ebook img

Cities in the EU: economic performance and resilience in the aftermath of the financial crisis PDF

65 Pages·2016·1.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cities in the EU: economic performance and resilience in the aftermath of the financial crisis

FAC-SIMILE THESIS 4-YEAR BACHELOR’S DEGREE AND MASTER’S DEGREE FRONTISPIECE Department of Economics and Finance Cities in the EU: economic performance and resilience in the aftermath of the financial crisis SUPERVISOR Prof. Giovanna Vallanti Valentin Vander Borght Number: 677241 CO-SUPERVISOR Prof. Salvatore Niticò ACADEMIC YEAR 2015 2016 Acknowledgements IwouldliketoexpressmygratitudetomysupervisorsProfessorGillesVanHammeandProfessor Giovanna Vallanti. At first, thank you for your patience and flexibility that allow me to do this master thesis at Universite´ Libre de Bruxelles and Libera Universita` Internazionale degli Studi Sociali. Thankstoyou,Ihaveenjoyedthisgreatexperienceofdoubledegree. Then,Iwouldliketo thankyouforbeingalwaysavailableforanyquestions. Finally,Iwouldliketothankyouforyour guidanceandexpertisethatallowmetodothismasterthesis. Inaddition,thismasterthesisisalsothefulfillmentoffivefantasticyears. Iwouldliketothank myfriendsandtheAnalysisteamforhelpingmetoaccomplishmydegree. Lastbutnotleast,Iwouldliketothankmyparentfortheirunconditionalsupportduringmy studies and my girlfriend for her encouragement. I would not have been able to complete this thesiswithoutthem. Cities in the EU: economic performance and resilience in the aftermath of the financial crisis MasterThesis Valentin Vander Borght 2015–2016 Abstract ThecityisdefinedasafunctionalurbanareabasedonEurostatdataatNUTS3level. Ifirst regresstheeconomicperformanceofEuropeancitiesoneconomicstructure,includinghuman capital, andsize-basedtypologyacrosstheperiod2003–2013usingfixedeffectspaneldata. Atfirst,IfindevidenceofconvergencebetweenEuropeancitiesoverthestudiedperiod. But, thedivergenceoccursduringthecrisis. Secondly,Ifindthatmetropolitancitiesoutperform thesmallestcities. Thirdly,constructionsectorandhumancapitalaretheengineofeconomic growthduringthestudiedperiod. IthenregresstheeconomicperformanceofEuropeancities duringthecrisisandpost-crisisperiodoninitialeconomicstructure,includinghumancapital, andsize-basedtypologyusingrobustOLSmodel. Giventheirinitialfeatures,manufacturing, administrative,financialandadvancedserviceshaveanegativeimpactonthecrisiseconomic growth. Besides,thenegativeeffectofmanufacturingandadministrationpersistduringthe post-crisis. Onlyhumancapitalhasapositiveimpactonbothcrisisandpost-crisiseconomic growth. 1 Contents 1 Introduction 13 2 LiteratureReview 15 2.1 Triumphofmetropolitancities? Atheoreticalperspective . . . . . . . . . . . . . . . 15 2.1.1 Agglomerationeconomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 Networkparadigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Fromthebottomtothetop: doEuropeancitiesconvergeacrosstime? . . . . . . . . 17 2.3 Resilience: fromdefinitiontoevidence . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Data 21 3.1 Citiesasfunctionalurbanareas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Citiestypology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Descriptivestatistics 25 4.1 Theconvergenceofcitiesacross2003–2013 . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Relationshipbetweentypologyandeconomicperformance . . . . . . . . . . . . . . 27 4.3 Resilience: afirstdescriptiveassessment . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Modelspecifications 33 5.1 AnalysisofeconomicperformanceofEuropeancitiesovertheperiod2003–2013 . . 33 5.2 AnalysisofEuropeancitiesresilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Results 38 6.1 EconomicperformanceofEuropeancities2003–2013 . . . . . . . . . . . . . . . . . 38 6.2 Citiesresilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 Conclusion 44 2 List of Tables 1 DescriptionvariablesdatasetatNUTS3level . . . . . . . . . . . . . . . . . . . . . . 22 2 Citiestypology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 AverageGDPgrowthratesbycitygroupings(in%) . . . . . . . . . . . . . . . . . . . 26 4 AverageGDPgrowthratesbytypology(in%) . . . . . . . . . . . . . . . . . . . . . . 27 5 Resultsoftheeconometricmodelusingthefixedeffectspaneldatamodel . . . . . . 39 6 Coefficientsignofinteractionbetweeneconomicstructureandtypologyresulting fromtheequation(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 ResultsoftheeconometricmodelusingtherobustOLSmodel . . . . . . . . . . . . 43 8 Mainfunctionalurbanareas(numberofFUApercountry) . . . . . . . . . . . . . . . 50 9 Summarystatisticsvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10 RelationshipbetweenaverageGDPgrowth2003–2007andtypology . . . . . . . . . 52 11 RelationshipbetweenaverageGDPgrowth2008–2010andtypology . . . . . . . . . 53 12 RelationshipbetweenaverageGDPgrowth2011–2013andtypology . . . . . . . . . 54 13 Average gross value added per sector growth rates by period (in %): financial andadvancedservices(1),manufacturing(2),construction(3),administration(4), agriculture(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 List of Figures 1 Relationshipbetweentheaveragepre-crisisshareoffinancialandadvancedservices andtheaveragecrisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . 29 2 Relationshipbetweentheaveragepre-crisisshareofmanufacturingandtheaverage crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Relationshipbetweentheaveragepre-crisisshareofconstructionandtheaverage crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Relationship between the average pre-crisis share of agriculture and the average crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Relationshipbetweentheaveragepre-crisisshareofadministrationandtheaverage crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 EU-28GDPinpurchasingpowerstandardsperinhabitantatNUTS3level–2008.. 47 7 EUtypologyontechnologicallyadvancedregionsatNUTS2level–2007. . . . . . . 48 8 EUpopulationdensityclassificationatNUTS3level–2007. . . . . . . . . . . . . . 49 4 Thesis summary Citiesareconsideredasthemajordriverforterritorialcohesionandeconomicgrowthaccording to European policy. In line with this perspective, my thesis aims at analyzing the impact of the financialcrisisonEuropeancities. Ontheonehand,Iregresstheeconomicperformanceofcities ontheeconomicstructure,includinghumancapital,andpopulationsizebasedtypologyoverthe period2003–2013. Ontheotherhand,Itrytoidentifythesourceofresiliencebyanalyzingthe impactofinitialeconomicstructure,includinghumancapital,ofcitiesandpopulationsizebased typologyonthecrisisandpost-crisiseconomicgrowth. Insummary,theobjectivesofthisstudy areoutlinedasfollows: 1. IsthereaconvergencebetweenEuropeancities? Inwhichextentthefinancialcrisisalters thistrend? 2. Whatisthestrongestcityintermsofeconomicperformanceovertheperiod2003–2013? 3. Whatarethedrivingfactorsofresilienceintheaftermathofthefinancialcrisis? I develop three strands of literature that I deem relevant to answer to these questions: ag- glomerationeconomicsandnetworkparadigm,convergencetheoriesandtheconceptofresilience. Accordingtoagglomerationeconomicsandnetworkparadigm,ithasbeenarguedthatmetropoli- tancitiesbenefitfromtheirpositionofcentralnodesintheworldeconomyandtheavailability of a diversified labor pool. Globalization and the development of ICT accentuate this trend by fostering the concentration of highly value added sector in metropolitan areas. Nevertheless, negativeexternalitiesarisingfromcongestion,suchaspollutionandincreasingcommutingtime, arelikelytocounterbalancethisphenomenoninmetropolitanareas. Tocapturetheimportanceof agglomerationandnetworkeffect,Iusetheclassificationofcitybasedonpopulationsizedescribed intable1. Secondly,Idrawadistinctionbetweentwotheoriesconcerningconvergence. Onthe onehand,theclassicalconvergencetheoryexplainsthecatchingupprocessofpoorregionsasa result of a differential marginal productivity between labor and capital intensive cities. On the otherhand,thecumulativecausationtheoryexplainswhyregionsdoesnotfollowthepathrecog- nizedbytheclassicsandhighlightstheimportanceoflong-termstructureinordertounderstand regionaldivergence. Inotherwords,initialdisparitiesreproduce,ornot,spatialinequalitydue to the cumulative consequences of the regional situation. To assess the extent of a convergence betweenEuropeancities,Idefineconvergenceasaβ-convergence,thatis,thenegativecorrelation 5 betweentheeconomicgrowthandtheinitiallevelofincome. Thirdly,severalfactorsofresilience areemphasizedintheeconomicliterature. Itcanbedividedintodifferentstrands. Atfirst, the importanceofinstitutions,cultureandpolitical,toensuretheresilience. Then,theimportanceof smallandmediumsizedcompaniesandacreativeclassintheeconomytodealwithanegative shock. Finally,someauthorspointouttheimpactofspecializationinsomeactivitiesasashield for the economy. I define resilience as a two-step process, that is, the role of initial features of citiesthatmitigatethenegativeshockduringthecrisisperiodandfostertheadaptationduringthe post-crisisperiod. Table1: Citiestypology Typology Criteria Metropolitanarea FUApopulation>500000inhabitants PolyFUAs 2metropolitanareaswiththeircenters<60kmapartand laborbasinstouchingeachother; 2 large areas with their centers < 30 km apart and labor basinstouchingeachother; 1metropolitanand1large/mediumareawiththeircenters <30kmapartandlaborbasinstouchingeachother; 2metropolitanareaswiththeircenters<60kmapartand laborbasinsseparatedonlybythelaborbasinofasmaller FUAtouchingthebothofthem. Largearea FUApopulation>250000inhabitants Mediumarea FUApopulation>100000inhabitants Smallarea FUApopulation>50000inhabitants Otherarea FUApopulation<50000inhabitants Mydatabaseconsistsonapaneldatacomposingof1515unitsofobservation,functionalurban areasconsideredascities,comingfrom26countriesovertheperiod2003–2013. Iconstructthe functional urban areas based on Eurostat data at NUTS 3 level. By constructing the functional urban areas, I define the concept of city. A city is not only an administratively-delineated area butaplacecharacterizedbyalaborpool. Inotherwords,acityiscomposedbythecityitselfand the share of surrounding agglomeration which economically contributes to the city. The extent ofalaborpoolassociatedwithaNUTS3unitisdeterminedbyacoefficientbasedoncommuting statistics. Inthisanalysis,thecoefficientsareconsideredasgivenbymysupervisor,ProfessorG. 6 VanHamme. ThiscoefficientrepresentsthepercentagegivingwhatpartoftheNUTS3variable, such as gross domestic product, is associated with a single functional urban area. The sum of each adjusted NUTS 3 value corresponding to a functional urban area gives the variable value ofthisfunctionalurbanarea. Todefinetheeconomicstructureofacity,Ibringtogetherasetof indicatorthatproxytheimportanceoftheprimarysector,manufacturing,construction,financial andadvancedservices,administrativesectorsandhumancapital. Thesevariablesaredescribed in table 2. In addition, it is important to note that I use a restricted sample when I include the variablerelatedtohumancapitalbecauseIhaveonlythedataforthemostimportantEuropean cities. For this reason, I do interpret the result of the other variables when I use human capital variable. Table2: DescriptionvariablesdatasetatNUTS3level Indicator Explanation Period Source Economicgrowth BasedonGDPatcurrentmarketpricepur- 2003-2013 Eurostat chasingpowerstandardinmillion€. No dataofGDPatbasicpriceonEurostat. Population Criteria used for the typology. I assume 2014 Eurostat topology is constant for the studied pe- riod. Agriculture GrossvalueaddedatbasicpricesinAEu- 2003-2013 Eurostat rostatactivityinmillion€. Itcorresponds totheprimarysector. Manufacturing GrossvalueaddedatbasicpricesinCEu- 2003-2013 Eurostat rostatactivityinmillion€. Exceptionfor PolandwhereIuseB-EEurostatcategories inmillion€. Construction GrossvalueaddedatbasicpricesinFEu- 2003-2013 Eurostat rostatactivityinmillion€ Finance and ad- GrossvalueaddedatbasicpricesinK-N 2003-2013 Eurostat vancedservices Eurostatactivityinmillion€. Exception forUKwhereIuseonlyKEurostatactiv- ityinmillion€. Administration GrossvalueaddedatbasicpricesinO-U 2003-2013 Eurostat Eurostatactivityinmillion€. Exception forUKwhereIuseonlyO-QEurostatac- tivityinmillion€. Education Shareoftertiarydiplomaintheactivepop- 2001 Eurostat; Labour ulation. I assume the share is constant ForceSurvey throughtime. Inthisthesis,Iusetwoempiricalapproaches. Atfirst,thespecificationisdesignedtoemphasize 7 theeconomicperformanceofcitiesacross2003–2013usingfixedeffectspaneldata. Takinginto accountthedependentvariables,thespecificationofthemodelisasfollows: GDPgrowthit =α+β1ln(GDPit−1)+β2ln(GDPit−1)×crisist+β3EcoStructurej +β4EcoStructurej ×crisist it it +β EcoStructure ×typology +β EcoStructure ×typology ×crisis +β education +(cid:15) (1) 5 j i 6 j i t 7 i it it it where(cid:15) =typology +λ +φ +u ; it i t c it   ji ==11,,......,,nk wwhheerree nk==5151n5umnbuemrboferecoofncoitmieiscstructurevariables where  ctr=is2is00=31,..w.,h20en13t=T20=081,1200n9u,m20b1e0rof;yeacrrsisis=0otherwise The methodology I use to estimate this equation is the fixed effects panel data regression. This modelallowstocontrolforomittedvariablesthatvaryeitheracrosstimebutdonotchangeacross country/typologyoracrosscountry/typologybutdonotchangeovertime. Therefore,theerror termcanbedecomposedintoacountryfixedeffect,φ ,atypologyfixedeffect,typology ,atime c i fixedeffect,λ ,andaresidualerrorterm,u . Giventhenatureofmydata,thismodelisthemost t it coherent. That is why I put aside the test for random effect model or pooled model. My first specificationallowsmetodrawseveralinterestingresults. Fromageneralpointofview,myanalysisshowsthatmetropolitancitiesperformsbetterthan large, medium, small and other cities over the period 2003–2013. All things being equal, the smallerthepopulationsize,theloweristheeconomicgrowthinthecity. Thisresultconfirmsthe importanceoftheeffectsofagglomerationandnetworkthatcharacterizemetropolitanareas. Then, I test the extent of β-convergence process between cities and I check the impact of the financial crisis on this convergence process. I find a consistent result through the different specifications. Thecoefficientassociatedwiththeinitiallevelofgrossdomesticproductisnegative andsignificantatlevel1percent. Therefore,thisresultadvocatesthehypothesisofconvergence betweencitiesbecauseacitywithhigherlevelofgrossdomesticproductexperiencelowereconomic growth. Further,Itesthowthecrisishasaffectedtheconvergenceprocessbyaddinganinteraction variablebetweentheinitiallevelofgrossdomesticproductandtheperiod2008–2010. Thisresult bringsamorenuancedpointofviewonconvergence. Duringthefinancialcrisis,divergenceoccurs between European cities. The estimate of convergence during the crisis period can be defined 8

Description:
are outlined as follows: 1. Is there a convergence between European cities? In which extent the financial crisis alters this trend? 2. What is the strongest city in terms of economic performance over the period 2003–2013? 3. What are the driving factors of resilience in the aftermath of the finan
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.