ebook img

Classical Mechanics: Hamiltonian and Lagrangian Formalism PDF

321 Pages·2010·3.611 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Classical Mechanics: Hamiltonian and Lagrangian Formalism

Classical Mechanics Alexei Deriglazov Classical Mechanics Hamiltonian and Lagrangian Formalism 123 AlexeiDeriglazov Depto.deMatemática UniversidadeFederaldeJuizdeFora 36036-330JuizdeFora MG,Brazil [email protected] ISBN978-3-642-14036-5 e-ISBN978-3-642-14037-2 DOI10.1007/978-3-642-14037-2 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010932503 (cid:2)c Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L.,Heidelberg Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Formalism of classical mechanics underlies a number of powerful mathematical methods,widelyusedintheoreticalandmathematicalphysics[1–11].Intheselec- tureswepresentsomeselectedtopicsofclassicalmechanics,whichmaybeuseful forgraduatelevelstudentsintendingtoworkinoneofthebranchesofavastfieldof theoretical physics. Except for the last chapter, which is devoted to the discussion ofsingulartheoriesandtheirlocalsymmetries,thetopicsselectedcorrespondtothe standardcourseofclassicalmechanics. Fortheconvenienceofthereader,wehavetriedtomakethematerialofdifferent chaptersasindependentaspossible.So,thereaderwhoisfamiliarwithLagrangian mechanicscanproceedtoanyoneofChaps.3,4,5,6,7,8afterreadingthesecond chapter. Inourpresentationofthematerialwehavetried,wherepossible,toreplaceintu- itivemotivationsand“scientificfolklore”byexactproofsordirectcomputations.To illustratehowclassical-mechanicsformalismworksinotherbranchesoftheoretical physics,wehavepresentedexamplesrelatedtoelectrodynamics,aswellastorela- tivisticandquantummechanics.Mostofthesuggestedexercisesaredirectlyrelated tothemainbodyofthetext. While in some cases the formalism is developed beyond the traditional level adoptedinthestandardtextbooksonclassicalmechanics[12–14],theonlymathe- maticalprerequisitesaresomeknowledgeofcalculusandlinearalgebra. In the frameworks of classical and quantum theories, the Hamiltonian and Lagrangianformulationseachhaveadvantagesanddisadvantages.Sinceourfocus hereisHamiltonianmechanics,letusmentionsomeoftheargumentsforusingthis typeofformalism. • There is a remarkable democracy between variables of position and velocity in Nature:beingindependentonefromanother,theycontaincompleteinformation on the properties of a classical system at a given instance. Besides, just the positionsandvelocitiesattheinitialinstantoftimearenecessaryandsufficient to predict an evolution of the system. In Lagrangian formalism this democracy, while reflected in the initial conditions, is not manifest in the course of evo- lution,sinceonlyvariablesofpositionaretreatedasindependentinLagrangian equations.Hamiltonianformalismrestoresthisdemocracy,treatingpositionsand v vi Preface velocitiesonequalfooting,asindependentcoordinatesthatparameterizeaphase space. • Accordingtothecanonicalquantizationparadigm,theconstructionoftheHamil- tonian formulation for a given classical system is the first necessary step in the passagefromclassicaltoquantumtheory.Itissufficienttopointoutthatquantum evolution intheHeisenberg pictureisobtained fromtheHamiltonian equations throughreplacementofthephase-spacevariablesbycorrespondingoperators.As totheoperators,theircommutatorsarerequiredtoresemblethePoissonbrackets ofthephase-spacevariables. • Theconventionalwaytodescribearelativistictheoryistoformulateitinterms ofasingularLagrangian(thesingularityisthepricewepayforthemanifestrela- tivisticinvarianceoftheformulation).Itimpliesarathercomplicatedstructureof Lagrangianequations,whichmayconsistofbothsecondandfirst-orderdifferen- tialequationsaswellasalgebraicones.Besides,theremaybeidentitiespresent amongtheequations,whichimpliesfunctionalarbitrarinessinthecorresponding solutions. It should be mentioned that, in the modern formulation, physically interesting theories (electrodynamics, gauge field theories, the standard model, stringtheory,etc.)areofthistype.Inthiscase,Hamiltonianformulationgivesa somewhat clearer geometric picture of classical dynamics [8]: all the solutions are restricted to lying on some surface in the phase space, while the above- mentioned arbitrarinessisavoidedbypostulatingclassesofequivalent trajecto- ries.Physicalquantitiesarethenrepresentedbyfunctionsdefinedintheseclasses. The procedure for investigation of this picture is based entirely on the use of specialcoordinatesadoptedtothesurface,whichinturnrequirearatherdetailed developmentofthetheoryofcanonicaltransformations.AltogetherHamiltonian formulationleadstoaself-consistentphysicalinterpretationofageneralsingular theory, forming the basis for numerous particular prescriptions and approaches toquantizationofconcretetheories[10]. JuizdeFora,July2010 AlexeiDeriglazov Notation andconventions Theterminologyofclassicalmechanicsisnotuniversal.Toavoidanyconfusion,the quantities of the configuration (phase) space are conventionally called Lagrangian (Hamiltonian)quantities. Generalized coordinates of the configuration space are denoted by qa. Latin indicesfromthebeginningofthealphabeta,b,c,andsoongenerallyrangefrom1 ton,a =1,2,...,n. Phase space coordinates are often denoted by one letter zi = (qa,p ). Latin b indicesfromthemiddleofthealphabeti, j,k,andsoongenerallyrangefrom1to 2n,i =1,2,...,2n. Greekindicesfromthebeginningofthealphabetα,β,γ areusedtodenotesome subgroupofthegroupofvariables,forexampleqa =(q1,qα),α =2,3,...,n. Preface vii Repeated indices are generally summed, unless otherwise indicated. The “up” and “down” position of the index of any quantity is fixed. For example, we write qa,p andneveranyotherway. b Timevariableisdenotedeitherbyτ orbyt.Adotoveranyquantitydenotesthe time-derivativeofthatquantity dqa q˙a = , dτ whilepartialderivativesaredenotedby ∂L(q) ∂H(z) =∂ L, =∂ H, ∂qa a ∂zi i Thesamesymbolisgenerallyusedtodenoteavariableandafunction.Forexample, we write z(cid:3)i = z(cid:3)i(zj), instead of the expression z(cid:3)i = fi(zj) for the change of coordinates. Thenotation F(q,v)|v(z) ≡ F(q,v)|v=v(z) ≡ F(q,v)|, impliesthesubstitutionofthefunctionva(z)inplaceofthevariableva. Contents 1 SketchofLagrangianFormalism ................................. 1 1.1 Newton’sEquation.......................................... 1 1.2 GalileanTransformations:PrincipleofGalileanRelativity......... 8 1.3 PoincaréandLorentzTransformations:ThePrincipleofSpecial Relativity................................................. 13 1.4 PrincipleofLeastAction..................................... 23 1.5 VariationalAnalysis......................................... 24 1.6 Generalized Coordinates, Coordinate Transformations andSymmetriesofanAction ................................ 29 1.7 ExamplesofContinuous(Field)Systems ....................... 36 1.8 ActionofaConstrainedSystem:TheRecipe .................... 44 1.9 ActionofaConstrainedSystem:JustificationoftheRecipe........ 51 1.10 DescriptionofConstrainedSystembySingularAction............ 52 1.11 KineticVersusPotentialEnergy:ForcelessMechanicsofHertz..... 54 1.12 ElectromagneticFieldinLagrangianFormalism ................. 56 1.12.1 MaxwellEquations .................................. 56 1.12.2 NonsingularLagrangianActionofElectrodynamics....... 59 1.12.3 Manifestly Poincaré-Invariant Formulation in Terms ofaSingularLagrangianAction ...................... 63 1.12.4 NotionofLocal(Gauge)Symmetry .................... 65 1.12.5 LorentzTransformationsofThree-DimensionalPotential: RoleofGaugeSymmetry ............................ 68 1.12.6 RelativisticParticleonElectromagneticBackground ...... 69 1.12.7 PoincaréTransformationsofElectricandMagneticFields . 72 2 HamiltonianFormalism ......................................... 77 2.1 DerivationofHamiltonianEquations........................... 77 2.1.1 Preliminaries ....................................... 77 2.1.2 FromLagrangiantoHamiltonianEquations ............. 79 2.1.3 Short Prescription for Hamiltonization Procedure, PhysicalInterpretationofHamiltonian ................. 83 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.