FAC-SIMILE THESIS 4-YEAR BACHELOR’S DEGREE AND MASTER’S DEGREE FRONTISPIECE Department of Economics and Finance Cities in the EU: economic performance and resilience in the aftermath of the financial crisis SUPERVISOR Prof. Giovanna Vallanti Valentin Vander Borght Number: 677241 CO-SUPERVISOR Prof. Salvatore Niticò ACADEMIC YEAR 2015 2016 Acknowledgements IwouldliketoexpressmygratitudetomysupervisorsProfessorGillesVanHammeandProfessor Giovanna Vallanti. At first, thank you for your patience and flexibility that allow me to do this master thesis at Universite´ Libre de Bruxelles and Libera Universita` Internazionale degli Studi Sociali. Thankstoyou,Ihaveenjoyedthisgreatexperienceofdoubledegree. Then,Iwouldliketo thankyouforbeingalwaysavailableforanyquestions. Finally,Iwouldliketothankyouforyour guidanceandexpertisethatallowmetodothismasterthesis. Inaddition,thismasterthesisisalsothefulfillmentoffivefantasticyears. Iwouldliketothank myfriendsandtheAnalysisteamforhelpingmetoaccomplishmydegree. Lastbutnotleast,Iwouldliketothankmyparentfortheirunconditionalsupportduringmy studies and my girlfriend for her encouragement. I would not have been able to complete this thesiswithoutthem. Cities in the EU: economic performance and resilience in the aftermath of the financial crisis MasterThesis Valentin Vander Borght 2015–2016 Abstract ThecityisdefinedasafunctionalurbanareabasedonEurostatdataatNUTS3level. Ifirst regresstheeconomicperformanceofEuropeancitiesoneconomicstructure,includinghuman capital, andsize-basedtypologyacrosstheperiod2003–2013usingfixedeffectspaneldata. Atfirst,IfindevidenceofconvergencebetweenEuropeancitiesoverthestudiedperiod. But, thedivergenceoccursduringthecrisis. Secondly,Ifindthatmetropolitancitiesoutperform thesmallestcities. Thirdly,constructionsectorandhumancapitalaretheengineofeconomic growthduringthestudiedperiod. IthenregresstheeconomicperformanceofEuropeancities duringthecrisisandpost-crisisperiodoninitialeconomicstructure,includinghumancapital, andsize-basedtypologyusingrobustOLSmodel. Giventheirinitialfeatures,manufacturing, administrative,financialandadvancedserviceshaveanegativeimpactonthecrisiseconomic growth. Besides,thenegativeeffectofmanufacturingandadministrationpersistduringthe post-crisis. Onlyhumancapitalhasapositiveimpactonbothcrisisandpost-crisiseconomic growth. 1 Contents 1 Introduction 13 2 LiteratureReview 15 2.1 Triumphofmetropolitancities? Atheoreticalperspective . . . . . . . . . . . . . . . 15 2.1.1 Agglomerationeconomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 Networkparadigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Fromthebottomtothetop: doEuropeancitiesconvergeacrosstime? . . . . . . . . 17 2.3 Resilience: fromdefinitiontoevidence . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Data 21 3.1 Citiesasfunctionalurbanareas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Citiestypology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Descriptivestatistics 25 4.1 Theconvergenceofcitiesacross2003–2013 . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Relationshipbetweentypologyandeconomicperformance . . . . . . . . . . . . . . 27 4.3 Resilience: afirstdescriptiveassessment . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Modelspecifications 33 5.1 AnalysisofeconomicperformanceofEuropeancitiesovertheperiod2003–2013 . . 33 5.2 AnalysisofEuropeancitiesresilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Results 38 6.1 EconomicperformanceofEuropeancities2003–2013 . . . . . . . . . . . . . . . . . 38 6.2 Citiesresilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 Conclusion 44 2 List of Tables 1 DescriptionvariablesdatasetatNUTS3level . . . . . . . . . . . . . . . . . . . . . . 22 2 Citiestypology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 AverageGDPgrowthratesbycitygroupings(in%) . . . . . . . . . . . . . . . . . . . 26 4 AverageGDPgrowthratesbytypology(in%) . . . . . . . . . . . . . . . . . . . . . . 27 5 Resultsoftheeconometricmodelusingthefixedeffectspaneldatamodel . . . . . . 39 6 Coefficientsignofinteractionbetweeneconomicstructureandtypologyresulting fromtheequation(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 ResultsoftheeconometricmodelusingtherobustOLSmodel . . . . . . . . . . . . 43 8 Mainfunctionalurbanareas(numberofFUApercountry) . . . . . . . . . . . . . . . 50 9 Summarystatisticsvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10 RelationshipbetweenaverageGDPgrowth2003–2007andtypology . . . . . . . . . 52 11 RelationshipbetweenaverageGDPgrowth2008–2010andtypology . . . . . . . . . 53 12 RelationshipbetweenaverageGDPgrowth2011–2013andtypology . . . . . . . . . 54 13 Average gross value added per sector growth rates by period (in %): financial andadvancedservices(1),manufacturing(2),construction(3),administration(4), agriculture(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 List of Figures 1 Relationshipbetweentheaveragepre-crisisshareoffinancialandadvancedservices andtheaveragecrisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . 29 2 Relationshipbetweentheaveragepre-crisisshareofmanufacturingandtheaverage crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Relationshipbetweentheaveragepre-crisisshareofconstructionandtheaverage crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Relationship between the average pre-crisis share of agriculture and the average crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Relationshipbetweentheaveragepre-crisisshareofadministrationandtheaverage crisis/post-crisisGDPgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 EU-28GDPinpurchasingpowerstandardsperinhabitantatNUTS3level–2008.. 47 7 EUtypologyontechnologicallyadvancedregionsatNUTS2level–2007. . . . . . . 48 8 EUpopulationdensityclassificationatNUTS3level–2007. . . . . . . . . . . . . . 49 4 Thesis summary Citiesareconsideredasthemajordriverforterritorialcohesionandeconomicgrowthaccording to European policy. In line with this perspective, my thesis aims at analyzing the impact of the financialcrisisonEuropeancities. Ontheonehand,Iregresstheeconomicperformanceofcities ontheeconomicstructure,includinghumancapital,andpopulationsizebasedtypologyoverthe period2003–2013. Ontheotherhand,Itrytoidentifythesourceofresiliencebyanalyzingthe impactofinitialeconomicstructure,includinghumancapital,ofcitiesandpopulationsizebased typologyonthecrisisandpost-crisiseconomicgrowth. Insummary,theobjectivesofthisstudy areoutlinedasfollows: 1. IsthereaconvergencebetweenEuropeancities? Inwhichextentthefinancialcrisisalters thistrend? 2. Whatisthestrongestcityintermsofeconomicperformanceovertheperiod2003–2013? 3. Whatarethedrivingfactorsofresilienceintheaftermathofthefinancialcrisis? I develop three strands of literature that I deem relevant to answer to these questions: ag- glomerationeconomicsandnetworkparadigm,convergencetheoriesandtheconceptofresilience. Accordingtoagglomerationeconomicsandnetworkparadigm,ithasbeenarguedthatmetropoli- tancitiesbenefitfromtheirpositionofcentralnodesintheworldeconomyandtheavailability of a diversified labor pool. Globalization and the development of ICT accentuate this trend by fostering the concentration of highly value added sector in metropolitan areas. Nevertheless, negativeexternalitiesarisingfromcongestion,suchaspollutionandincreasingcommutingtime, arelikelytocounterbalancethisphenomenoninmetropolitanareas. Tocapturetheimportanceof agglomerationandnetworkeffect,Iusetheclassificationofcitybasedonpopulationsizedescribed intable1. Secondly,Idrawadistinctionbetweentwotheoriesconcerningconvergence. Onthe onehand,theclassicalconvergencetheoryexplainsthecatchingupprocessofpoorregionsasa result of a differential marginal productivity between labor and capital intensive cities. On the otherhand,thecumulativecausationtheoryexplainswhyregionsdoesnotfollowthepathrecog- nizedbytheclassicsandhighlightstheimportanceoflong-termstructureinordertounderstand regionaldivergence. Inotherwords,initialdisparitiesreproduce,ornot,spatialinequalitydue to the cumulative consequences of the regional situation. To assess the extent of a convergence betweenEuropeancities,Idefineconvergenceasaβ-convergence,thatis,thenegativecorrelation 5 betweentheeconomicgrowthandtheinitiallevelofincome. Thirdly,severalfactorsofresilience areemphasizedintheeconomicliterature. Itcanbedividedintodifferentstrands. Atfirst, the importanceofinstitutions,cultureandpolitical,toensuretheresilience. Then,theimportanceof smallandmediumsizedcompaniesandacreativeclassintheeconomytodealwithanegative shock. Finally,someauthorspointouttheimpactofspecializationinsomeactivitiesasashield for the economy. I define resilience as a two-step process, that is, the role of initial features of citiesthatmitigatethenegativeshockduringthecrisisperiodandfostertheadaptationduringthe post-crisisperiod. Table1: Citiestypology Typology Criteria Metropolitanarea FUApopulation>500000inhabitants PolyFUAs 2metropolitanareaswiththeircenters<60kmapartand laborbasinstouchingeachother; 2 large areas with their centers < 30 km apart and labor basinstouchingeachother; 1metropolitanand1large/mediumareawiththeircenters <30kmapartandlaborbasinstouchingeachother; 2metropolitanareaswiththeircenters<60kmapartand laborbasinsseparatedonlybythelaborbasinofasmaller FUAtouchingthebothofthem. Largearea FUApopulation>250000inhabitants Mediumarea FUApopulation>100000inhabitants Smallarea FUApopulation>50000inhabitants Otherarea FUApopulation<50000inhabitants Mydatabaseconsistsonapaneldatacomposingof1515unitsofobservation,functionalurban areasconsideredascities,comingfrom26countriesovertheperiod2003–2013. Iconstructthe functional urban areas based on Eurostat data at NUTS 3 level. By constructing the functional urban areas, I define the concept of city. A city is not only an administratively-delineated area butaplacecharacterizedbyalaborpool. Inotherwords,acityiscomposedbythecityitselfand the share of surrounding agglomeration which economically contributes to the city. The extent ofalaborpoolassociatedwithaNUTS3unitisdeterminedbyacoefficientbasedoncommuting statistics. Inthisanalysis,thecoefficientsareconsideredasgivenbymysupervisor,ProfessorG. 6 VanHamme. ThiscoefficientrepresentsthepercentagegivingwhatpartoftheNUTS3variable, such as gross domestic product, is associated with a single functional urban area. The sum of each adjusted NUTS 3 value corresponding to a functional urban area gives the variable value ofthisfunctionalurbanarea. Todefinetheeconomicstructureofacity,Ibringtogetherasetof indicatorthatproxytheimportanceoftheprimarysector,manufacturing,construction,financial andadvancedservices,administrativesectorsandhumancapital. Thesevariablesaredescribed in table 2. In addition, it is important to note that I use a restricted sample when I include the variablerelatedtohumancapitalbecauseIhaveonlythedataforthemostimportantEuropean cities. For this reason, I do interpret the result of the other variables when I use human capital variable. Table2: DescriptionvariablesdatasetatNUTS3level Indicator Explanation Period Source Economicgrowth BasedonGDPatcurrentmarketpricepur- 2003-2013 Eurostat chasingpowerstandardinmillion€. No dataofGDPatbasicpriceonEurostat. Population Criteria used for the typology. I assume 2014 Eurostat topology is constant for the studied pe- riod. Agriculture GrossvalueaddedatbasicpricesinAEu- 2003-2013 Eurostat rostatactivityinmillion€. Itcorresponds totheprimarysector. Manufacturing GrossvalueaddedatbasicpricesinCEu- 2003-2013 Eurostat rostatactivityinmillion€. Exceptionfor PolandwhereIuseB-EEurostatcategories inmillion€. Construction GrossvalueaddedatbasicpricesinFEu- 2003-2013 Eurostat rostatactivityinmillion€ Finance and ad- GrossvalueaddedatbasicpricesinK-N 2003-2013 Eurostat vancedservices Eurostatactivityinmillion€. Exception forUKwhereIuseonlyKEurostatactiv- ityinmillion€. Administration GrossvalueaddedatbasicpricesinO-U 2003-2013 Eurostat Eurostatactivityinmillion€. Exception forUKwhereIuseonlyO-QEurostatac- tivityinmillion€. Education Shareoftertiarydiplomaintheactivepop- 2001 Eurostat; Labour ulation. I assume the share is constant ForceSurvey throughtime. Inthisthesis,Iusetwoempiricalapproaches. Atfirst,thespecificationisdesignedtoemphasize 7 theeconomicperformanceofcitiesacross2003–2013usingfixedeffectspaneldata. Takinginto accountthedependentvariables,thespecificationofthemodelisasfollows: GDPgrowthit =α+β1ln(GDPit−1)+β2ln(GDPit−1)×crisist+β3EcoStructurej +β4EcoStructurej ×crisist it it +β EcoStructure ×typology +β EcoStructure ×typology ×crisis +β education +(cid:15) (1) 5 j i 6 j i t 7 i it it it where(cid:15) =typology +λ +φ +u ; it i t c it ji ==11,,......,,nk wwhheerree nk==5151n5umnbuemrboferecoofncoitmieiscstructurevariables where ctr=is2is00=31,..w.,h20en13t=T20=081,1200n9u,m20b1e0rof;yeacrrsisis=0otherwise The methodology I use to estimate this equation is the fixed effects panel data regression. This modelallowstocontrolforomittedvariablesthatvaryeitheracrosstimebutdonotchangeacross country/typologyoracrosscountry/typologybutdonotchangeovertime. Therefore,theerror termcanbedecomposedintoacountryfixedeffect,φ ,atypologyfixedeffect,typology ,atime c i fixedeffect,λ ,andaresidualerrorterm,u . Giventhenatureofmydata,thismodelisthemost t it coherent. That is why I put aside the test for random effect model or pooled model. My first specificationallowsmetodrawseveralinterestingresults. Fromageneralpointofview,myanalysisshowsthatmetropolitancitiesperformsbetterthan large, medium, small and other cities over the period 2003–2013. All things being equal, the smallerthepopulationsize,theloweristheeconomicgrowthinthecity. Thisresultconfirmsthe importanceoftheeffectsofagglomerationandnetworkthatcharacterizemetropolitanareas. Then, I test the extent of β-convergence process between cities and I check the impact of the financial crisis on this convergence process. I find a consistent result through the different specifications. Thecoefficientassociatedwiththeinitiallevelofgrossdomesticproductisnegative andsignificantatlevel1percent. Therefore,thisresultadvocatesthehypothesisofconvergence betweencitiesbecauseacitywithhigherlevelofgrossdomesticproductexperiencelowereconomic growth. Further,Itesthowthecrisishasaffectedtheconvergenceprocessbyaddinganinteraction variablebetweentheinitiallevelofgrossdomesticproductandtheperiod2008–2010. Thisresult bringsamorenuancedpointofviewonconvergence. Duringthefinancialcrisis,divergenceoccurs between European cities. The estimate of convergence during the crisis period can be defined 8
Description: