ebook img

Clifford Algebras and Their Application in Mathematical Physics: Aachen 1996 PDF

458 Pages·1998·16.872 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Clifford Algebras and Their Application in Mathematical Physics: Aachen 1996

Clifford Algebras and Their Application in Mathematical Phy Fundamental Theories of Physics An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application Editor: Alwyn van der Merwe, University of Denver, U.S.A. Editoral Advisory Board: Lawrence P. Horwitz, Tel-Aviv University, Israel Brian D. Josephson, University of Cambridge, U.K. Clive Kilmister, University of London, U.K. Pekka J. Lahti, University of Turku, Finland Günter Ludwig, Philipps-Universität, Marburg, Germany Asher Peres, Israel Institute of Technology, Israel Nathan Rosen, Israel Institute of Technology, Israel Eduard Prugovecki, University of Toronto, Canada Mendel Sachs, State University of New York at Buffalo, U.S.A. Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy Hans-Jürgen Treder, Zentralinstitut für Astrophysik der Akademie der Wissenschaften, Germany Volume 94 Clifford Algebras and Their Application in Mathematical Physics Aachen 1996 edited by Volker Dietrich Klaus Habetha and Gerhard Jank Department of Mathematics, Rheinisch-Westfälischen Technischen Hochschule, Aachen, Germany SPRINGER SCIENCE+BUSINESS MEDIA, B.V. A CLP. Catalogue record for this book is available from the Library of Congress. ISBN 978-94-010-6114-8 ISBN 978-94-011-5036-1 (eBook) DOI 10.1007/978-94-011-5036-1 Printed on acid-free paper All Rights Reserved ©1998 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1998 Softcover reprint of the hardcover 1st edition 1998 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS Preface Xl Participants of the 4th Conference on Clifford Algebras Xlll Program of the 4th Conference on Clifford algebras XXVll Th. Ackermann, Dirac Operators and Clifford Geometry - New Unifying Principles in Particle Physics? ............................... 1 M.B. Balk and M.Ya. Mazalov, On the Hayman uniqueness problem for poly harmonic functions ................................................... 11 S. Bernstein, Left-linear and Nonlinear Riemann problems in Clifford analysis .................................................... 17 J. Bures, Spin structures and harmonic spinors on nonhyperelliptic Riemann surfaces of small genera ........................... 31 P. Cerejeiras, Decomposition of analytic hyperbolically harmonic functions 45 J .S.R. Chisholm and R.S. Farwell, Spin Gauge Theories: A Summary .......................... 53 J. Cnops, Manifolds with and without embeddings .................... 57 C. Daviau, Dirac equation in the Clifford algebra of Space .............. 67 B. Fauser, Dirac theory from a field theoretic point of view ............. 89 K. Gurlebeck, On some applications of the biharmonic eqllation .......... 109 VI D. Hestenes, Spinor Particle Mechanics ................................. 129 U. Kahler, Clifford analysis and elliptic boundary vallie problems in unbounded domains ..................................... 145 J. Keller, Twistors and Clifford Algebras ............................. 161 V.V. Kisil, How Many Essentialy Different Function Theories Exist? ... 17.5 W. Haussmann and 0.1. Kounchev, Variational Property of the Peano Kernel for Harmonicity Differences of Order p ..................................... 185 P. Van Lancker, Clifford Analysis on the Sphere ............................ 201 J. Lawrynowicz, Type-changing transformations of pseudo-Euclidean Hurwitz pairs, Clifford Analysis, and particle lifetimes ...... 217 Th. Hempfling and H. Leutwiler, Modified quaternionic analysis in JR4 ...................... 227 H. Li, Geometric Algebra and Lobachevski Geometry ............. 239 H.R. Malonek, Generalizing the (F,G)- derivative in the sense of Bers ..... 247 A. Micali, Formes quadratiques de Hardy-Weinberg et algebres de Clifford ................................................... 2.59 D. Miralles, On Dirac equations in curved space-times .................. 267 E. Obolashvili, Some Partial Differential Equations in Clifford Analysis .... 275 J.M. Parra, Teaching Clifford Algebra as Physical ~1athematics ........ 291 W.M. Pezzaglia Jr., Polydimensional Relativity, a Classical Generalization of the Automorphism Invariance Principle .................... 305 W.A. Rodrigues Jr. and J. Vaz Jr., Subluminal and Superluminal Electromagnetic Waves and the Lepton Mass Spectrum ............................ 319 S. Somaroo, Higher Spin and the Spacetime Algebra .................... 347 F. Sommen, Curved Radon Transforms in Clifford Analysis ............. 369 VB W. Sprossig, On a class of non-linear boundary value problems .......... 383 M. Cahen, S. Gutt and A. Trautman, Pin structures and the Dirac operator on real projective spaces and quadrics ....................................... 391 J. Vaz Jr., Construction of monopoles and instantons by using spinors and the inversion theorem .......................... 401 K.P. Wojciechowski, S.G. Scott, G. Morchio and B. Booss-Bavnbek, Determinants, Manifolds with Boundary and Dirac Operators ........................................... 423 R. Yamaleev, New dynamical equations for many particl(' system on the basis of multicomplex algebra ....................... 433 x ; uet m Kisil Somaroo Sproessig Cerejeiras Malonek Pezzaglia Ackermann Chisholm Eriksson-Biq Yamaleev Sommen Mrs. Chishol 2. 3. 4. 5. 6. 7. 8. 9. 0. 1. 2. 3. 4 4 4 4 4 4 4 4 5 5 5 5 n s ba Mrs. Hestene Friedrich Kaehler Terglane Gull Menzel Parra Serra Fauser Leng Guerlebeck van Lancker Dietrich Miralles Este 9. 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 0. 1. 2 3 3 3 3 3 3 33 3 3 4 4 o n a ell Ar ki Mcintosh Jank Li Kath Cnops Delanghe Bernstein Bures Hestenes Brackx Trautman Ramirez de Wojciechows Porteous 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 2.5. 26. 27. 28. z Hijazi Vaz Balk Micali Ryan Habetha Lawrynowic Daviau Vasilevski Laufer Leutwiler Kounchev Keller Obolashvili 1. 2. 3. 4. 5. 6. 7. 8. 9. 0. 1. 2. 3. 4. 1 1 1 1 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.