ebook img

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields: Semiclassical Modeling PDF

88 Pages·2014·4.198 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields: Semiclassical Modeling

SPRINGER BRIEFS IN PHYSICS Jie Liu Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields Semiclassical Modeling SpringerBriefs in Physics Editorial Board Egor Babaev, University of Massachusetts, USA Malcolm Bremer, University of Bristol, UK Xavier Calmet, University of Sussex, UK Francesca Di Lodovico, Queen Mary University of London, UK Maarten Hoogerland, University of Auckland, New Zealand Eric Le Ru, Victoria University of Wellington, New Zealand Hans-Joachim Lewerenz, California Institute of Technology, USA James Overduin, Towson University, USA Vesselin Petkov, Concordia University, Canada Charles H.-T. Wang, University of Aberdeen, UK Andrew Whitaker, Queen’s University Belfast, UK For furthervolumes: http://www.springer.com/series/8902 Jie Liu Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields Semiclassical Modeling 123 Jie Liu Instituteof AppliedPhysics and ComputationalMathematics Beijing People’s Republic ofChina ISSN 2191-5423 ISSN 2191-5431 (electronic) ISBN 978-3-642-40548-8 ISBN 978-3-642-40549-5 (eBook) DOI 10.1007/978-3-642-40549-5 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013947363 (cid:2)TheAuthor(s)2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Light–matter interaction is a topic with a long history which constantly attract much attentions in modern physics. The discovery of the photoelectric effect is a milestone,inwhich electronsare emittedfromsolids, liquids,orgases when they areirradiatedbylight.Thestorycanbetracedbackto1887,whenHeinrichHertz discovered that electrodes illuminated with ultraviolet light create electric sparks more easily. In 1905, Albert Einstein successfully explained experimental data from the photoelectric effect as a result of light energy being carried in discrete quantized packets. Study of the photoelectric effect led to important steps in understanding the quantum nature of light and electrons and influenced the for- mationoftheconceptofwave-particleduality.Thisdiscoveryledtothequantum revolutionandEinsteinwasawardedtheNobelPrizein1921for’’hisdiscoveryof the law of the photoelectric effect’’. In Hertz’s experiment, it was found that, if the photon energy is too low, the electronisunabletoescapethematerial.Theenergyoftheemittedelectronsdoes not depend on the intensity of the incoming light, but only on the energy or frequency of the individual photons. However, until the end of the last century when optical technique progress provided people with a new sort of coherent and brilliant light source, i.e., intense laser beam, something changes. When noble gases were irradiated byanintense laser beamasintheexperimentperformed by P. Agostini, et al. in 1979, it was found that, in contrast to Hertz’s, an atom can absorb multiple photons simultaneously and even more than the required number of photons for ionization. The above striking phenomenon was termed as above threshold ionization (ATI). It breaks the long-standing ionization picture of tra- ditionalperturbativetheoryandindicatesthecomingofstrong-fieldtimeswiththe characteristic of non-perturbative phenomena . Atomic ionization plays a fundamental role in light–matter interaction. Since the exquisite experiment in 1979, great progress has been made about atomic ionization issue from both experimental and theoretical sides. The atoms and molecules in strong laser fields have demonstrated many intriguing and complex behaviors and become an active field in modern physics. There are versatile applications in attosecond physics, X-ray generation, inertial confined fusion (ICF),andsoon.InthisbookIwillpresentsomebasicconceptsanddiscusssome interesting topics using a semiclassical model of classical trajectory ensemble simulation.Ourdiscussionsfocusonlongwavelengthlimitforlaserandtunneling v vi Preface ionization become an dominating mechanism. In contrast to quantum treatments, we notice that the classical trajectory approaches can revive in this situation because continuum–continuum transition plays a crucial role in strong-field ioni- zation. The classical trajectory model has advantages of clear picture, feasible computing, and can even account for correlated electron observations quantita- tively. I will introduce semiclassical tunneling ionization and present some applications of the model in such as single ionization, double ionization, neutral atom acceleration, and other timely issues in strong field physics, which can deliver useful messages to readers with providing simple classical trajectory perspective on complex atomic ionization process. I am indebted to my family’s constant support when I am writing this book. I would like to thank my students Qinzhi Xia, Kaiyun Huang, Xinfang Song, and Di-Fa Ye for help me collecting materials, checking formulas, and other paper work. Beijing, March 2013 Jie Liu Contents 1 Tunneling Ionization and Classical Trajectory Model . . . . . . . . . . 1 1.1 Tunneling Ionization Theory. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Hydrogen Atoms in Static Electric Field: Parabolic Coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Landau-Dyhne Adiabatic Approximation. . . . . . . . . . . . 5 1.1.3 Extended to Hydrogen-Like Atoms. . . . . . . . . . . . . . . . 9 1.2 Classical Trajectory Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 Classical Trajectory Monte Carlo (CTMC) Approach . . . 10 1.2.2 Classical Trajectory Monte Carlo with Tunneling Allowance (CTMC?T) Aproach. . . . . . . . . . . . . . . . . . 12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Single Ionization in Strong Laser Fields . . . . . . . . . . . . . . . . . . . . 15 2.1 Semiclassical Model for Single Ionization . . . . . . . . . . . . . . . . 15 2.2 Plateau in Above-Threshold-Ionization (ATI) Spectrum and Irregular Photoelectron Angular Distribution (PAD) . . . . . . 17 2.3 Chaotic Behavior in Rescattering Process. . . . . . . . . . . . . . . . . 20 2.4 Partial Atomic Stabilization in Strong-field Tunneling Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Survival Window for Atomic Tunneling Ionization with Elliptically Polarized Laser Fields . . . . . . . . . . . . . . . . . . 24 2.6 Classical Trajectory Interference. . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Double Ionization in Strong Laser Fields . . . . . . . . . . . . . . . . . . . 33 3.1 Introduction: ‘‘Knee’’ Structure of Double Ionization Yields and Correlated Electron Momentum Distribution. . . . . . . . . . . . 33 3.2 Semiclassical Model for Nonsequential Double Ionization . . . . . 35 3.3 Finger-Like Structure in the Correlated Electron Momentum Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 Finger-Like Structure. . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Trajectory Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . 39 vii viii Contents 3.4 Transition to Below the Recollision Threshold . . . . . . . . . . . . . 41 3.4.1 Recollision Induced Excitation-Tunneling (RIET) Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.2 Modified Recollision Threshold . . . . . . . . . . . . . . . . . . 43 3.5 Double Ionization Dynamics of Diatomic Molecules. . . . . . . . . 45 3.5.1 Enhanced Double Ionization Rate. . . . . . . . . . . . . . . . . 45 3.5.2 Typical Classical Trajectories. . . . . . . . . . . . . . . . . . . . 48 3.5.3 Effect of Molecular Alignment. . . . . . . . . . . . . . . . . . . 51 3.6 Double Ionization in Circularly Polarized Laser Fields. . . . . . . . 52 3.6.1 Model Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6.2 Correlated Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6.3 Phase Diagramm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Partition of the Linear Photon Momentum in Atomic Tunneling Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1 Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Semiclassical Model for Partition of Photon Momentum . . . . . . 60 4.3 Coulomb Attraction Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Classical Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Acceleration of Neutral Atoms with Polarized Intense Laser Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1 Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Extended CTMC?T Model for Atomic Acceleration. . . . . . . . . 68 5.3 Distribution of Neutral Atoms and Their Accelerations . . . . . . . 70 5.3.1 Distribution of Neutral Atoms . . . . . . . . . . . . . . . . . . . 70 5.3.2 Average Atomic Acceleration. . . . . . . . . . . . . . . . . . . . 72 5.4 Maximum Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Atomic Ionization in Relativistic Intense Laser Fields . . . . . . . . . . 77 6.1 CTMC-T Calculation on Relativistic High-Z Atom Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1.1 CTMC-T Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1.2 Laser Intensity Dependency of High-Z Atom Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.2 Relativistic Semiclassical Tunneling Model . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Chapter 1 Tunneling Ionization and Classical Trajectory Model Abstract In this chapter, we introduce the basic concepts of atomic tunneling ionization and formulate atomic ionization rate and transversal velocity distribu- tion within the tunneling framework. We then present how to simulate the atomic ionizationdynamicsinintenselaserfieldsusingclassicaltrajectoryensemblewith tunnelingallowancesimultaneously. 1.1 TunnelingIonization Theory Inthe1940s,L.D.LandauandE.M.Lifshitz[1]analyzedthetunnelingionization ofHydrogenatominstaticelectricfieldinparaboliccoordinates.Theninthe1960s, A.M. Perelomov,V.S. Popov, and V.M. Teren’ev [2] used the "imaginary time" method to derive the formulae of atomic ionization rate and transversal velocity distribution.Aftertwodecades,M.V.Ammosov,N.B.Delone,andV.P.Krainov [3]obtainedmoregeneralandquantitativeresultscalledasADKformula.Besides, many other people contributed in this field [4].Inthis section, we willdiscuss the atomictunnelingionizationfollowingtheirspirit. 1.1.1 HydrogenAtomsinStaticElectricField:Parabolic Coordinate The separation of the variables in Schrödinger’s equation written in parabolic coordinates is useful, especially in problems where a certain direction in space is distinctive.Atypicalexampleistheatominanexternalfield.Theparaboliccoordi- natesξ,η,φaredefinedasfollows: (cid:2) (cid:2) 1 x = ξηcosφ y = ξηsinφ z = (ξ −η) (1.1) 2 J.Liu,ClassicalTrajectoryPerspectiveofAtomicIonizationinStrongLaserFields, 1 SpringerBriefsinPhysics,DOI:10.1007/978-3-642-40549-5_1,©TheAuthor(s)2014 2 1 TunnelingIonizationandClassicalTrajectoryModel Fig.1.1 Theparaboliccoor- dinates.Thesolidcurvesand thedashedcurvesrepresentthe hyperbolasofξ =constant andη = constant,respec- tively orconverselyξ = r +z,η = r −z,φ = tan−1(y/x),whereξ andη takevalues from0to∞,andφ from0to2π.Thesurfacesξ = constant andη = constant areparaboloidsofrevolutionaboutthez-axis,withfocusattheorigin(seeFig.1.1). Schrödinger’s equation for the hydrogen atom in a uniform electric field is of the form (Hereafter, atomic units, i.e., m = e = (cid:2) = 1.a.u. are used without e specifying), (cid:3) (cid:4) 1 1 ∇2−I + −Ez ψ =0, p 2 r where,m ,e,(cid:2)areelectronmass,electroncharge,andPlanckconstant,respectively; e I isatomicgroundstateenergyorionizationpotential; E isinstantaneouselectric p field. Letusseektheeigenfunctionsψ intheform[1] ψ = f (ξ)f (η)eimφ (1.2) 1 2 Thenwecangetthetwoequations: (cid:3) (cid:4) (cid:3) (cid:4) d df 1 1m2 1 ξ 1 + − I ξ − − Eξ2 f =−β f (1.3) dξ dξ 2 p 4 ξ 4 1 1 1 (cid:3) (cid:4) (cid:3) (cid:4) d df 1 1m2 1 η 2 + − I η− + Eη2 f =−β f (1.4) dη dη 2 p 4 η 4 2 2 2 where,β +β =1.Bysubstitution 1 2 χ χ f = √1 , f = √2 (1.5) 1 ξ 2 η wetransferEq.(1.3),(1.4)totheform

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.