ebook img

Closed-Loop Nominal and Abort Atmospheric Ascent Guidance for Rocket-Powered Launch ... PDF

193 Pages·2005·1.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Closed-Loop Nominal and Abort Atmospheric Ascent Guidance for Rocket-Powered Launch ...

Closed-Loop Nominal and Abort Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles A Dissertation By Greg A. Dukeman Submitted to School of Aerospace Engineering In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Aerospace Engineering Georgia Institute of Technology May 2005 Closed-Loop Nominal and Abort Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles Approved by: Dr. Anthony J. Calise,Advisor Dr. Aldo Ferri School of Aerospace Engineering School of Mechanical Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Dewey H. Hodges Dr. John M. Hanson School of Aerospace Engineering NASA Marshall Flight Center Georgia Institute of Technology Dr. Panagiotas Tsiotras School of Aerospace Engineering Date Approved: January 11, 2005 Georgia Institute of Technology ACKNOWLEDGEMENT Many people contributed to the research and results reported in this thesis. My colleagues in the Guidance, Navigation and Control Systems Group at the NASA Marshall Space Flight Center contributed in substantial ways. Dr. John Hanson has been a constant source of encouragement, advice and motivation to me for many years. Thanks to my friend Jim McCarter for developing one of the country’s most capable trajectory simulations and helping with simulation questions. A sincere thank you goes to my thesis advisor, Dr. Anthony Calise, for his assistance and patience and for demanding nothing less than high-quality work. Thanks to each of my Final Committee members who collectively provided a very thorough review of the thesis: Dr. Dewey H. Hodges and Dr. Panagiotis Tsiotras of the School of Aerospace Engineering, Dr. Aldo Ferri of the School of Mechanical Engineering, and Dr. John M. Hanson of the NASA Marshall Space Flight Center. Thanks to NASA and the Marshall Space Flight Center for providing so many great opportunities for continuing engineering education. Much of this research was supported in particular by the Next Generation Launch Technology project at NASA-Marshall – I express my gratitude. I would like to thank my wife Margaret for her love and support over the years and for tolerating many late evenings. Reducing my hours somewhat sounds like a winning proposition to me. Thanks to my kids, Anton and Alex, just for being the beautiful human beings that you are. The world is a better place with you in it. Thanks to my parents, Bud and Eileen (deceased) for instilling in me a love of learning. iii TABLE OF CONTENTS Acknowledgement.............................................................................................................iii List of Tables.....................................................................................................................vi List of Figures...................................................................................................................vii Nomenclature.....................................................................................................................xi Summary..........................................................................................................................xiv 1. Introduction..................................................................................................................1 1.1 Background..........................................................................................................1 1.2 Previous Research................................................................................................4 1.3 Main Contributions..............................................................................................7 2. Atmospheric Ascent Guidance Formulation..............................................................11 2.1 Atmospheric Equations of Motion.....................................................................12 2.2 Optimization Problem........................................................................................15 2.3 Candidate Solution Approaches.........................................................................20 2.4 Necessary Conditions of Optimality..................................................................21 2.4.1 Costate Differential Equations...................................................................21 2.4.2 Optimality Condition.................................................................................23 2.4.3 Transversality Conditions..........................................................................29 2.5 Numerical Solution Methods.............................................................................30 3. Vacuum Guidance Formulation.................................................................................33 4. Single-Stage-To-Orbit Vehicle..................................................................................41 5. Transversality Conditions..........................................................................................56 5.1 Analytical Treatment.........................................................................................57 5.2 Numerical Treatment.........................................................................................64 6. Free Final Time Multi-Arc Optimization Formulation..............................................67 6.1 General Development........................................................................................69 6.2 Multiple Shooting Method Applied to Multi-Arc Optimization.......................73 6.3 Numerical Results..............................................................................................76 7. Multi-Arc Closed Loop Guidance.............................................................................83 7.1 Closed-Loop Guidance Logic for Burn-Coast-Burn Ascent.............................84 7.2 Examination of Various Terminal State Constraints.........................................85 8. Abort Trajectory Generation......................................................................................96 8.1 General Development........................................................................................98 iv 8.1.1 Construction of Target Position and Velocity Vectors............................100 8.1.2 Determination of ∆V Required.................................................................103 8.1.3 Feasible Trajectory Search.......................................................................106 8.1.4 Justification for Cubic Position................................................................109 8.2 Open-Loop Trajectories...................................................................................111 9. Closed-Loop Abort Guidance..................................................................................122 9.1 General Development......................................................................................122 9.2 Choice of Independent Variable......................................................................125 9.3 Guided Trajectory Results...............................................................................126 10. Conclusions and Future Research........................................................................143 Appendix A: Miscellaneous Guidance Relations......................................................148 Appendix B: Constraint on Final Hamiltonian is Ignorable......................................150 Appendix C: Conditions Under Which H (t) is Guaranteed To Vanish.................154 NT f Appendix D: Partial Derivatives Expressions...........................................................156 Appendix E: Vehicle Properties................................................................................159 Appendix F: Treatment Of Gimballed Engine Vehicles...........................................171 References........................................................................................................................175 v LIST OF TABLES 7-1: Results of Perigee-Raise Burn Using Various Constraint Sets.................................91 E-1: X-33 Composite Mass Properties vs. Propellant Remaining..................................160 E-2: X-33 Axial Force Coefficient vs. Mach, α.............................................................161 E-3: X-33 Normal Force Coefficient vs. Alpha, Mach...................................................163 E-4: Generic RLV 1st Stage Composite Mass Properties vs. Propellant Remaining......166 E-5: Generic RLV 2nd Stage Composite Mass Properties vs. Propellant Remaining.....166 E-6: Generic RLV Lift Coefficient vs. Mach, α.............................................................167 E-7: Generic RLV Drag Coefficient vs. Mach, α...........................................................169 vi LIST OF FIGURES 2-1: Guidance Reference Frame.......................................................................................15 2-2: Angles Pertaining To Optimality Condition.............................................................28 2-3: Second Variation Test: Hamiltonian vs. δ................................................................28 4-1: Hamiltonian vs. Time................................................................................................44 4-2: Altitude vs Speed, POST/MAVERIC Comparison, Sub-orbital Mission.................45 4-3: Dynamic Pressure vs Speed, POST/MAVERIC Comparison, Sub-orbital Mission.45 4-4: qα, qβ vs Speed, POST/MAVERIC Comparison, Sub-orbital Mission...................46 4-5: α, β vs Speed, POST/MAVERIC Comparison, Sub-orbital Mission.......................46 4-6: Ground Track, POST/MAVERIC Comparison, Sub-orbital Mission.......................47 4-7: Mass vs Time, POST/MAVERIC Comparison, Sub-orbital Mission.......................47 4-8: Euler Angles vs Speed, POST/MAVERIC Comparison, Sub-orbital Mission.........48 4-9: Altitude vs Speed, POST/MAVERIC Comparison, Circular Insertion....................48 4-10: Dynamic Pressure vs Speed, POST/MAVERIC Comparison, Circular Insertion..49 4-11: qα, qβ vs Speed, POST/MAVERIC Comparison, Circular Insertion.....................49 4-12: α, β vs Speed, POST/MAVERIC Comparison, Circular Insertion.........................50 4-13: Ground Track, POST/MAVERIC Comparison, Circular Insertion........................50 4-14: Vehicle Mass, POST/MAVERIC Comparison, Circular Insertion.........................51 4-15: Euler Angles, POST/MAVERIC Comparison, Circular Insertion.........................51 4-16: Altitude vs Speed, POST/MAVERIC Comparison, 51.6 deg mission....................52 4-17: Dynamic Pressure vs Speed, POST/MAVERIC Comparison, 51.6 deg mission...52 4-18: qα, qβ vs Speed, POST/MAVERIC Comparison, 51.6 deg Mission.....................53 vii 4-19: α, β vs Speed, POST/MAVERIC Comparison, 51.6 deg Mission.........................53 4-20: Ground Track, POST/MAVERIC Comparison, 51.6 deg Mission.........................54 4-21: Mass vs Time, POST/MAVERIC Comparison, 51.6 deg Mission.........................54 4-22: Euler Angles vs Speed, POST/MAVERIC Comparison, 51.6 deg Mission...........55 6-1: Base-10 Logarithm of the Absolute Value of Boundary Condition Residuals.........79 6-2: Speed vs Time on Optimized Burn-Coast-Burn Trajectory......................................79 6-3: Altitude vs Time on Optimized Burn-Coast-Burn Trajectory...................................80 6-4: Apogee/Perigee vs Time on Optimized Burn-Coast-Burn Trajectory......................80 6-5: Flight Path Angle vs Time on Optimized Burn-Coast-Burn Trajectory...................81 6-6: Vehicle Mass vs Time on Optimized Burn-Coast-Burn Trajectory.........................81 6-7: Switching Function vs Time on Optimized Burn-Coast-Burn Trajectory................82 6-8: Switching Function vs Time on Optimized Burn-Coast-Burn Trajectory................82 7-1: Number of Iterations Per Guidance Cycle vs Time..................................................93 7-1: Angle of Attack vs Time During Perigee-Raise Burn...............................................94 7-3: Angle of Sideslip vs Time During Perigee-Raise Burn............................................94 7-4: Vehicle Angular Velocity Magnitude During Perigee-Raise Burn...........................95 8-1: Entry altitude vs range-to-go on a typical entry trajectory......................................113 8-2: Entry speed vs range-to-go on a typical entry trajectory........................................113 8-3: ∆V Required vs range-to-go for RTLS Trajectories................................................114 8-4: Altitude vs time on Open-loop RTLS Trajectories.................................................114 8-5: Speed vs time on Open-loop RTLS Trajectories.....................................................115 8-6: Ground Tracks on Open-loop RTLS Trajectories...................................................115 8-7: Down range vs time on Open-loop RTLS Trajectories...........................................116 viii 8-8: Mass vs time on Open-loop RTLS Trajectories......................................................116 8-9: Thrust vs time on Open-loop RTLS Trajectories....................................................117 8-10: Dynamic pressure vs time on Open-loop RTLS Trajectories...............................117 8-11: Altitude vs time on Open-loop ATDS Trajectories...............................................118 8-12: Speed vs time on Open-loop ATDS Trajectories..................................................118 8-13: Ground Tracks on Open-loop ATDS Trajectories................................................119 8-14: Down range vs time on Open-loop ATDS Trajectories........................................119 8-15: Mass vs time on Open-loop ATDS Trajectories...................................................120 8-16: Thrust vs time on Open-loop ATDS Trajectories.................................................120 8-17: Dynamic pressure vs time on Open-loop ATDS Trajectories...............................121 9-1: Altitude vs time on Guided RTLS Trajectories.......................................................130 9-2: Speed vs time on Guided RTLS Trajectories..........................................................130 9-3: Down range vs time on Guided RTLS Trajectories................................................131 9-4: Mass vs time on RTLS Guided Trajectories...........................................................131 9-5: Thrust vs time on Guided RTLS Trajectories.........................................................132 9-6: Dynamic pressure vs time on Guided RTLS Trajectories.......................................132 9-7: qα, qβ vs time on Guided RTLS Trajectories.........................................................133 9-8: α, β vs time on Guided RTLS Trajectories.............................................................133 9-9: Time-to-go vs time on Guided RTLS Trajectories.................................................134 9-10: Heading error vs time on Guided RTLS Trajectories...........................................134 9-11: Altitude error vs time on Guided RTLS Trajectories............................................135 9-12: Speed error vs time on Guided RTLS Trajectories...............................................135 9-13: Altitude vs time on Guided ATDS Trajectories....................................................136 ix 9-14: Speed vs time on Guided ATDS Trajectories.......................................................136 9-15: Down range vs time on Guided ATDS Trajectories.............................................137 9-16: Mass vs time on Guided ATDS Trajectories.........................................................137 9-17: Thrust vs time on Guided ATDS Trajectories.......................................................138 9-18: Dynamic pressure vs time on Guided ATDS Trajectories....................................138 9-19: qα, qβ vs time on Guided ATDS Trajectories......................................................139 9-20: α vs time on Guided ATDS Trajectories...............................................................139 9-21: β vs time on Guided ATDS Trajectories...............................................................140 9-22: Time-to-go vs time on Guided ATDS Trajectories...............................................140 9-23: Heading error vs time on Guided ATDS Trajectories...........................................141 9-24: Altitude Error vs time on Guided ATDS Trajectories..........................................141 9-25: Speed error vs time on Guided ATDS Trajectories..............................................142 F-1: Typical First Stage Pitch Gimbal Angle.................................................................174 x

Description:
Closed-Loop Nominal and Abort Atmospheric Ascent Guidance for Rocket-Powered .. E-3: X-33 Normal Force Coefficient vs. Alpha .. angle between Earth-relative velocity vector and velocity costate vector .. Return to launch site trajectory shaping and guidance techniques for the space shuttle have.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.