Classical Mechanics Alexei Deriglazov Classical Mechanics Hamiltonian and Lagrangian Formalism 123 AlexeiDeriglazov Depto.deMatemática UniversidadeFederaldeJuizdeFora 36036-330JuizdeFora MG,Brazil [email protected] ISBN978-3-642-14036-5 e-ISBN978-3-642-14037-2 DOI10.1007/978-3-642-14037-2 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010932503 (cid:2)c Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L.,Heidelberg Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Formalism of classical mechanics underlies a number of powerful mathematical methods,widelyusedintheoreticalandmathematicalphysics[1–11].Intheselec- tureswepresentsomeselectedtopicsofclassicalmechanics,whichmaybeuseful forgraduatelevelstudentsintendingtoworkinoneofthebranchesofavastfieldof theoretical physics. Except for the last chapter, which is devoted to the discussion ofsingulartheoriesandtheirlocalsymmetries,thetopicsselectedcorrespondtothe standardcourseofclassicalmechanics. Fortheconvenienceofthereader,wehavetriedtomakethematerialofdifferent chaptersasindependentaspossible.So,thereaderwhoisfamiliarwithLagrangian mechanicscanproceedtoanyoneofChaps.3,4,5,6,7,8afterreadingthesecond chapter. Inourpresentationofthematerialwehavetried,wherepossible,toreplaceintu- itivemotivationsand“scientificfolklore”byexactproofsordirectcomputations.To illustratehowclassical-mechanicsformalismworksinotherbranchesoftheoretical physics,wehavepresentedexamplesrelatedtoelectrodynamics,aswellastorela- tivisticandquantummechanics.Mostofthesuggestedexercisesaredirectlyrelated tothemainbodyofthetext. While in some cases the formalism is developed beyond the traditional level adoptedinthestandardtextbooksonclassicalmechanics[12–14],theonlymathe- maticalprerequisitesaresomeknowledgeofcalculusandlinearalgebra. In the frameworks of classical and quantum theories, the Hamiltonian and Lagrangianformulationseachhaveadvantagesanddisadvantages.Sinceourfocus hereisHamiltonianmechanics,letusmentionsomeoftheargumentsforusingthis typeofformalism. • There is a remarkable democracy between variables of position and velocity in Nature:beingindependentonefromanother,theycontaincompleteinformation on the properties of a classical system at a given instance. Besides, just the positionsandvelocitiesattheinitialinstantoftimearenecessaryandsufficient to predict an evolution of the system. In Lagrangian formalism this democracy, while reflected in the initial conditions, is not manifest in the course of evo- lution,sinceonlyvariablesofpositionaretreatedasindependentinLagrangian equations.Hamiltonianformalismrestoresthisdemocracy,treatingpositionsand v vi Preface velocitiesonequalfooting,asindependentcoordinatesthatparameterizeaphase space. • Accordingtothecanonicalquantizationparadigm,theconstructionoftheHamil- tonian formulation for a given classical system is the first necessary step in the passagefromclassicaltoquantumtheory.Itissufficienttopointoutthatquantum evolution intheHeisenberg pictureisobtained fromtheHamiltonian equations throughreplacementofthephase-spacevariablesbycorrespondingoperators.As totheoperators,theircommutatorsarerequiredtoresemblethePoissonbrackets ofthephase-spacevariables. • Theconventionalwaytodescribearelativistictheoryistoformulateitinterms ofasingularLagrangian(thesingularityisthepricewepayforthemanifestrela- tivisticinvarianceoftheformulation).Itimpliesarathercomplicatedstructureof Lagrangianequations,whichmayconsistofbothsecondandfirst-orderdifferen- tialequationsaswellasalgebraicones.Besides,theremaybeidentitiespresent amongtheequations,whichimpliesfunctionalarbitrarinessinthecorresponding solutions. It should be mentioned that, in the modern formulation, physically interesting theories (electrodynamics, gauge field theories, the standard model, stringtheory,etc.)areofthistype.Inthiscase,Hamiltonianformulationgivesa somewhat clearer geometric picture of classical dynamics [8]: all the solutions are restricted to lying on some surface in the phase space, while the above- mentioned arbitrarinessisavoidedbypostulatingclassesofequivalent trajecto- ries.Physicalquantitiesarethenrepresentedbyfunctionsdefinedintheseclasses. The procedure for investigation of this picture is based entirely on the use of specialcoordinatesadoptedtothesurface,whichinturnrequirearatherdetailed developmentofthetheoryofcanonicaltransformations.AltogetherHamiltonian formulationleadstoaself-consistentphysicalinterpretationofageneralsingular theory, forming the basis for numerous particular prescriptions and approaches toquantizationofconcretetheories[10]. JuizdeFora,July2010 AlexeiDeriglazov Notation andconventions Theterminologyofclassicalmechanicsisnotuniversal.Toavoidanyconfusion,the quantities of the configuration (phase) space are conventionally called Lagrangian (Hamiltonian)quantities. Generalized coordinates of the configuration space are denoted by qa. Latin indicesfromthebeginningofthealphabeta,b,c,andsoongenerallyrangefrom1 ton,a =1,2,...,n. Phase space coordinates are often denoted by one letter zi = (qa,p ). Latin b indicesfromthemiddleofthealphabeti, j,k,andsoongenerallyrangefrom1to 2n,i =1,2,...,2n. Greekindicesfromthebeginningofthealphabetα,β,γ areusedtodenotesome subgroupofthegroupofvariables,forexampleqa =(q1,qα),α =2,3,...,n. Preface vii Repeated indices are generally summed, unless otherwise indicated. The “up” and “down” position of the index of any quantity is fixed. For example, we write qa,p andneveranyotherway. b Timevariableisdenotedeitherbyτ orbyt.Adotoveranyquantitydenotesthe time-derivativeofthatquantity dqa q˙a = , dτ whilepartialderivativesaredenotedby ∂L(q) ∂H(z) =∂ L, =∂ H, ∂qa a ∂zi i Thesamesymbolisgenerallyusedtodenoteavariableandafunction.Forexample, we write z(cid:3)i = z(cid:3)i(zj), instead of the expression z(cid:3)i = fi(zj) for the change of coordinates. Thenotation F(q,v)|v(z) ≡ F(q,v)|v=v(z) ≡ F(q,v)|, impliesthesubstitutionofthefunctionva(z)inplaceofthevariableva. Contents 1 SketchofLagrangianFormalism ................................. 1 1.1 Newton’sEquation.......................................... 1 1.2 GalileanTransformations:PrincipleofGalileanRelativity......... 8 1.3 PoincaréandLorentzTransformations:ThePrincipleofSpecial Relativity................................................. 13 1.4 PrincipleofLeastAction..................................... 23 1.5 VariationalAnalysis......................................... 24 1.6 Generalized Coordinates, Coordinate Transformations andSymmetriesofanAction ................................ 29 1.7 ExamplesofContinuous(Field)Systems ....................... 36 1.8 ActionofaConstrainedSystem:TheRecipe .................... 44 1.9 ActionofaConstrainedSystem:JustificationoftheRecipe........ 51 1.10 DescriptionofConstrainedSystembySingularAction............ 52 1.11 KineticVersusPotentialEnergy:ForcelessMechanicsofHertz..... 54 1.12 ElectromagneticFieldinLagrangianFormalism ................. 56 1.12.1 MaxwellEquations .................................. 56 1.12.2 NonsingularLagrangianActionofElectrodynamics....... 59 1.12.3 Manifestly Poincaré-Invariant Formulation in Terms ofaSingularLagrangianAction ...................... 63 1.12.4 NotionofLocal(Gauge)Symmetry .................... 65 1.12.5 LorentzTransformationsofThree-DimensionalPotential: RoleofGaugeSymmetry ............................ 68 1.12.6 RelativisticParticleonElectromagneticBackground ...... 69 1.12.7 PoincaréTransformationsofElectricandMagneticFields . 72 2 HamiltonianFormalism ......................................... 77 2.1 DerivationofHamiltonianEquations........................... 77 2.1.1 Preliminaries ....................................... 77 2.1.2 FromLagrangiantoHamiltonianEquations ............. 79 2.1.3 Short Prescription for Hamiltonization Procedure, PhysicalInterpretationofHamiltonian ................. 83 ix