C M LASSICAL ECHANICS Point Particles and Relativity Springer NewYork Berlin Heidelberg HongKong London Milan Paris Tokyo Walter Greiner C LASSICAL M ECHANICS Point Particles and Relativity Foreword by D. Allan Bromley With 317 Figures Springer WalterGreiner Institutfu¨rTheoretischePhysik JohannWolfgangGoethe-Universita¨t RobertMayerStrasse10 Postfach111932 D-60054FrankfurtamMain Germany [email protected] LibraryofCongressCataloging-in-PublicationData Greiner,Walter,1935- Classicalmechanics:pointparticlesandrelativity/WalterGreiner. p.cm.--(Classicaltheoreticalphysics) Includesbibliographicalreferencesandindex. ISBN0-387-95586-0(softcover:alk.paper) 1.Mechanics--Problems,exercises,etc. 2.Relativity(Physics)--Problems,exercises, etc. I.Title II.Series. QC125.2.G742003 531--dc21 2002030570 ISBN0-387-95586-0 Printedonacid-freepaper. TranslatedfromtheGermanMechanik:Teil2,byWalterGreiner,publishedbyVerlagHarriDeutsch,Thun, (cid:1) FrankfurtamMain,Germany, c 1989. (cid:1) c 2004Springer-VerlagNewYork,Inc. Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrittenpermission ofthepublisher(Springer-VerlagNewYork,Inc.,175FifthAvenue,NewYork,NY10010,USA),exceptforbrief excerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformofinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownor hereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyarenot identifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietary rights. PrintedintheUnitedStatesofAmerica. 9 8 7 6 5 4 3 2 1 SPIN10892857 www.springer-ny.com Springer-Verlag NewYork Berlin Heidelberg AmemberofBertelsmannSpringerScience+BusinessMediaGmbH Foreword MorethanagenerationofGerman-speakingstudentsaroundtheworldhaveworkedtheir waytoanunderstandingandappreciationofthepowerandbeautyofmoderntheoretical physics—with mathematics, the most fundamental of sciences—using Walter Greiner’s textbooksastheirguide. Theideaofdevelopingacoherent,completepresentationofanentirefieldofscienceina seriesofcloselyrelatedtextbooksisnotanewone.Manyolderphysiciansrememberwith realpleasuretheirsenseofadventureanddiscoveryastheyworkedtheirwaysthroughthe classicseriesbySommerfeld,byPlanck,andbyLandauandLifshitz.Fromthestudents’ viewpoint, there are a great many obvious advantages to be gained through the use of consistentnotation,logicalorderingoftopics,andcoherenceofpresentation;beyondthis, thecompletecoverageofthescienceprovidesauniqueopportunityfortheauthortoconvey hispersonalenthusiasmandloveforhissubject. Thesevolumesonclassicalphysics,finallyavailableinEnglish,complementGreiner’s textsonquantumphysics,mostofwhichhavebeenavailabletoEnglish-speakingaudiences forsometime.Thecompletesetofbookswillthusprovideacoherentviewofphysicsthat includes,inclassicalphysics,thermodynamicsandstatisticalmechanics,classicaldynam- ics,electromagnetism,andgeneralrelativity;andinquantumphysics,quantummechanics, symmetries,relativisticquantummechanics,quantumelectro-andchromodynamics,and thegaugetheoryofweakinteractions. WhatmakesGreiner’svolumesofparticularvaluetothestudentandprofessoralikeis theircompleteness.Greineravoidsthealltoocommon“itfollowsthat...,”whichconceals severalpagesofmathematicalmanipulationandconfoundsthestudent.Hedoesnothesitate toincludeexperimentaldatatoilluminateorillustrateatheoreticalpoint,andthesedata, likethetheoreticalcontent,havebeenkeptuptodateandtopicalthroughfrequentrevision andexpansionofthelecturenotesuponwhichthesevolumesarebased. Moreover,Greinergreatlyincreasesthevalueofhispresentationbyincludingsomething like one hundred completely worked examples in each volume. Nothing is of greater importance to the student than seeing, in detail, how the theoretical concepts and tools v vi FOREWORD understudyareappliedtoactualproblemsofinteresttoworkingphysicists.And,finally, Greiner adds brief biographical sketches to each chapter covering the people responsible for the development of the theoretical ideas and/or the experimental data presented. It wasAugusteComte(1789–1857)inhisPositivePhilosophywhonoted,“Tounderstanda scienceitisnecessarytoknowitshistory.”Thisisalltoooftenforgotteninmodernphysics teaching,andthebridgesthatGreinerbuildstothepioneeringfiguresofourscienceupon whoseworkwebuildarewelcomeones. Greiner’s lectures, which underlie these volumes, are internationally noted for their clarity,fortheircompleteness,andfortheeffortthathehasdevotedtomakingphysicsan integral whole. His enthusiasm for his sciences is contagious and shines through almost everypage. These volumes represent only a part of a unique and Herculean effort to make all of theoreticalphysicsaccessibletotheinterestedstudent.Beyondthat,theyareofenormous value to the professional physicist and to all others working with quantum phenomena. Againandagain,thereaderwillfindthat,afterdippingintoaparticularvolumetoreviewa specifictopic,heorshewillendupbrowsing,caughtupbyoftenfascinatingnewinsights anddevelopmentswithwhichheorshehadnotpreviouslybeenfamiliar. Having used a number of Greiner’s volumes in their original German in my teaching and research at Yale, I welcome these new and revised English translations and would recommendthementhusiasticallytoanyonesearchingforacoherentoverviewofphysics. D.AllanBromley HenryFordIIProfessorofPhysics YaleUniversity NewHaven,Connecticut,USA Preface Theoreticalphysicshasbecomeamanyfacetedscience.Fortheyoungstudent,itisdifficult enough to cope with the overwhelming amount of new material that has to be learned, let alone obtain an overview of the entire field, which ranges from mechanics through electrodynamics,quantummechanics,fieldtheory,nuclearandheavy-ionscience,statistical mechanics,thermodynamics,andsolid-statetheorytoelementary-particlephysics;andthis knowledgeshouldbeacquiredinjusteighttotensemesters,duringwhich,inaddition,a diplomaormaster’sthesishastobeworkedonorexaminationspreparedfor.Allthiscanbe achievedonlyiftheuniversityteachershelptointroducethestudenttothenewdisciplines asearlyaspossible,inordertocreateinterestandexcitementthatinturnsetfreeessential newenergy. At the Johann Wolfgang Goethe University in Frankfurt am Main, we therefore con- front the student with theoretical physics immediately, in the first semester. Theoretical MechanicsIandII,Electrodynamics,andQuantumMechanicsI—AnIntroductionarethe coursesduringthefirsttwoyears.Theselecturesaresupplementedwithmanymathemati- calexplanationsandmuchsupportmaterial.Afterthefourthsemesterofstudies,graduate work begins, and Quantum Mechanics II—Symmetries, Statistical Mechanics and Ther- modynamics,RelativisticQuantumMechanics,QuantumElectrodynamics,GaugeTheory of Weak Interactions, and Quantum Chromodynamics are obligatory. Apart from these, a number of supplementary courses on special topics are offered, such as Hydrodynam- ics,ClassicalFieldTheory,SpecialandGeneralRelativity,Many-BodyTheories,Nuclear Models,ModelsofElementaryParticles,andSolid-StateTheory. Thisvolumeoflectures,ClassicalMechanics:PointParticlesandRelativity,dealswith thefirstandmoreelementarypartoftheimportantfieldofclassicalmechanics.Wehave tried to present the subject in a manner that is both interesting to the student and easily accessible.Themaintextisthereforeaccompaniedbymanyexercisesandexamplesthat havebeenworkedoutingreatdetail.Thisshouldmakethebookusefulalsoforstudents wishingtostudythesubjectontheirown. Beginningtheeducationintheoreticalphysicsatthefirstuniversitysemester,andnotas dictatedbytraditionafterthefirstoneandahalfyearsinthethirdorfourthsemester,has broughtalongquiteafewchangesascomparedtothetraditionalcoursesinthatdiscipline. vii viii PREFACE Especiallynecessaryisagreateramalgamationbetweentheactualphysicalproblemsand the necessary mathematics. Therefore, we treat in the first semester vector algebra and analysis, the solution of ordinary, linear differential equations, Newton’s mechanics of a mass point culminating in the discussion of Kepler’s laws (planetary motion), elements of astronomy, addressing modern research issues like the dark matter problem, and the mathematicallysimplemechanicsofspecialrelativity. Many explicitly worked-out examples and exercises illustrate the new concepts and methodsanddeepentheinterrelationshipbetweenphysicsandmathematics.Asamatterof fact,thisfirst-semestercourseintheoreticalmechanicsisaprecursortotheoreticalphysics. Thischangessignificantlythecontentofthelecturesofthesecondsemesteraddressedin thevolumeClassicalMechanics:SystemofParticlesandHamiltonianDynamics. Thenewmathematicaltoolsareexplainedandexercisedinmanyphysicalexamples.In thelecturingpraxis,thedeepeningoftheexhibitedmaterialiscarriedoutinathree-hour- per-week theoretica, that is, group exercises where eight or ten students solve the given exercisesundertheguidanceofatutor. Biographicalandhistoricalfootnotesanchorthescientificdevelopmentwithinthegeneral context of scientific progress and evolution. In this context, I thank the publishers Harri Deutsch and F. A. Brockhaus (Brockhaus Enzyklopa¨die, F.A. Brockhaus, Wiesbaden— marked by [BR]) for giving permission to extract the biographical data of physicists and mathematiciansfromtheirpublications. We should also mention that in preparing some early sections and exercises of our lectureswereliedonthebookTheoryandProblemsofTheoreticalMechanics,byMurray R.Spiegel,McGraw-Hill,NewYork,1967. Overtheyears,weenjoyedthehelpofseveralstudentsandcollaborators,inparticular, H.Angermu¨ller,P.Bergmann,H.Betz,W.Betz,G.Binnig(Nobelprize1986),J.Briechle, M.Bundschuh,W.Caspar,C.v.Charewski,J.v.Czarnecki,R.Fickler,R.Fiedler,B.Fricke (nowprofessoratKasselUniversity),C.Greiner(nowprofessoratJWG-University,Frank- furt am Main), M. Greiner, W. Grosch, R. Heuer, E. Hoffmann, L. Kohaupt, N. Krug, P. Kurowski, H. Leber, H. J. Lustig, A. Mahn, B. Moreth, R. Mo¨rschel, B. Mu¨ller (now professor at Duke University, Durham, N.C.), H. Mu¨ller, H. Peitz, J. Rafelski (now pro- fessor at University of Arizona, Tuscon), G. Plunien, J. Reinhardt, M. Rufa, H. Schaller, D.Schebesta,H.J.Scheefer,H.Schwerin,M.Seiwert,G.Soff(nowprofessoratTechnical UniversityDresden),M.Soffel(nowprofessoratTechnicalUniversityDresden),E.Stein (nowprofessoratMaharishiUniversity,Vlodrop,Netherlands),K.E.Stiebig,E.Sta¨mmler, H.Stock,H.Sto¨rmer(Nobelprize1998),J.Wagner,andR.Zimmermann.Theyallmade their way in science and society, and meanwhile work as professors at universities, as leaders in industry, and in other places. We particularly acknowledge the recent help of Dr.SvenSoffandDr.StefanSchererduringthepreparationoftheEnglishmanuscript.The figuresweredrawnbyMrs.A.Steidl. TheEnglishmanuscriptwascopy-editedbyKristenCassereauandtheproductionofthe bookwassupervisedbyTimothyTaylorofSpringer-VerlagNewYork,Inc. WalterGreiner JohannWolfgangGoethe-Universita¨t FrankfurtamMain,Germany Contents Foreword v Preface vii I VECTOR CALCULUS 1 1 IntroductionandBasicDefinitions 2 2 TheScalarProduct 5 3 ComponentRepresentationofaVector 9 4 TheVectorProduct(AxialVector) 13 5 TheTripleScalarProduct 25 6 ApplicationofVectorCalculus 27 Applicationinmathematics: 27 Applicationinphysics: 31 7 DifferentiationandIntegrationofVectors 39 8 TheMovingTrihedral(AccompanyingDreibein)—theFrenet Formulas 49 ExamplesonFrenet’sformulas: 55 ix x CONTENTS 9 SurfacesinSpace 64 10 CoordinateFrames 68 11 VectorDifferentialOperations 83 Theoperationsgradient,divergence,andcurl(rotation) 83 Differentialoperatorsinarbitrarygeneral(curvilinear)coordinates 96 12 DeterminationofLineIntegrals 109 13 TheIntegralLawsofGaussandStokes 112 GaussLaw: 112 TheGausstheorem: 114 GeometricinterpretationoftheGausstheorem: 115 Stokeslaw: 117 14 CalculationofSurfaceIntegrals 125 15 Volume(Space)Integrals 130 II NEWTONIAN MECHANICS 133 16 Newton’sAxioms 134 17 BasicConceptsofMechanics 140 Inertialsystems 140 Measurementofmasses 141 Work 141 Kineticenergy 142 Conservativeforces 142 Potential 143 Energylaw 144 Equivalenceofimpulseofforceandmomentumchange 144 Angularmomentumandtorque 149 Conservationlawofangularmomentum 150 Lawofconservationofthelinearmomentum 150 Summary 150 Thelawofareas 151 Conservationoforientation 151 CONTENTS xi 18 TheGeneralLinearMotion 159 19 TheFreeFall 163 Verticalthrow 164 Inclinedthrow 166 20 Friction 172 Frictionphenomenainaviscousmedium 172 MotioninaviscousmediumwithNewtonianfriction 177 Generalizedansatzforfriction: 179 21 TheHarmonicOscillator 196 22 MathematicalInterlude—SeriesExpansion,Euler’sFormulas 210 23 TheDampedHarmonicOscillator 214 24 ThePendulum 229 25 MathematicalInterlude:DifferentialEquations 241 26 PlanetaryMotions 246 27 SpecialProblemsinCentralFields 282 Thegravitationalfieldofextendedbodies 282 Theattractiveforceofasphericalmassshell 283 Thegravitationalpotentialofasphericalshellcoveredwithmass 285 Stabilityofcircularorbits 289 28 TheEarthandourSolarSystem 295 Generalnotionsofastronomy 295 Determinationofastronomicquantities 296 Properties,position,andevolutionofthesolarsystem 308 Worldviews 315 Ontheevolutionoftheuniverse 325 DarkMatter 330 Whatisthenatureofthedarkmatter? 338