Classical Mechanics G. ARULDHAS Formerly Professor & Head of Physics & Dean Faculty of Science University of Kerala New Delhi-110001 2008 CLASSICAL MECHANICS G. Aruldhas © 2008 by PHI Learning Private Limited, New Delhi. All rights reserved. No part of this book may be reproduced in any form, by mimeograph or any other means, without permission in writing from the publisher. ISBN-978-81-203-3331-4 The export rights of this book are vested solely with the publisher. Published by Asoke K. Ghosh, PHI Learning Private Limited, M-97, Connaught Circus, New Delhi-110001 and Printed by Jay Print Pack Private Limited, New Delhi-110015. To Myrtle and our children Vinod & Anitha, Manoj & Bini, Ann & Suresh Contents Preface………xi 1. Introduction to Newtonian Mechanics……… 1–23 1.1 Frames of Reference……1 Cartesian Co-ordinates (x, y, z)……1 Plane Polar Co-ordinates (r, q)……2 Cylindrical Co-ordinates (r, f, z)……3 Spherical Polar Co-ordinates (r, q, f)……3 1.2 Newton’s Laws of Motion……4 Newton’s First Law of Motion……4 Newton’s Second Law of Motion……4 Newton’s Third Law of Motion……5 1.3 Inertial and Non-inertial Frames……5 1.4 Mechanics of a Particle……6 Conservation of Linear Momentum……6 Angular Momentum and Torque……6 Conservation of Angular Momentum……7 Work Done by a Force……7 Conservative Force……8 Conservation of Energy……8 1.5 Motion under a Constant Force……9 1.6 Motion under a Time-dependent Force……10 1.7 Reflection of Radiowaves from the Ionosphere……10 1.8 Motion under a Velocity Dependent Force……12 1.9 Motion of Charged Particles in Magnetic Fields ……13 Worked Examples……15 Review Questions 22 Problems……22 2. System of Particles………24–38 2.1 Centre of Mass……24 2.2 Conservation of Linear Momentum……25 2.3 Angular Momentum……26 2.4 Conservation of Angular Momentum……27 2.5 Kinetic Energy for a System of Particles……28 2.6 Energy Conservation of a System of Particles……29 2.7 Time Varying Mass Systems—Rockets……31 Worked Examples……34 Review Questions……37 Problems……37 3. Lagrangian Formulation………39–77 3.1 Constraints……39 Holonomic Constraints……39 Non-holonomic Constraints……40 Scleronomous and Rheonomous Constraints……40 3.2 Generalized Co-ordinates……41 Degrees of Freedom……41 Generalized Co-ordinates……41 Configuration Space……42 3.3 Principle of Virtual Work……42 3.4 D’Alembert’s Principle……43 3.5 Lagrange’s Equations……44 3.6 Kinetic Energy in Generalized Co-ordinates……47 3.7 Generalized Momentum……49 3.8 First Integrals of Motion and Cyclic Co-ordinates……49 Cyclic Co-ordinates……50 3.9 Conservation Laws and Symmetry Properties……50 Homogeneity of Space and Conservation of Linear Momentum……50 Isotropy of Space and Conservation of Angular Momentum……51 Homogeneity of Time and Conservation of Energy……53 3.10 Velocity-dependent Potential……54 3.11 Dissipative Force……56 3.12 Newtonian and Lagrangian Formalisms……57 Worked Examples……57 Review Questions……75 Problems……76 4. Variational Principle………78–97 4.1 Hamilton’s Principle……78 4.2 Deduction of Hamilton’s Principle……79 4.3 Lagrange’s Equation from Hamilton’s Principle……81 4.4 Hamilton’s Principle for Non-holonomic Systems……84 Worked Examples……86 Review Questions……96 Problems……96 5. Central Force Motion………98–136 5.1 Reduction to One-body Problem……98 5.2 General Properties of Central Force Motion……100 Angular Momentum……100 Law of Equal Areas……101 5.3 Effective Potential……103 5.4 Classification of Orbits……103 5.5 Motion in a Central Force Field—General Solution……106 Energy Method……106 Lagrangian Analysis……107 5.6 Inverse Square Law Force……107 5.7 Kepler’s Laws……110 5.8 Law of Gravitation from Kepler’s Laws……111 5.9 Satellite Parameters……113 5.10 Communication Satellites……115 5.11 Orbital Transfers……116 5.12 Scattering in a Central Force Field……118 5.13 Scattering Problem in Laboratory Co-ordinates……122 Worked Examples……125 Review Questions……134 Problems……135 6. Hamiltonian Mechanics………137–172 6.1 The Hamiltonian of a System……137 6.2 Hamilton’s Equations of Motion……138 6.3 Hamilton’s Equations from Variational Principle……139 6.4 Integrals of Hamilton’s Equations……140 Energy Integral……140 Integrals Associated with Cyclic Co-ordinates……141 6.5 Canonical Transformations……142 6.6 Poisson Brackets……146 Fundamental Poisson Brackets……146 Fundamental Properties of Poisson Brackets……147 Equations of Motion in Poisson Bracket Form……148 6.7 Poisson Bracket and Integrals of Motion……149 6.8 The Canonical Invariance of Poisson Bracket……150 6.9 Lagrange Brackets……151 6.10 D-Variation……152 6.11 The Principle of Least Action……153 Different Forms of Least Action Principle……155 6.12 Poisson Brackets and Quantum Mechanics……157 Worked Examples……158 Review Questions……170 Problems……171 7. Hamilton-Jacobi Theory………173–195 7.1 Hamilton–Jacobi Equation……173 Physical Significance of S……175 7.2 Hamilton’s Characteristic Function……175 7.3 Harmonic Oscillator in The H-J Method……177 7.4 Separation of Variables in The H-J Equation……179 7.5 Central Force Problem in Plane Polar Co-ordinates……181 7.6 Action-Angle Variables……182 7.7 Harmonic Oscillator in Action-Angle Variables……184 7.8 Kepler Problem in Action-Angle Variables……185 7.9 Road to Quantization……188 Worked Examples……189 Review Questions……194 Problems……195 8. The Motion of Rigid Bodies………196–230 8.1 Introduction……196 8.2 Angular Momentum……197 8.3 Kinetic Energy……199 8.4 Inertia Tensor……200 8.5 Principal Axes……201 8.6 Euler’s Angles……203 8.7 Infinitesimal Rotations……207 8.8 Rate of Change of a Vector……208 8.9 Coriolis Force……209 8.10 Euler’s Equations of Motion……211 8.11 Force-free Motion of a Symmetrical Top……212 8.12 Heavy Symmetric Top with One Point Fixed……215 Worked Examples……220 Review Questions……229 Problems……230 9. Theory of Small Oscillations………231–251 9.1 Equilibrium and Potential Energy……231 9.2 Theory of Small Oscillations……232 9.3 Normal Modes……235 9.4 Two Coupled Pendula ……237 Resonant Frequencies……237 Normal Modes……238 9.5 Longitudinal Vibrations of CO Molecule……241 2 Normal Frequencies……241 Normal Modes……242 Normal Co-ordinates……243 Worked Examples……244 Review Questions……250 Problems……251 10. Special Theory of Relativity………252–300 10.1 Galilean Transformation……252 10.2 Electromagnetism and Galilean Transformation……254 10.3 Michelson–Morley Experiment……255 The Interferometer……255 The Experiment……256 10.4 The Postulates of Special Theory of Relativity……258 10.5 Lorentz Transformation……258 10.6 Velocity Transformation……261 10.7 Length Contraction……262 10.8 Time Dilation……263 10.9 Simultaneity……264 10.10 Mass in Relativity……264 10.11 Mass and Energy……266 10.12 Relativistic Lagrangian of a Particle……268 10.13 Relativistic Hamiltonian of a Particle……269 10.14 Space-Time Diagram……270 10.15 Geometrical Interpretation of Lorentz Transformation……272 10.16 Principle of Covariance……273 10.17 Four-Vectors in Mechanics……274 Position Four-Vector……275 Four-Velocity……275 Momentum Four-Vector……276 Four-Force……277 Four-Acceleration……278 10.18 Charge Current Four-Vector……278 10.19 Invariance of Maxwell’s Equations……279 Maxwell’s Equations……279 Vector and Scalar Potentials……279 Gauge Transformations……280 Four-Vector Potential……281 10.20 Electromagnetic Field Tensor……282 10.21 General Theory of Relativity……283 Principle of Equivalence……284 Bending of Light in a Gravitational Field……284 Precession of the Perihelion of Planetary Orbits……285 Space Curvature……285 Gravitational Red Shift……286 Worked Examples……287 Review Questions……297 Problems……298 11. Introduction to Nonlinear Dynamics………301–323 11.1 Linear and Nonlinear Systems……301 11.2 Integration of Linear Equation: Quadrature Method……302 11.3 Integration of Nonlinear Second Order Equation……304 11.4 The Pendulum Equation……305 11.5 Phase Plane Analysis of Dynamical Systems……308 Phase Curve of Simple Harmonic Oscillator……308 Phase Curve of Damped Oscillator……309 11.6 Phase Portrait of the Pendulum……310 11.7 Matching of Phase Curve with Potential V(x)……311 Simple Harmonic Oscillator……312 Simple Pendulum……312 11.8 Linear Stability Analysis……313 Stability Matrix 313 Classification of Fixed Points……314 11.9 Fixed Point Analysis of a Damped Oscillator……316