ebook img

Clifford algebras and Lie theory PDF

331 Pages·2013·1.702 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Clifford algebras and Lie theory

Ergebnisse der Mathematik Volume 58 und ihrer Grenzgebiete 3.Folge A Series of Modern Surveys in Mathematics EditorialBoard L.Ambrosio,Pisa G.-M.Greuel,Kaiserslautern M.Gromov,Bures-sur-Yvette J.Jost,Leipzig J.Kollár,Princeton S.S.Kudla,Toronto G.Laumon,Orsay H.W.Lenstra,Jr.,Leiden J.Tits,Paris D.B.Zagier,Bonn ManagingEditor R.Remmert,Münster Forfurthervolumes: www.springer.com/series/728 Eckhard Meinrenken Clifford Algebras and Lie Theory EckhardMeinrenken DepartmentofMathematics UniversityofToronto Toronto,ON,Canada ISSN0071-1136 ErgebnissederMathematikundihrerGrenzgebiete.3.Folge/ASeries ofModernSurveysinMathematics ISBN978-3-642-36215-6 ISBN978-3-642-36216-3(eBook) DOI10.1007/978-3-642-36216-3 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013933367 MathematicsSubjectClassification: 15A66,17B20,17B35,17B55 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) DedicatedtomyfamilyNozomiandEmma Preface Given a symmetric bilinear form B on a vector space V, one defines the Clifford algebraCl(V;B)tobetheassociativealgebrageneratedbytheelementsofV,with relations v v +v v =2B(v ,v ), v ,v ∈V. 1 2 2 1 1 2 1 2 IfB=0thisisjusttheexterioralgebra∧(V),andforgeneralB thereisanisomor- phism(thequantizationmap) q:∧(V)→Cl(V;B). Hence,theCliffordalgebramayberegardedas∧(V)withanew,“deformed”prod- uct. Clifford algebras enter the world of Lie groups and Lie algebras from multi- pledirections.Forexample,theyareusedtogiveconstructionsofthespingroups Spin(n),thesimplyconnecteddoublecoveringsofSO(n)forn≥3.Goingalittle further,onethenobtainsthespinrepresentationsofSpin(n),whichisanirreducible representationifnisoddandbreaksupintotwoinequivalentirreduciblerepresen- tations if n is even. The “accidental” isomorphisms of Lie groups in low dimen- ∼ sions, such as Spin(6)=SU(4), all find natural explanations using the spin repre- sentation. Furthermore, there are explicit constructions of the exceptional groups E ,E ,E ,F ,G ,usingspecialfeaturesofthespingroupsandthespinrepresen- 6 7 8 4 2 tation.Therearemanyremarkableaspectsoftheseconstructions,seee.g.,Adams’ book[1]orthesurveyarticlebyBaez[20]. Further relationships between Lie groups and Clifford algebras come from the theory of Dirac operators on homogeneous spaces. Recall that by the Borel–Weil Theorem,anyirreduciblerepresentationofacompactLiegroupGisrealizedasa spaceofholomorphicsectionsofalinebundleoveranappropriatecoadjointorbit. These sections may be regarded as solutions of the Dolbeault–Dirac operator for thestandardcomplexstructureonthecoadjointorbit.Fornon-compactLiegroups, therearemanyconstructionsof representationsusingmoregeneraltypesof Dirac operators,beginningwiththeworkofAtiyah–Schmid[16]andParthasarathy[106]. SeethebookbyHuang–Pandzic[66]forfurtherreferencesandmorerecentdevel- opments. vii viii Preface Given a Lie algebra g with a non-degenerate invariant symmetric bilinear form B (e.g., g semisimple, with B the Killing form), it is also of interest to consider the Clifford algebra of g itself. Let φ∈∧3g be the structure constant tensor of g, definedusingthemetric.ByabeautifulobservationofKostantandSternberg[90], thequantizedelementq(φ)∈Cl(g)squarestoascalar.Ifgiscomplexsemisimple, thecubicelementisoneofthebasiselements φ ∈∧2mi+1(g), i=1,...,rank(g), i of the primitive subspace P(g)⊆∧(g)g of the invariant subalgebra of the exte- rioralgebra.AccordingtotheHopf–Koszul–SamelsonTheorem,∧(g)g isitselfan exterioralgebra∧P(g)withgeneratorsφ ,...,φ .In[86],Kostantprovedthemar- 1 l velousresultthat,similarly,theinvariantsubalgebraoftheCliffordalgebraCl(g)g isitselfaCliffordalgebraCl(P(g))overthequantizedgeneratorsq(φ ).Inparticu- i lar,theelementsq(φ )allsquaretoscalars—asurprisingfactgiventhattheφ can i i haveveryhighdegree. My own involvement with this subject goes back to work with Anton Alek- seev on group-valued moment maps [11]. We had developed a non-standard non- commutative equivariant de Rham theory tailored towards these applications, and werelookingforanaturalframeworkinordertounderstanditsrelationtothestan- dard equivariant de Rham theory. Inspired by [86, 90], we were led to consider a quantumWeilalgebra W(g)=U(g)⊗Cl(g), whereU(g)istheenvelopingalgebraofg,andequippedwithadifferentialsimilar totheusualWeildifferentialonthestandardWeilalgebraW(g)=S(g∗)⊗∧(g∗). Thedifferentialwasexplicitlygivenasagradedcommutationwithacubicelement (cid:2) D = ei⊗e +1⊗q(φ)∈W(g), g i i wheree isabasisofg,ei thedualbasis,andφ∈∧3gasabove.Thefactthat[D ,·] i g squarestozeroisduetothefactthatD2liesinthecenterofW(g)—infactonefinds g that 1 D2= Cas ⊗1+const., g 2 g where Cas ∈U(g) is thequadraticCasimir element.In [4] andits sequel [7], we g usedthistheorytogiveanewproofforthecaseofquadraticLiealgebrasofDuflo’s Theorem,givinganalgebraisomorphism (cid:3) sym◦J1/2:S(g)g→U(g)g (cf. Section 5.6 for notation) between invariants in the symmetric and enveloping algebrasofg. Independently,Kostant[87]hadintroducedamoregeneralcubicelement D ∈U(g)⊗Cl(p), g,k Preface ix associatedtoaquadraticLiesubalgebrak⊆gwithorthogonalcomplementp=k⊥, which he called the cubic Dirac operator. Taking k=0, one recovers D =D . g,0 g For the case where g and k are the Lie algebras of compact Lie groups G and K, withK amaximalranksubgroupofG,heusedthecubicDiracoperatortoobtain analgebraicversionoftheBorel–Weilconstruction[87,88],notrequiringinvariant complexstructuresonG/K.(Inthecomplexcase,analgebraicversionoftheBorel– WeilmethodhadbeenaccomplishedseveraldecadesearlierinKostant’swork[84].) OtherbeautifulapplicationsincludeageneralizationoftheWeylcharacterformula, andthediscoveryofmultipletsofrepresentationsduetoGross–Kostant–Ramond– Sternberg[57]. It is possible to go in the opposite direction and interpret D as a geometric g,k Dirac operator on a homogeneous space. As such, it corresponds to a particular affineconnectionwithanon-zerotorsion.SuchgeometricDiracoperatorshadbeen studied by Slebarski [114, 115] in the 1980s; the precise relation with Kostant’s cubic Dirac operator was clarified in [2]. There are also precursors in conformal fieldtheoryandKac–Moodytheory;seeinparticularKac–Todorov[73],Kazami– Suzuki[77]andWassermann[119]. This book had its beginnings as lecture notes for a graduate course at the Uni- versityofToronto,taughtinthefallof2005.Theplanforthelectureswastogive anintroductiontothecubicDiracoperator,coveringsomeoftheapplicationstoLie theorydescribedabove.Tosetthestage,itwasnecessarytodevelopsomefounda- tionalmaterialonCliffordalgebras.Inasimilargraduatecourseinthefallof2009, we included other aspects such as the theory of pure spinors and Petracci’s new proof [107] of thePoincaré–Birkhoff–WittTheorem. Thebookitself containsfur- thertopicsnotcoveredinthelectures;inparticularitdescribesKostant’sstructure theory of Cl(g) for a complex reductive Lie algebra and surveys the recent devel- opments concerning the properties of the Harish-Chandra projection for Clifford algebras,hcCl:Cl(g)→Cl(t). Anumberofinterestingtopicsrelatedtothethemeofthisbookhadtobeomit- ted. For example, we did not include applications of the cubic Dirac operator to Kac–Moodyalgebras[53,73,79,94,103,109,119].Wealsodecidedtoomitadis- cussionofDiracgeometry[13,43],group-valuedmomentmaps[11]orgeneralized complexgeometry[59,60,63],eventhoughsomeofthematerialpresentedhereis motivatedbythosetopics.Furthermore,thebookdoesnotcovertheapplicationsto theclassicaldynamicalYang–Baxterequation[6, 51] or totheKashiwara–Vergne conjecture[5,8,75]. Manyofthetopicsinthisbookplayaroleintheoreticalphysics.Wehavealready indicatedsomerelationshipswithconformalfieldtheory.TheprototypeofaDirac operator(withrespecttotheMinkowskimetric)appearedinDirac’s1928articleon his quantum theory of the electron [46]. More general Dirac operators on pseudo- Riemannianmanifoldswerestudiedlater,andbecameastandardtoolindifferential geometrywiththeadventofAtiyah–Singer’sindextheory[18,97].Theroleofrep- resentationtheoryinquantummechanicswasexploredinWeyl’s1929book[120]. The“multi-valued”representationsoftherotationgroup,i.e.,representationsofthe spingroup,areofbasicimportanceinquantumelectrodynamics,correspondingto x Preface particleswithpossiblyhalf-integerspin.Asystematicstudy,introducingthegroup Spin(n),wasmadein1935intheworkofBrauer–Weyl[29].Detailedinformation on the numerous applications of Clifford algebras, spinors and Dirac operators in physicsmaybefoundinthebooks[23,64]. Acknowledgments Largeportionsofthisbookarebasedonmaterialfromjoint publicationswithAntonAlekseev,anditisapleasuretothankhimforhiscollab- oration.IamindebtedtoBertramKostantforhiswritingsaswellasinspiringcon- versations;hisexplanationsof[86]greatlyinfluencedthefinalchapterofthisbook. Iamgratefultotheanonymousrefereesfornumerouscommentsandsuggestions. I would also like to thank Henrique Bursztyn, Marco Gualtieri, Victor Guillemin, BorisKhesin,GregLandweber,DavidLi-Bland,ReyerSjamaar,andShlomoStern- bergfordiscussions. I thank the University of Toronto, University of Geneva, Keio University, and theUniversityofAdelaidefortheirsupportduringthetimeofwritingofthisbook. Finally,IwouldliketothankAnnKostantfromSpringerforadvice,patience,and generoushelpincopyeditingandproducingthefinalversionofthisbook. Toronto,ON,Canada EckhardMeinrenken Conventions ThroughoutthisbookKwilldenoteagroundfield.Thepreciseconventionwillusu- allybestatedatthebeginningofachapter—initiallyK isanyfieldofcharacteris- tic(cid:12)=2;towardstheendofthebookwetakeKtobetherealorcomplexnumbers. Wewillmakefrequentuseofsuper-conventions,asoutlinedinAppendixA.Forin- stance,givenaZ -gradedalgebra,wewillreferto“commutators”wheresomeau- 2 thorsprefertheterm“supercommutator”,andwewillcall“derivations”whatsome authorswouldcall“superderivations”oreven“anti-derivations”.Unlessspecified otherwise or clear from the context, vector spaces or Lie algebras are taken to be finitedimensional,andalgebrasaretakentobeassociativealgebraswithunit.Some backgroundmaterialandconventionsaboutreductiveLiealgebrasmaybefoundin AppendixB. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.