Classi(cid:28)cation Results of Arti(cid:28)cial Neural Networks for Alzheimer’s Disease Detection Alexandre Savio1, Maite Garc(cid:237)a-SebastiÆn1, Carmen HernÆndez1, Manuel Graæa1, Jorge Villanœa2 1ComputationalIntelligenceGroup,UniversityoftheBasqueCountry 2Osatek,HospitalDonostia 10th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2009) AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa1te/k,3H3ospitalDonostia) Outline 1 Introduction Alzheimer’s Disease Motivation Introduction to the Analysis Methods Materials and Methods 2 Results 3 Conclusions and Further Work AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa2te/k,3H3ospitalDonostia) Introduction Alzheimer’sDisease Outline 1 Introduction Alzheimer’s Disease Motivation Introduction to the Analysis Methods Materials and Methods 2 Results 3 Conclusions and Further Work AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa3te/k,3H3ospitalDonostia) Introduction Alzheimer’sDisease Alzheimer’s Disease (AD) Neurodegenerative disorder and one of the most common cause of dementia in old people. Still incurable and terminal. Although noninvasive approaches for antemortem diagnosis of AD are under development, de(cid:28)nitive diagnosis requires a postmortem study of the brain tissue. T1 weighted MRI scans (sMRI) promises to aid diagnosis and treatment monitoring of AD, o(cid:27)ering the potential for easily obtainable surrogate markers of diagnostic status and disease progression. AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa4te/k,3H3ospitalDonostia) Introduction Motivation Outline 1 Introduction Alzheimer’s Disease Motivation Introduction to the Analysis Methods Materials and Methods 2 Results 3 Conclusions and Further Work AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa5te/k,3H3ospitalDonostia) Introduction Motivation Objective Objective Detection of patients with very mild to mild Alzheimer’s disease. AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa6te/k,3H3ospitalDonostia) Introduction Motivation Our approach Using sMRI and standard classi(cid:28)ers: Feature extraction based on Voxel-based Morphometry (VBM) analysis Backpropagation (BP) Radial Basis Function Networks (RBFN) Learning Vector Quantization Networks (LVQ) Probabilistic Neural Network (PNN) AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa7te/k,3H3ospitalDonostia) Introduction Motivation Di(cid:27)erential features of our work This issue has been addressed in many other works. The di(cid:27)erences here are: Freely available database with good quality images and well-documented. The number of subjects selected for this study is relatively high. AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa8te/k,3H3ospitalDonostia) Introduction IntroductiontotheAnalysisMethods Outline 1 Introduction Alzheimer’s Disease Motivation Introduction to the Analysis Methods Materials and Methods 2 Results 3 Conclusions and Further Work AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasqIuDeECAoLun09try,Osa9te/k,3H3ospitalDonostia) Introduction IntroductiontotheAnalysisMethods Voxel-based Morphometry (VBM) Morphometry analyses allow a measurement of structural di(cid:27)erences within or across groups throughout the entire brain. VBM measures di(cid:27)erences in local concentrations of brain tissue, through a voxel-wise comparison of multiple brain images. The most popular brain morphometry analysis. AlexandreSavio,MaiteGarc(cid:237)a-SebastiÆn (ComputAatNioNnsalvIsn.teAllDige(nrecseuGltsr)oup,UniversityoftheBasIqDuEeACLou0n9try,Os1a0te/k,3H3ospitalDonostia)
Description: