ebook img

clock and data recovery for high-speed adc-based receivers - TSpace PDF

105 Pages·2010·1.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview clock and data recovery for high-speed adc-based receivers - TSpace

C D R LOCK AND ATA ECOVERY FOR H -S ADC-B R IGH PEED ASED ECEIVERS by OleksiyTyshchenko Athesissubmittedinconformitywiththerequirements forthedegreeofDoctorofPhilosophy GraduateDepartmentofElectricalandComputerEngineering UniversityofToronto ©CopyrightbyOleksiyTyshchenko2011 CLOCK AND DATA RECOVERY FOR HIGH-SPEED ADC-BASED RECEIVERS OleksiyTyshchenko DoctorofPhilosophy,2011 GraduateDepartmentofElectricalandComputerEngineering UniversityofToronto ABSTRACT T HIS THESIS EXPLORES the clock and data recovery (CDR) for the high-speed blind-sampling ADC-based receivers. This exploration results in two new CDR ar- chitecturesthatreducethereceivercomplexityandsavetheADCpowerandareacompared tothepreviouswork. ThetwoproposedCDRarchitecturesconstitutetheprimarycontribu- tionsofthisthesis. The first proposed architecture, a 2x feed-forward CDR architecture, eliminates the interpolating feedback loop, used in the previously reported CDRs, in order to reduce the CDRcircuitcomplexity. Insteadofthefeedbackloop,theproposedarchitectureusesafeed- forwardtopologytorecoverthephaseanddatadirectlyfromtheblinddigitalsamplesofthe receivedsignal. The2xfeed-forwardCDRarchitecturewasimplementedandcharacterized ina5Gb/sreceivertest-chipin65nmCMOS.Thetest-chipmeasurementsconfirmthatthe CDR successfully recovers the data with bit error rate (BER) ≤10−12 in the presence of jitter. Thesecondproposedarchitecture, afractional-sampling-rate(FSR)CDRarchitecture, reduces the receiver sampling rate from the typical integer rate of 2x the baud rate to a fractional rate between 2x and 1x in order to reduce the ADC power and area. This archi- tectureemploysthefeed-forwardtopologyofthefirstcontributionofthisthesistorecover ii iii thephaseanddatafromthefractionally-spaceddigitalsamplesofthesignal. Toverifythe proposed FSR CDR architecture, a 1.45x receiver test-chip was implemented and charac- terized in 65nm CMOS. This test-chip recovers 6.875Gb/s data from the ADC samples takenat10GS/s. Themeasurementsconfirmasuccessfuldatarecoveryinthepresenceof jitter with BER ≤10−12. With sampling at 1.45x, the FSR CDR architecture reduces the ADCpowerandareaby27.3%comparedtothe2xfeed-forwardCDRarchitecture,while theoverallreceiverpowerandareaarereducedby12.5%. Acknowledgments GRADUATE STUDIES is a lot like a long journey. Sometimes it seems interesting and exciting, while sometimes it seems hard and endless. Along the way of this journey I met a lot of people and saw a lot of places. These people and places helped me and inspired me to complete my journey evenat times when the journeyseemed to be never-ending. Now, comingclosetotheendofmygraduatestudies, Iwouldliketothank the people who helped me and reflect upon the places that inspired me through out my graduateschoolyears. First of all, I thank my supervisor, Prof.Ali Sheikholeslami, for his guidance through the course of my Ph.D. work. His enthusiasm and insights have been a great source of encouragement for me. I also thank Prof.Sheikholeslami for helping me to realize that the graduate school in engineering is more than a technical education, rather it is a great learningexperienceofsolvingproblemsandachievinggoals. I thank Dr.Hirotaka Tamura of Fujitsu Laboratories Limited (FLL), Kawasaki, Japan, for his helpful comments, suggestions and constructive criticism at all stages of my Ph.D. projects: from the project definitions, through architecture development and circuit imple- mentation,allthewaytotest-chipmeasurementsandpublishingtheresults. Tamura-sensei, youwereverymuchlikeaco-supervisorformeduringmyPh.D.studies,andIthankyou forallyourhelp. I am thankful to the members of my Ph.D. oral examination committee: Prof.David Johns,Prof.TonyChanCarusone,Prof.SorinVoinigescu,Prof.WaiTungNg,Prof.WeiYu; and my thesis appraiser Prof.Michael Green for their criticism of this work and valuable feedback. I thank the former and current graduate students of Ali-group: Kostas Pagiamtzis, Marcus van Ierssel, David Halupka, Jeff Chow, Scott McLeod, Pradip Thachil, Tina Tah- iv v moureszadeh,SafeenHuda,ShayanShahramian,BehroozAbiri,andSiamakSarvari,who helpedmeturnmygraduateschoolyearsintoaninteresting,enjoyableanddiversepartof my life. It was a great pleasure meeting them, working with them, and getting to know them. I greatly appreciate the support of Kostas Pagiamtzis and Marcus van Ierssel, who completedtheirgraduatestudiesbeforeIdid,andwhohelpedmebelievethatthisjourney will eventually come to an end. Special thanks go to David Halupka with whom over the pastseveralyearsIsharedthecubicle,mygoodandbadnews,myexcitementandfrustra- tions. Naturally, he shared the same with me, and I had to listen to all that. David, thank youforyourpatiencewithstandingmealltheseyears. During my graduate studies I spent most of the time in Toronto, Canada. However, I was lucky enough to see other places as well. The places are strongly associated with the people who helped me see, explore and enjoy these places. I would like to thank these peoplenext. IthankWilliamWalker,NikolaNedovic,NestorasTzartzanis,FrancisRotellaandMag- nusWiklundofFujitsuLaboratoriesofAmerica(FLA),Sunnyvale,CA,forwelcomingme totheirteamasaninternforhalf-a-year. Itwasmypleasuretolearnfromandtoworkwith the FLA team. I also thank the FLA team for allowing me to experience a professional, goodandfriendlyworkenvironment. Duringthisinternship,IhadagreatchancetoexploretheBayAreainCalifornia,and I thank people who helped me turn this time into an experience to remember. I thank Jeff Chow for allowing me to “take over” his life during his leave from California, which convenientlycoincidedwithmyinternship. Forseveralmonths,IstayedatJeff’sapartment, I drove Jeff’s car, and I used Jeff’s cell phone, which made my settling in San Jose, CA, very smooth. I thank Kostas Pagiamtzis and Irene Goldthorpe for accompanying me on a largenumberoftripsinCalifornia. IalsothankIreneandKostasforhelpingmetorealize thatloosingabetcanbejustaspleasantaswinningit. I thank Laura Fujino and Prof.K.C.Smith for inviting me to attend the International Solid-State Circuits Conference (ISSCC) as a student volunteer six consecutive times dur- ing my graduate studies. The ISSCC attendance helped me to remain aware of the most recent research work in the area of electronics performed all over the world both in indus- tryandinacademia. Beingpartofthevolunteersteamhelpedmetogettoknowbettermy fellowgraduatestudents,andtorealizewhatagoodteamisallabout. IfurtherthankLaura vi andProf.Smithforsharingtheirlifewisdomwithmeduringtherareuneventfulbreaksat ISSCC. Withalltheintenseschedulesofthegraduatestudies,Iamgratefultomyfriendswho helpedmediscoverbeautifulplacesandexperiencememorableadventuresduringtheshort vacations away from the school matters. I thank Valeri Kirischian and Irina Ivanova for showingmethebeautyoftheProvinceofOntariothroughnumeroushiking,campingand canoeing adventures. I am particularly thankful to Valeri and Irina for helping me experi- ence the wilderness of Lake Temagami, Ontario, with its rapidly changing weather, stren- uous canoeing and portaging, beaver dams across tiny rivers, camp fires, starry skies, and sometimesevenpolarlights. IthankRomanOchoukovforaccompanyingmewhileexplor- ing the cities of the East Coast: Toronto, Boston, New York, Montreal, to name some of them. I also thank Roman for his moral support during my graduate studies. Whenever I thought that the graduate life was hard at the University of Toronto, it was enough to chat with Roman to remind myself that life is even harder at MIT. I thank Kostas Pagiamtzis, IreneGoldthorpe,ScottMcLeodandKevinBanovicforjoiningmeforaskydivingadven- ture—mymostextremeexperiencesofar. Thelongjourneyofthegraduatestudiesdiffers on so many levels from a one minute long free-fall. Yet there is one thing is common betweenthesetwoexperiences: itislessstressfultoreflectuponthembothinretrospect. I thank my parents for their unconditional support through the years of my studies. Last,butnotleast,Ithankmywife,KatyaTyshchenko,forbeingbymysidedespiteallthe challenges of her own graduate studies. I further thank Katya for being with me through mostofmyexperiencesofthegraduateyears: fromcourseprojectstooutdoorsadventures. Approachingtheendofmystudies,Irealizethatitisnottheend-goalitselfthatmatters, ratheritisthewaytowardsthegoalthatisimportant. Meetingthepeoplewhohelpedme, anddiscoveringtheplacesthatinspiredmebecameaninvaluableexperienceforme. After all,thejourneyofstudiesissimplyapartofalargerjourneyoflife. Contents ListofTables ix ListofFigures x ListofAbbreviations xii Chapter1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 DesignChallengesandApproaches . . . . . . . . . . . . . . . . . . . . . 3 1.3 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter2 FundamentalsofClockandDataRecoveryin High-SpeedReceivers 6 2.1 BuildingBlocksofaHigh-SpeedReceiver . . . . . . . . . . . . . . . . . . 6 2.1.1 ChannelProperties . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 ClockandDataRecovery . . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 SignalEnergyConsiderations . . . . . . . . . . . . . . . . . . . . 15 2.2 CDRArchitecturesforBinary-SamplingReceivers . . . . . . . . . . . . . 16 2.2.1 Phase-TrackingCDRArchitecture . . . . . . . . . . . . . . . . . . 17 2.2.2 OversamplingCDRArchitecture . . . . . . . . . . . . . . . . . . . 21 2.3 CDRArchitecturesforADC-BasedReceivers . . . . . . . . . . . . . . . . 23 2.3.1 Mueller-Mu¨llerCDRArchitecture . . . . . . . . . . . . . . . . . . 24 2.3.2 InterpolatingFeedbackCDRArchitecture . . . . . . . . . . . . . . 28 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter3 AnADC-BasedFeed-ForwardCDRArchitecture 35 3.1 Feed-ForwardCDRArchitecture . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Phase-DetectionScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Phase-RecoveryFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 vii Contents viii 3.4 Data-DecisionScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 DataRetimingScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.6 SimulationandMeasurementResults . . . . . . . . . . . . . . . . . . . . 52 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter4 AFractional-Sampling-RateCDRArchitecture 58 4.1 Fractional-Sampling-RateCDRArchitecture. . . . . . . . . . . . . . . . . 59 4.2 Phase-DetectionSchemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.1 Eye-BasedPhaseDetector . . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 Transition-BasedPhaseDetector . . . . . . . . . . . . . . . . . . . 64 4.3 Phase-RecoveryFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 Data-DecisionScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.5 DataCompactionSchemes . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5.1 Shift-RegisterDataCompactor . . . . . . . . . . . . . . . . . . . . 73 4.5.2 Selector-ArrayDataCompactor . . . . . . . . . . . . . . . . . . . 74 4.6 DataRetimingScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.7 SimulationandMeasurementResults . . . . . . . . . . . . . . . . . . . . 77 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter5 Conclusions 83 5.1 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 References 87 List of Tables 2.1 Recentlypublishedhigh-speedreceivers. . . . . . . . . . . . . . . . . . . . . . 33 3.1 Jittertolerancesimulationconditions(inFigure3.14). . . . . . . . . . . . . . . 52 3.2 Test-chipparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Jittertolerancemeasurementandsimulationconditions(inFigure3.17). . . . . 56 (cid:177) 4.1 Samplingphasesforthesamplingrateof 16 11 ≈1.45x.. . . . . . . . . . . . 63 4.2 Conditionalselectortruthtable. . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 Test-chipparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 ix List of Figures 1.1 ITRSprojectionforchip-to-chipinterconnectdatarates. . . . . . . . . . . . . 2 2.1 Simplifieddiagramofaninterconnect. . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Functionalblock-diagramofahigh-speedreceiver. . . . . . . . . . . . . . . . 7 2.3 Channelresponseintimeandfrequencydomains. . . . . . . . . . . . . . . . . 8 2.4 Equalizationwithafilterinthefrequencydomain. . . . . . . . . . . . . . . . . 10 2.5 Feed-forwardequalization(FFE). . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Decisionfeedbackequalization(DFE). . . . . . . . . . . . . . . . . . . . . . . 12 2.7 Clockingschemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.8 Classificationofhigh-speedreceiverswithcorrespondingCDRexamples. . . . 15 2.9 Binarysampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.10 Simplifiedblock-diagramofaphase-trackingCDR. . . . . . . . . . . . . . . . 17 2.11 Phasedetectioninthephase-trackingCDR. . . . . . . . . . . . . . . . . . . . 18 2.12 Phase-trackingfeedbackloop. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.13 Jittertransferandtoleranceofthephase-trackingCDR. . . . . . . . . . . . . . 20 2.14 Simplifiedblock-diagramofanoversamplingCDR. . . . . . . . . . . . . . . . 21 2.15 Phasedetectioninthe3xoversamplingCDR. . . . . . . . . . . . . . . . . . . 21 2.16 Jittertoleranceofthe3xoversamplingCDR.. . . . . . . . . . . . . . . . . . . 23 2.17 SamplingwithanADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.18 Simplifiedblock-diagramofaMueller-Mu¨llerCDR. . . . . . . . . . . . . . . 24 2.19 Mueller-Mu¨llertimingrecoveryfromanimpulseresponse. . . . . . . . . . . . 25 2.20 Mueller-Mu¨llertimingrecoveryfromcontinuousdata. . . . . . . . . . . . . . 26 2.21 JittertoleranceoftheMueller-Mu¨llerCDR. . . . . . . . . . . . . . . . . . . . 27 2.22 Simplifiedblock-diagramofaninterpolatingfeedbackCDR. . . . . . . . . . . 28 2.23 BlindandinterpolatedsamplesintheinterpolatingfeedbackCDR. . . . . . . . 28 2.24 Linearinterpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.25 JittertoleranceoftheinterpolatingfeedbackCDR. . . . . . . . . . . . . . . . 30 2.26 Simplifiedblock-diagramofajoint-adaptation-basedCDR[43]. . . . . . . . . 31 3.1 Proposedfeed-forwardCDRarchitecture(simplifiedblock-diagram). . . . . . 36 3.2 Receiverwiththeproposedfeed-forwardCDRarchitecture. . . . . . . . . . . . 37 x

Description:
THIS THESIS EXPLORES the clock and data recovery (CDR) for the high-speed The second proposed architecture, a fractional-sampling-rate (FSR) CDR
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.