.,&KrzeminskiW.,1993,MNRAS,264,785 KaluznyJ.,KubiakM.,Szyman´skiM.,UdalskiA.,KrzeminskiW.,MateoM.,1996,AAS,120,139 KaluznyJ.,KubiakM.,Szyman´skiM.,UdalskiA.,KrzeminskiW.,MateoM.,StanekK.Z.,1997a,AAS, 122,471 KaluznyJ.,ThompsonI.,&KrzeminskiW.,1997,AJ,113,2219 Pychetal.:CASE-SXPhevariablesinM55 9 LandoltA.,1992,AJ,104,340 LutzT.E.,&KelkerD.H.,1973,PASP,85,573 McNamaraD.H.,1995,AJ,109,1751 McNamaraD.H.,1997,PASP,109,1221 McNamaraD.H.,MadsenJ.B.,BarnesJ.,&EricksenB.F.,2000,PASP,112,202 NemecJ.M.,FinnellNemecA.F.,LutzT.E.,1994,AJ,108,222 OudmajierR.D.,GroenewegenM.A.T.,&SchrijverH.,1998,MNRAS,294,L41 OlechA., Kaluzny J., Thompson I.B.,Pych W.,Krzeminski W.,&Schwarzenberg-Czerny A., 1999, AJ 118,442 Paczyn´ski B., 1997, in The Extragalactic Distance Scale, eds. Livio, M., Donahue, M., & Panagia, N., CambridgeUniv.Press,Cambridge,p.273 Pamiatnykh,A.A.,2000,inproceedingsofDeltaScutiandRelatedStars,ASPConf.Ser.,M.Breger&M.H. Montgomery(Eds.),inprint. PetersenJ.O.,&HogE.,1998,A&A331,989 PorrettiE.,1999,IBVS,4747 RichterP.,HilkerM.,RichtlerT.,1999,A&A,350,476 RobertsD.H.,LeharJ.,DreherJ.W.,1987.AJ,93,968 RutledgeG.A.,HesserJ.E.,StetsonP.B.,MateoM.,SimardL.,BolteM.,FrielE.D.,CopinY.,1997,PASP, 109,883 SchechterP.L.,MateoM.,&SahaA.,1993,PASP,105,1342 Schwarzenberg-CzernyA.,1997,ApJ,489,941 10 Pychetal.:CASE-SXPhevariablesinM55 Table1.Listofsingle-modeSXPhevariablesinthefieldofM55 star R.A.(J2000.0) Dec.(J2000) P <V > <B> <B> <V> AV − hh:mm:sec deg:’:” [days] V16 19:40:09.20 -30:56:42.04 0.0534204(8) 16.94 17.32 0.38 0.016 V17 19:40:11.33 -30:59:25.06 0.0412615(3) 17.18 17.43 0.25 0.049 V18 19:40:06.87 -30:56:32.12 0.0465555(4) 16.98 17.32 0.34 0.029 V19 19:39:57.67 -30:57:01.31 0.0382367(2) 17.27 17.64 0.37 0.033 V20 19:39:54.95 -30:58:21.25 0.0332118(2) 17.04 17.34 0.30 0.102 V21 19:39:58.27 -30:59:06.05 0.1355924(2) 15.76 16.19 0.43 0.036 V22 19:40:07.80 -31:00:12.60 0.0456394(1) 16.81 17.17 0.36 0.337 V23 19:39:51.82 -30:55:52.83 0.0413989(3) 17.22 17.58 0.36 0.050 V24 19:39:45.49 -30:56:02.68 0.0418206(5) 17.06 17.40 0.34 0.026 V25 19:39:51.55 -30:56:21.27 0.0985309(1) 15.88 16.23 0.35 0.899 V26 19:39:47.06 -30:57:33.98 0.0820096(2) 16.11 16.51 0.40 0.173 V27 19:39:54.05 -30:58:07.46 0.0410265(5) 17.09 17.45 0.36 0.029 V28* 19:40:15.04 -31:05:15.03 0.0537630(6) 20.61 20.92 0.31 0.260 V29* 19:39:42.58 -30:55:58.34 0.0343115(2) 20.71 20.92 0.21 0.295 V30* 19:39:41.02 -30:50:25.23 0.0563464(5) 20.35 20.68 0.33 0.258 *ProbablememberoftheSagittariusdwarfgalaxy. Table2.Fourierparametersofsingle-modeSXPhevariablesinM55.SeeEqs.(2)and(3)for thedefinition. star A R f R f 1 21 21 31 31 V16 0.0079 0.0005 - - - - ± V17 0.0246 0.0009 - - - - ± V18 0.0144 0.0006 - - - - ± V19 0.0166 0.0006 - - - - ± V20 0.0500 0.0016 0.126 0.033 2.33 0.27 - - ± ± ± V21 0.0178 0.0004 0.125 0.021 2.55 0.17 - - ± ± ± V22 0.1609 0.0023 0.250 0.015 2.06 0.06 - - ± ± ± V23 0.0252 0.0008 - - - - ± V24 0.0130 0.0007 - - - - ± V25 0.3454 0.0008 0.480 0.003 2.19 0.01 0.240 0.003 4.50 0.01 ± ± ± ± ± V26 0.0839 0.0006 0.221 0.007 2.16 0.03 0.034 0.007 4.66 0.21 ± ± ± ± ± V27 0.0143 0.0009 - - - - ± V28 0.1276 0.0047 0.190 0.038 2.01 0.21 - - ± ± ± V29 0.1477 0.0063 - - - - ± V30 0.1191 0.0042 0.321 0.036 2.13 0.13 0.132 0.034 4.59 0.28 ± ± ± ± ±

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.