ebook img

Chromatic numbers for the hyperbolic plane and discrete analogs PDF

0.29 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chromatic numbers for the hyperbolic plane and discrete analogs

Chromatic numbers for the hyperbolic plane and discrete analogs HugoParlier**,CamillePetit**** Abstract. Westudycoloringsofthehyperbolicplane,analogouslytotheHadwiger-Nelson problemfortheEuclideanplane. Theideaistocolorpointsusingtheminimumnumber ofcolorssuchthatnotwopointsatdistanceexactlydareofthesamecolor. Theproblem dependsondand,followingastrategyofKloeckner,weshowlinearupperboundsonthe 7 necessarynumberofcolors. Inparallel,westudythesameproblemonq-regulartreesand 1 0 show analogous results. For both settings, we also consider a variant which consists in 2 replacingdwithanintervalofdistances. n a J 0 3 1. Introduction ] O H Thegeometryofthehyperbolicplane appearsinalargevarietyofmathematicalcontexts C and,assuch,hasbeenextensivelystudied. Nonetheless,therearecertaincombinatorial . h H t questionsabout aboutwhichnotmuchisknown. We’remainlyinterestedinatypeof a m chromaticnumberforH. [ ThecelebratedHadwiger-Nelsonproblemisthesearchfortheminimalnumberofcolors 1 v necessarytocolortheEuclideanplanesuchthatanytwopointsatdistance1arecolored 8 differently. Thischromaticnumber,denotedbyχ(R2),hasbeenknowntobetween4and 4 6 7forahalf-century,butsignificantprogresshaseludedmathematiciansfordecades(see 8 0 [55] for details). This can - and has - been studied for other metric spaces such as Rn [44]. . 1 Thechoiceofdistance1foraEuclideanspaceisnotimportantthankstohomotheties. In 0 7 generalhowever,thechromaticnumberofametricspacewilldependonachoiceofd > 0 1 andcoloringsarerequiredtohavepointsatdistanceexactlydcoloreddifferently. : v Xi For H the choice of d is important and we denote the d-chromatic number χ(H,d). As r suggestedin[22],lettingdgrowandstudyingthegrowthofχ(H,d)couldbecomparedto a thestudyofχ(Rn)forgrowingnwhichisknowntogrowexponentiallyinn(see[11,44]and referencestherein). Theanalogywillonlybeinterestingifχ(H,d)isshowntogrowwith d but that’s not known to be true. The same proof as for the Euclidean plane [22] gives a *ResearchsupportedbySwissNationalScienceFoundationgrantnumberPP00P2 153024 **ResearchsupportedbySwissNationalScienceFoundationgrantnumber200021 153599 2010MathematicsSubjectClassification: Primary: 05C15,30F45. Secondary: 05C63,53C22, 30F10. Keywordsandphrases: chromaticnumbers,hyperbolicplane,trees 1 universallowerboundof4forχ(H,d)andthatseemstobetheextentofthecurrentstate ofknowledgeforlowerbounds. Ourfocuspointwillbeonupperbounds. Thefollowingtheoremsummarizessomeofour concreteresults. Theorem1.1. Ford ≤ 2log(2) ≈ 1.389...wehave χ(H,d) ≤ 9. Ford ≤ 2log(3) χ(H,d) ≤ 12. Ford ≥ 2log(3)thefollowingholds: (cid:18)(cid:24) (cid:25) (cid:19) d χ(H,d) ≤ 5 +1 . log(4) Ourmethodsandprooffollowthegeneralstrategyofusinga”hyperboliccheckerboard”,a methodoutlinedin[22]andattributedtoSze´kely. Kloeckner[22]explainshowtogetalinear upperbound(ind)andasksmanyinterestingquestions. Ourboundsansweroneofthe questions(ProblemR).Moreimportantly,weoptimizethestrategy(Theorems33..22and33..33) andprovidesomemissingarguments. Itistheseadditionaldetailsthatallowforimproved bounds for both small d and larger d (Theorems 33..44, 33..66 and Proposition 33..55). Note that thesequestionscouldalsobeaskedmoregenerallyforanyhyperbolicsurface,but,aswas shownbytheauthorsin[33],theboundsareverydifferentandgrowexponentiallyind. We note that for small d, it seems very unlikely that the bounds we provide are close to optimal. ThisisillustratedinProposition33..88whereweshowhowtouseafundamental domaintoboundχ(H,d)by8,butitonlyworksforcertainvaluesofd. Whenstudyingtheproblemofthehyperbolicplane,westartedlookingfordiscreteanalogs thatmighthelpusunderstandthestructureofsubgraphsofHthatoccurforlargerdand thathavehyperbolicityproperties. Thisleadustolookingatinfinite q-regulartrees. Al- thoughtheyarebipartite,wecanlookattheird-chromaticnumberandstudyitanalogously H H to . Theupperboundsweobtainedarecloseinspirittothoseof andobtainedbya similarmethod. Wesynthesizethemasfollows(seeTheorem33..1100). Theorem1.2. Ifdisoddthen χ(T ,d) = 2. q Ifdiseventhen χ(T ,d) ≤ (q−1)(d+1). q 2 H Lowerboundsseemdifficult,justlikefor . Onewayofobtaininglowerboundsisusinga typeofcliquenumber,herethemaximalnumberofpointsatpairwisedistanced. Foreven dthiscliquenumberisalwaysq(seeProposition33..1111)whichisquitefarfromourupper bounds. We can improve on that, but only slightly, by producing a generalized Moser spindle(Proposition33..1133). Thisgivesalowerboundofq+1. Nonetheless,weknowthis lowerboundisnotoptimalasbyanextensivecomputersearchwefoundthatχ(T ,8) ≥ 5 3 H (seeRemark33..1144). Asfor ,thecombinatoricsseemtogetoutofhandprettyquickly. A property shared by both H and T is that both are natural homogeneous Gromov q hyperbolicspaces. Inparticular,theyhavethintrianglesbywhichwemeanthatgeodesic triangles with long sides look roughly like tripods (and for T they are tripods). This q suggeststhatanintervalchromaticproblemmightberelevant. Inthisadaptation,wefix aninterval[d,cd]withd > 0andc > 1. Weaskthatpointsthathavedistancesthatliein [d,cd]becoloreddifferently. Kloeckner[22]pointsoutthatfortheEuclideanplanethisintervalchromaticnumbergrows likec2 forfixeddandgrowingcandaskswhether χ(R2,[d,cd]) lim c→∞ c2 exists. Hestatesapurposefullyvagueintervalchromaticproblemforthehyperbolicplane (ProblemZfrom[22]). We’reabletoshowthefollowingresults(Theorems44..11and44..22): Theorem1.3. Forsufficientlylarged,thequantityχ(H,[d,cd])satisfies (cid:16) (cid:17) 2ecd2−1 < χ(H,[d,cd]) < 2 2ecd2−1 +1 (cd+1). For T ,usingthesametechniques,weshowthefollowing(Theorems44..33and44..44). q Theorem1.4. Thequantityχ(T ,[d,cd])satisfies q q(q−1)(cid:98)c2d(cid:99)−(cid:100)d2(cid:101) ≤ χ(Tq,[d,cd]) ≤ (q−1)(cid:98)c2d+1(cid:99)((cid:98)cd(cid:99)+1). Thelowerboundsinboththeoremsabovecomefromlowerboundsonthe(interval)clique numbers. Acknowledgements. WeheartilythankAmmarHalabiforgraciouslywritingthecodenecessarytotestchromatic numbersforregulartrees. Remark33..1144isthankstohim. 3 2. Preliminaries 2.1. Chromaticnumbersofmetricspaces ThechromaticnumberofagraphGistheminimalnumberofcolorsneededtocolorthe verticesofagraphsuchthatanytwoadjacentverticesareofdifferentcolors. Given a metric space (X,δ) and a number d > 0, we define the chromatic number χ((X,δ),d) relative to d > 0 to be the minimal number of colors needed to color all pointsof X suchthatany x,y ∈ X withδ(x,y) = darecoloreddifferently. We’llsometimes refertothed-chromaticnumberof(X,δ). Onecandefinethechromaticnumberofametric spaceviathechromaticnumberofgraphsasfollows. Givenametricspace (X,δ) anda realnumberd > 0,weconstructagraphG({X,δ},d)withverticespointsofXandanedge betweenpointsiftheyareexactlyatdistanced. We’llrefertotheabovechromaticnumbersasbeingpurechromaticnumbers,asopposedto thenotionwe’llintroducenow. One variant on the pure chromatic number is to ask that points that lie at a distance belongingtoagivensetbeofdifferentcolors. Anexampleofthisisthechromaticnumber of Gk power of a graph G. This is equivalent to asking that any two vertices at distance belonging to the set {1,...,k} be colored differently. More generally, for a metric space (X,δ)andasetofdistances∆,the∆-chromaticnumberχ((X,δ),∆)istheminimalnumber ofcolorsnecessarytocolorpointsof X suchthatanytwopointsatdistancebelongingto ∆ areofadifferentcolor. Asabove,thiscanbeseenasthechromaticnumberofagraph G({X,δ},D)whereverticesarepointsof X andedgesbelongto D. We’llbeparticularly interested in this problem when D is an interval [a,b]. We’ll refer to these quantities as intervalchromaticnumbers. A straightforward way of obtaining a lower bound for chromatic numbers of graphs is via the clique number which is the order of the largest embedded complete graph. The cliquenumberΩ(G)clearlysatisfiesΩ(G) ≤ χ(G). SimilarlywedefineΩ((X,δ),d),resp. Ω((X,δ),∆), to be the size of the largest number of points of X all pairwise at distance exactlyd,resp. allatdistancelyingin∆. 2.2. Ourmetricspaces Thetwotypesofmetricspaceswe’llworkwitharethehyperbolicplaneHandq-regular trees (for q ≥ 3). The unique infinite tree of degree q in every vertex will be denoted T . q H Bothareviewedasmetricspace, withthestandardPoincare´ metric(anexplicitdistance formulawillbeprovidedbelow)andT asametricspaceonverticesobtainedbyassigning q 4 length1toeachedge. Althoughwethinkofregulartreesasatypeofdiscreteanalogof thehyperbolicplane,notethatthetwometricspacesarenotevenquasi-isometrictoone another. Inthenextsectionwe’llbrieflydescribeametricrelationshipbetweenHand T ,namelya q quasi-isometricembeddingof T intoH. Itisprovidedformotivationalpurposesand,asit q willnotbeusedinthesequel,itcanbeskippedbythelessinterestedreader. 2.3. Locallyflatmodelsofthehyperbolicplaneandgeometricallyembeddedtrees H Wedescribealocally”flat”modelofthehyperbolicplanewhichisquasi-isometricto intowhichregulartreesgeometricallyembed. Onewayofconstructingaspacewhichsharespropertieswithhyperbolicplaneistopaste togethercopiesofanequilateralEuclideantriangleτ withsideslengths1. Todoso,fixanintegern ≥ 6andconstructasimplyconnectedspaceasfollows. Starting with a base copy of τ, paste n copies of τ around each vertex to obtain a larger simply connected shape. Then we repeat the process indefinitely to get an unbounded simply connecteddomainwhichwe’lldenote H . n Forexample: ifn = 6thentheresultistheEuclideanplane. Inparticular,verticesofcopies ofτ maptopointsofangle2π. However,foranyn ≥ 7,thesetofverticesmapstosingularpointsofangle πn. Wenote 3 that,foralln ≥ 6, H isaCAT(0)metricspace. n Thefollowingiswell-knowntoexperts,butweprovideasketchproofforcompleteness. Proposition2.1. Forn ≥ 7, H andHarequasi-isometric. n Proof. Toseethis,itsufficestoconstructaquasi-isometrybetweenHand H . Considerthe n celldecompositionof H dualtoitstriangulation: eachcellisann-gonwithasingularity n in its center. As it is dual to a triangulation, the valency in each vertex of this n-gon decompositionisthree. Denoteby P acopyofthissingularn-gon. n Now consider the unique tiling (up to isometry) of H by regular n-gons of angles 2π. 3 DenotebyQ thishyperbolicn-gonweusetotile. Notethatboth P andQ havethen-th n n n dihedralgroup D asisometrygroup. n Let f : H → Q be any bijective map which, for simplicity, we’ll suppose sends the n n boundarytotheboundaryandisinvariantbytheactionsofD . (Thisisactuallynotstrictly n necessarybutitsimplifiesthediscussionsomewhat.) Themap f,bycompactnessof H n 5 andQ ,isofboundeddistortion. n TherearenownaturalmapsbetweenHand H whichconsistsonreplacingeachregular n hyperbolicn-gonofthetilingbythesingularEuclideananalogueandvice-versa. Pointsare associatedvia f andbyinvarianceof D ,coincidewithrespecttothepasting. Theresultis n abijectionbetweenHand H whichisclearlyofboundeddistortion. n Thereasonwe’veintroduced H isthatwehavethefollowingembedding. Byisometric n embeddingwemeananembeddingbetweenmetricspaces(X ,δ ) (cid:44)→ (X ,δ )suchthat 1 1 2 2 theinducedmetricon X by X coincideswiththemetricδ . 1 2 1 Proposition2.2. Foranyq ≤ (cid:98)n(cid:99), T isometricallyembedsinto H . 3 q n Proof. Therearetwothingstoprove. Thefirstisthatthereisanembedding. Todoso,we thinkof T asbeingembeddedintheplane(thisgivesusanorientationateveryvertex). q Byverticesof H wemeanthesetofpointsthataretheimageoftheverticesofthetriangles n usedtoconstruct H . Byedgesof H ,wemeantheimageoftheedgesofthetriangles(all n n oflength1). We’regoingtomapverticesandedgesof T totheircounterpartsin H q n Takeabasevertexv of T andmapittoabasevertexw of H . Nowmapanedgeeof T 0 q 0 n q incidenttov toanedgee(cid:48) of H incidenttow . 0 n 0 Wenowmapedgesincidentin v toedgesincidentin w . Edgesaround v and w both 0 0 0 0 haveorientationsandareorderedrelativelytoeande(cid:48). Followingthisorientation,edges incidenttov aremappedtoedgesincidenttow ensuringthatifanytwoedgesin P that 0 0 n areimageedgesformanangleofatleastπ. Inotherterms,followingtheorderaroundw , 0 thereareatleasttwoedgesbetweenimageedges. Notethatthiswaspossiblethankstothe conditiononqandn. We’venowmappedalledgesofT incidentinv . Wenowrepeatthistomaptoallvertices q 0 distance1fromv ,andtheninductively,tothoseatdistancer ≥ 2. Thisprovidesuswith 0 anembedding ϕ. Byconstruction,theembeddingisgeometric. Indeed,letv,wbeverticesof ϕ(T )andletγ q betheuniquesimplepathbetweenthemcontainedin ϕ(T )(imageoftheuniquegeodesic q in T ). Wewanttocheckthatγislocallygeodesiceverywhere. Asthespace H isCAT(0), q n thiswillguaranteethatγistheuniquegeodesicin H betweenvandw. Todosowecheck n theangleconditionsalongγ. Byconstruction,theangleisπalongtheflatportionsofγand atleastπ ineveryvertexbyconstruction. Thisprovesthatourembeddingisisometric. 6 In terms of chromatic numbers, the isometric embedding above provides the following immediatelowerbound. Corollary2.3. Foralld ≥ 1andq ≥ 3andnsatisfyingn ≥ (cid:98)n(cid:99): 3 χ(T ,d) ≤ χ(H ,d). q n 3. Purechromaticnumberproblem Inthissectionwe’llbeconcernedwithfindingupperandlowerboundsforthed-chromatic numberforboththehyperbolicplaneandforq-trees. Webeginwiththeformer. 3.1. Boundsforthehyperbolicplane H We’ll be using the upper half plane model of the hyperbolic plane. The hyperbolic distanceformulaforH = {(x,y) ∈ R2 | y > 0}canbeexpressedas dH(cid:0)(x,y),(x(cid:48),y(cid:48))(cid:1) = arccosh(cid:18)1+ (x−x(cid:48))2+(y−y(cid:48))2(cid:19). 2yy(cid:48) WewanttominimallycolorHforgivend > 0suchthatanytwopointsatdistancedareof differentcolors. Onequickwordaboutlowerboundsforthesequantities. Gettingagoodlowerboundvia inducedcompletegraphsisfutile-justlikefortheEuclideanplanethecliquenumberhas anupperboundof3. AndjustlikeintheEuclideanplane,alowerboundof4foranydcan beobtainedbyfindingametriccopyoftheMoserspindle. Itseemslikelythatonecando better,atleastforlarged,butthecombinatoricsquicklygetoutofhand. H Sowefocusonupperbounds. Thegeneralstrategywillalwaysbethesame: cover with monochromaticregionsofdiameterlessthandandensurethatanytworegionsofthesame coloraresufficientlyfarapart. 3.1.1. Constructionofahyperboliccheckerboard To color the hyperbolic plane we use a horocyclic checker board constructed as follows. Accordingto[22]whereitisusedtocolorthehyperbolicplane,thisconstructionisdueto Sze´kely. Unfortunatelysomeofthekeydetailsin[22]areincorrectsoforcompletenesswe provideadetailedconstruction. Themethodconsistsintilingthehyperbolicplanebyisometricrectangleswheretwosides oftherectanglearesubarcsofgeodesicswithacommonpointatinfinity(socalledultra 7 parallel curves) and the other two sides are horocyles surrounding that same point at infinity. Todosoformally,webeginbycuttingthehyperbolicplaneintoinfinitestripsboundedby horocyclesasfollows. Wefixh > 0andset j ∈ Z,thestripS (h)tobetheset j (cid:110) (cid:111) S (h) := (x,y) ∈ H | y ∈ [ejh,e(j+1)h[ . j We’llsometimescallS (h)astrata. Inthismodelthehorizontallinesy = ejh arehorocycles j around∞andhisthedistancebetweenthehorocyclesy = ejh andy = e(j+1)h. Roughlyspeaking,wenowsubdividethestripsS (h)bycuttingthemalongverticallines j (geodesics). Wefixavaluew > 0andcutalongverticalgeodesicsegmentsinawaythat the two endpoints of the base of each rectangle are at distance w. As we don’t want the rectanglestooverlapevenintheirboundary,wechoosethattheverticalgeodesicsegments belongstotherectangleonitsright. Thereissomechoiceisdoingtheaboveprocedurebut wewillnotmakeuseofthatchoiceinanyway(andinfacttryingtousethishorizontal parameteristricky). Onepossiblechoiceleadstothefollowingrectangleswhichforfixed h,wwecanlabelwithelementsofZ2: (cid:110) (cid:111) R (h,w) := (x,y) ∈ H | x ∈ [rjeih,r(j+1)eih[, y ∈ [ejh,e(j+1)h[ i,j where (cid:113) r := 2(cosh(w)−1). (cid:16) (cid:17) arccosh 1+ cosh(w)−1 e2h (0,eh) (r,eh) h w (0,1) (r,1) Figure1: Therectangle R (h,w) 0,0 Iftheaboveformulaisslightlyconfusing,it’susefultokeepinmindoneparticularcopyof therectanglesinceallofthemareisometric. Therectangle R (h,w)hasitsfourvertices 0,0 8 givenbythepoints(0,1),(r,1),(0,eh)and(r,eh). Althoughthebasepointsoftherectangle areatdistancew,theuppercornersareclosertoeachotherandtheirdistanceisinfact (cid:18) (cid:19) cosh(w)−1 arccosh 1+ . e2h Understanding the geometry of the rectangles is key in our argument and we want to understandthediameterofthe(closed)rectangle. Via a simple variational argument, the diameter is realized by some pair of points that lieinthecorners. Asdiscussedabove,thedistancebetweentheuppercornersissmaller thanthedistancebetweenpointsonthebasebutonepossibilityisthatthebottomcorners realizethediameterandinfactforfixedwandsmallenoughh,thisisthecase. Theother possibilityisthatoppositecornersrealizethediameterandtheirdistanceis (cid:18) 2(cosh(w)−1)+(eh−1)2(cid:19) arccosh 1+ . 2eh Again,ifhissufficientlylarge,theabovevaluewillbethediameter. To see the above observations, it suffices to look at the distance formula for a pair of points(0,y)and(r,y(cid:48)). Wethinkofy(cid:48) asbeingavariablebeginningaty(cid:48) = y. Nowasy(cid:48) increases,theirdistancebeginsbydecreasinguntileventuallyreachingaminimumand then increasing towards infinity. Thus there is a certain value of y(cid:48) > y for which the distancebetween(0,y)and(r,y(cid:48))isexactlythatofthedistancebetween(0,y)and(r,y). Thisshowsthatthepairofpointsthatrealizethediameteriseitherthebaseorthediagonal andthisdependsonhowlargehis. Allinall,we’veshownthefollowing. Proposition3.1. Therectangle R (w,h)satisfies i,j (cid:0) (cid:1) (cid:26) (cid:18) 2(cosh(w)−1)+(eh−1)2(cid:19)(cid:27) diam R (w,h) = max w, arccosh 1+ . i,j 2eh Wealsoneedtogetahandleonthedistancebetweenconsecutiverectanglesinastratum (so rectangles Ri,j(w,h) and Ri(cid:48),j(w,h) for i(cid:48) > i). By the same considerations as above thedistancewillberealized(intheclosureoftherectangles)bytheupperrightcornerof Ri,j(w,h)andtheupperleftcornerof Ri(cid:48),j(w,h). Thedistanceformulagivesus (cid:0) (cid:1) (cid:18) (i−i(cid:48))2(cosh(w)−1)(cid:19) dH Ri,j(w,h),Ri(cid:48),j(w,h) = arccosh 1+ e2h . With this in hand we can construct a well-adapted checker board in function of the pa- rameter d. The method is to use a checkerboard with rectangles of diameter ≤ d. We 9 color stratum by stratum cyclically using the above formula to ensure that if rectangles arehorizontallysufficientlyfarapart,theycanbecoloredthesameway. Wethenneedto repeat the above process with completely new colors until the strata are sufficiently far apart(seeFigure22). Thisrequiresexactly(cid:100)d(cid:101)+1stratatobecoloredbeforerepeatingthe h procedure. Thisleadstothefollowinggeneralstatementthatwestateasatheorem. Theorem3.2. Thed-chromaticnumberofthehyperbolicplanesatisfies (cid:18)(cid:24) (cid:25) (cid:19) d χ(H,d) ≤ (k+1) +1 h foranyw,hthatsatisfy (cid:26) (cid:18) 2(cosh(w)−1)+(eh−1)2(cid:19)(cid:27) max w, arccosh 1+ ≤ d 2eh andkisthesmallestintegersatisfying (cid:115) cosh(d)−1 k ≥ eh . cosh(w)−1 Wenotethattheaboveconditionimpliesthatk ≥ 2. ≥ d ≥ d (cid:108) (cid:109) Figure2: k = 3and d = 2 h Asstated,itisnotclearhowtooptimallyapplythetheorem. Westateaformulationwhich, although not necessarily practical, will give us the optimal solution for a checkerboard coloring. Supposewearegivenanh > 0whichsatisfiesh < d. Wewanttooptimizethecheckerboard usingthisfixedh. Thereisnowaclearchoiceofw: (cid:26) (cid:18)1+2ehcosh(d)−e2h(cid:19)(cid:27) w = min d, arccosh . 2 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.