ebook img

Classical Fourier Analysis, Third Edition [3rd Ed] (Instructor Solution Manual, Solutions) PDF

349 Pages·2014·1.562 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Classical Fourier Analysis, Third Edition [3rd Ed] (Instructor Solution Manual, Solutions)

Loukas Grafakos Classical Fourier Analysis, Third Edition Solutions of all the exercises – Monograph – January22,2014 Springer v Iwouldliketoexpressmydeepgratitudetothefollowingpeoplewhohelpedinthepreparationofthesolutionsofthebooks ClassicalFourierAnalysis,3rdedition,GTM249andModernFourierAnalysis,3rdedition,GTM250. Mukta Bhandari, Jameson Cahill, Santosh Ghimire, Zheng Hao, Danqing He, Nguyen Hoang, Sapto Indratno, Richard Lynch,DiegoMaldonado,HanhVanNguyen,PeterNguyen,JessePeterson,SharadSilwal,BrianTuomanen,XiaojingZhang, Iremainsolelyresponsibleforanyerrorcontainedintheenclosedsolutions. Contents vii 1. Lp Spaces and Interpolation Section1.1.Lp andWeakLp Exercise1.1.1 Suppose f and f aremeasurablefunctionson(X,µ).Provethat n (a)d isrightcontinuouson[0,∞). f (b)If|f|≤liminf |f |µ-a.e.,thend ≤liminf d . n→∞ n f n→∞ fn (c)If|f |↑|f|,thend ↑d . (cid:2) n fn f Hint:Part(a):Lett beadecreasingsequenceofpositivenumbersthattendstozero.Showthatd (α +t )↑d (α )using n f 0 n f 0 a convergence theorem. Part (b): Let E ={x∈X : |f(x)|>α} and E ={x∈X : |f (x)|>α}. Use that µ(cid:0)(cid:84)∞ E (cid:1)≤ n n n=m n liminfµ(E )andE(cid:106)(cid:83)∞ (cid:84)∞ E µ-a.e.(cid:3) n m=1 n=m n n→∞ Solution. (a)Forallα >0letE ={x∈X : |f(x)|>α}.Fixα ≥0andlett beadecreasingsequenceofpositivenumbersthattends α 0 n to0.ObservethatE (cid:106)E foreveryn.Thereforeχ ↑χ asn→∞,sobytheLebesguemonotoneconvergence α0+tn α0+tn+1 Eα0+tn Eα0 theoremitfollowsthat µ(E )↑µ(E ) α0+tn α0 whichestablishesthedesiredconclusion. (b)FirstnotethatE⊆∪∞ ∩∞ E µ−a.e.,sowehave m=1 n=m n d (α)=µ(E)≤µ(∪∞ ∩∞ E )≤liminfµ(E )=liminfd (α). f m=1 n=m n n→∞ n n→∞ fn (c)LetE andE beasabove.TheclearlywehaveE ⊆E andlim E =E,sotheconclusionfollowsfromtheLebesgue n n n+1 n→∞ n monotoneconvergencetheoremasinpart(a). (cid:4) Exercise1.1.2 (Ho¨lder’sinequality)Let0<p,p1,...,pk≤∞,wherek≥2,andlet fj beinLpj =Lpj(X,µ).Assumethat 1 1 1 = +···+ . p p p 1 k (a)Showthattheproduct f ···f isinLpandthat 1 k (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13)f1···fk(cid:13)Lp ≤(cid:13)f1(cid:13)Lp1···(cid:13)fk(cid:13)Lpk. 1 2 Contents (b)Whenno pj isinfinite,showthatifequalityholdsinpart(a),thenitmustbethecasethatc1|f1|p1 =···=ck|fk|pk µ-a.e. forsomec ≥0. j (c) Let 0<q<1 and q(cid:48) = q−q1. For r<0 and g>0 almost everywhere, define (cid:107)g(cid:107)Lr =(cid:13)(cid:13)g−1(cid:13)(cid:13)−L|1r|. Show that if g is strictly positiveµ-a.e.andliesinLq(cid:48) and f ismeasurablesuchthat fgbelongstoL1,wehave (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13)fg(cid:13)L1 ≥(cid:13)f(cid:13)Lq(cid:13)g(cid:13)Lq(cid:48). Solution. (a)Wemayassumethatall pj<∞,sinceotherwise,onecanfactorfromthe(cid:107)f1···fk(cid:107)Lp theL∞ normofthe fj’swith pj=∞ andtheinequalityreducestotheremaining p ’swhicharenotinfinite. j Ifone(cid:107)fj(cid:107)Lp1 is0or∞,thentheconclusionisobvious.Let f j F = j (cid:107)fj(cid:107)Lp1 Theconvexityofet impliestheinequality 1 1 a a ap1 ···apk ≤ 1 +···+ k 1 k p p 1 k when1<p <∞and 1 +···+ 1 =1.Usingthisinequalityweobtain j p1 pk2 (|F|p1)p11 ···(|F|pk)p1k ≤ |f1|p1 +···+ |fk|pk . p1(cid:107)f1(cid:107)Lp1 pk(cid:107)fk(cid:107)Lpk Integratingandusing p11+···+p1k =1,weobtain(cid:107)f1···fk(cid:107)L1≤(cid:107)f1(cid:107)Lp1···(cid:107)fk(cid:107)Lpk.Forp(cid:54)=1reducetheinequalitytothecase p=1asfollows: 1 (cid:16) (cid:17)1 (cid:107)f1···fk(cid:107)Lp =(cid:107)|f1···fk|p(cid:107)Lp1 ≤ (cid:107)|f1|p(cid:107)Lpp1 ···(cid:107)|fk|p(cid:107)Lppk p =(cid:107)f1(cid:107)Lp1···(cid:107)fk(cid:107)Lpk usingthefactthat1/p +···+1/p =1/pisequivalentto(p /p)−1+···+(p /p)−1=1. 1 k 1 k (b)Wenotethatequalityintheinequality 1 1 a a ap1 ···apk ≤ 1 +···+ k 1 k p p 1 k holdsifandonlyifa =···=a .Indeed,thisinequalityisarestatementofthefactthatt(cid:55)→et isconvex.Andsinceet isstrictly 1 k convex,itfollowsthatequalityholdsintheprecedinginequalityifandonlyifallthea ’sareequaltoeachother.Usingthis j aj=|fj|pj/(cid:107)fj(cid:107)Lpj,weobtaintheclaimwithcj=(cid:107)fj(cid:107)−Lp1j. (c)Wehave (cid:107)f(cid:107)Lq =(cid:107)fgg−1(cid:107)Lq ≤(cid:107)fg(cid:107)L1(cid:107)g−1(cid:107)L|q(cid:48)| =(cid:107)fg(cid:107)L1(cid:107)g(cid:107)−Lq1(cid:48), since1= 1+ 1 implies 1 = 1+ 1 .Theconclusionfollows. (cid:4) q q(cid:48) q 1 |q(cid:48)| Exercise1.1.3 Let(X,µ)beameasurespace. (a)If f isinLp0(X,µ)forsome p0<∞,provethat (cid:13) (cid:13) (cid:13) (cid:13) lim(cid:13)f(cid:13) =(cid:13)f(cid:13) . p→∞ Lp L∞ (b)(Jensen’sinequality)Supposethatµ(X)=1.Showthat Contents 3 (cid:18)(cid:90) (cid:19) (cid:13) (cid:13) (cid:13)f(cid:13) ≥exp log|f(x)|dµ(x) Lp X forall0<p<∞. (c)Ifµ(X)=1and f isinsomeLp0(X,µ)forsome p0>0,then (cid:18)(cid:90) (cid:19) (cid:13) (cid:13) lim(cid:13)f(cid:13) =exp log|f(x)|dµ(x) p→0 Lp X withtheinterpretatione−∞=0. (cid:2)Hint:Part(a):If0<(cid:107)f(cid:107)L∞ <∞,usethat(cid:107)f(cid:107)Lp ≤(cid:107)f(cid:107)(Lp∞−p0)/p(cid:107)f(cid:107)Lp0p0/p toobtainlimsupp→∞(cid:107)f(cid:107)Lp ≤(cid:107)f(cid:107)L∞.Conversely,let Eγ ={x∈X : |f(x)|>γ(cid:107)f(cid:107)L∞} for γ in (0,1). Then µ(Eγ)>0, (cid:107)f(cid:107)Lp0(Eγ) >0, and (cid:107)f(cid:107)Lp ≥(cid:0)γ(cid:107)f(cid:107)L∞(cid:1)(p−p0)/p(cid:107)f(cid:107)Lp0p0/(pEγ), 1 hence liminfp→∞(cid:107)f(cid:107)Lp ≥γ(cid:107)f(cid:107)L∞. If (cid:107)f(cid:107)L∞ =∞, set Gn ={|f|>n} and use(cid:82)that (cid:107)f(cid:107)Lp ≥(cid:107)f(cid:107)L(cid:0)p((cid:82)Gn) ≥nµ(cid:1)(Gn)p to obtain liminfp→∞(cid:107)f(cid:107)Lp ≥n. Part (b) is a direct consequence of Jensen’s inequality Xlog|h|dµ ≤log X|h|dµ . Part (c): Fix a sequence0<p <p suchthat p ↓0anddefine n 0 n 1 1 hn(x)= (|f(x)|p0−1)− (|f(x)|pn−1). p p 0 n Usethat 1(tp−1)↓logt as p↓0forallt>0.TheLebesguemonotoneconvergencetheoremyields(cid:82) h dµ ↑(cid:82) hdµ,hence p X n X (cid:82) 1 (|f|pn−1)dµ ↓(cid:82) log|f|dµ,wherethelattercouldbe−∞.Use X pn X exp(cid:18)(cid:90) log|f|dµ(cid:19)≤(cid:18)(cid:90) |f|pndµ(cid:19)p1n ≤exp(cid:18)(cid:90) 1 (|f|pn−1)dµ(cid:19) p X X X n (cid:3) tocompletetheproof. Solution. (a)If(cid:107)f(cid:107)L∞ <∞usethat (cid:18)(cid:90) (cid:19)1p (cid:18)(cid:90) (cid:19)1p p−p0 p0 |f|pdµ = |f|p0|f|p−p0dµ ≤(cid:107)f(cid:107) p (cid:107)f(cid:107) p L∞ Lp0 X X from which it follows that limsupp→∞(cid:107)f(cid:107)Lp ≤(cid:107)f(cid:107)L∞. Conversely, let Eγ ={x∈X : |f(x)|>γ(cid:107)f(cid:107)L∞} for γ ∈(0,1). Then µ(Eγ)>0andtheintegralof|f|p0 overEγ ispositive.For p>p0wehave (cid:107)f(cid:107)Lp ≥(cid:18)(cid:90) |f|pdµ(cid:19)1p ≥γp−pp0(cid:107)f(cid:107)Lp∞−pp0(cid:18)(cid:90) |f|p0dµ(cid:19)pp0 Eγ Eγ andfromthisitfollowsthatliminfp→∞(cid:107)f(cid:107)Lp ≥γ(cid:107)f(cid:107)L∞.Sinceγ <1wasarbitrary,liminfp→∞(cid:107)f(cid:107)Lp ≥(cid:107)f(cid:107)L∞. Nowsupposethat(cid:107)f(cid:107)L∞ =∞.ThenifGn={|f|>n},wemusthaveµ(Gn)>0foralln=1,2,....Then 1 (cid:107)f(cid:107)Lp ≥(cid:107)f(cid:107)Lp(Gn)≥nµ(Gn)p andsoliminfp→∞(cid:107)f(cid:107)Lp ≥n.Thusliminfp→∞(cid:107)f(cid:107)Lp =∞=(cid:107)f(cid:107)L∞. (b)ByJensen’sinequalitywehavethatifφ usconcave,then (cid:18)(cid:90) (cid:19) (cid:90) φ gdµ ≥ φ◦gdµ, g≥0,a.e. X X Hence (cid:18)(cid:90) (cid:19) (cid:90) log |h|dµ ≥ log(|h|)dµ. X X Let|h|=|f|p,thenwehave 4 Contents (cid:18)(cid:90) (cid:19)1p (cid:90) (cid:90) log |f|pdµ ≥ log(|f|)dµ ⇒(cid:107)f(cid:107)Lp ≥exp( log(|f|))dµ. X X X (c)Bypart(b)wehave (cid:18)(cid:90) (cid:19) limsup(cid:107)f(cid:107)Lp ≥exp log|f|dµ . p→0 X Fixasequence0<p <p suchthat p ↓0.BytheLebesguemonotoneconvergencetheoremweknowthat n 0 n (cid:90) |f|p0−1 |f|pn−1 (cid:90) |f|p0−1 − dµ ↑ −log(|f|)dµ, p p p X 0 n X 0 since f ∈Lp0.Therefore (cid:90) |f|pn−1 (cid:90) dµ ↓ log|f|dµ. p X n X ae≤ea,∀a>0,so(cid:82) |f|pn ≤exp((cid:82) |f|pn−1).Therefore X pn X pn (cid:90) |f|p (cid:18)(cid:90) (cid:19) liminf dµ ≤exp log|f|dµ ≤limsup(cid:107)f(cid:107)Lp, p→0 X p X p→0 andtheconclusionfollows. (cid:4) Exercise1.1.4 Leta beasequenceofpositivereals.Showthat j (a)(cid:0)∑∞j=1aj(cid:1)θ ≤∑∞j=1aθj,forany0≤θ ≤1. (b)∑∞j=1aθj ≤(cid:0)∑∞j=1aj(cid:1)θ,forany1≤θ <∞. (c)(cid:0)∑Nj=1aj(cid:1)θ ≤Nθ−1∑Nj=1aθj,when1≤θ <∞. (d)∑Nj=1aθj ≤N1−θ(cid:0)∑Nj=1aj(cid:1)θ,when0≤θ ≤1. Solution. (a)Considerthenumbers a j ∑∞k=1ak whicharelessthan1.Thenwehave (cid:18) a (cid:19)θ a j j ≥ ∑∞k=1ak ∑∞k=1ak since0≤θ ≤1.Summingover jweobtain ∞ (cid:18) a (cid:19)θ ∑ j ≥1. j=1 ∑∞k=1ak Thisisjusttheclaimedinequality (b)Thisisprovedinawaysimilartothatin(a),withtheonlydifferencebeingthat≥isreplacedwith≤. (c)Wehave N N N N ∑aj≤(cid:0)∑1(cid:1)θ−θ1(cid:0)∑aθj(cid:1)θ1 =Nθ−θ1(cid:0)∑aθj(cid:1)θ1 j=1 j=1 j=1 j=1 therefore N N (cid:0)∑a (cid:1)θ ≤Nθ−1∑aθ. j j j=1 j=1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.