ebook img

Choices abound—How to find the best vehicle for you PDF

14 Pages·2009·0.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Choices abound—How to find the best vehicle for you

Extremely short-length surface plasmon resonance devices MaximL.Nesterov1∗,AlexandreV.Kats1andSergeiK.Turitsyn2 1A.Ya.UsikovInstituteforRadiophysicsandElectronicsNASofUkraine, 12AcademicianProskuraStreet,61085Kharkov,Ukraine. 2PhotonicsResearchGroup,SchoolofEngineeringandAppliedScience,AstonUniversity, BirminghamB47ET,UnitedKingdom. ∗Correspondingauthor: [email protected] Abstract: The impact of the system design on the control of coupling betweenplanarwaveguidemodesandsurfaceplasmonpolaritons(SPP)is analyzed.Weexaminehowtheefficiencyofthecouplingcanbeenhanced by an appropriate dimensioning of a multi-layer device structure without usingadditionalgratings.Wedemonstratethatbyproperdesignthelength of the device can be dramatically reduced through fabrication a surface plasmon resonance sensor based on the SPP-photon transformation rather thenonSPPdissipation. © 2008 OpticalSocietyofAmerica OCIScodes:(240.6680)Surfaceplasmons;(060.2370)Fiberopticssensors Referencesandlinks 1. H.Raether,SurfacePlasmons(Springer-Verlag,NewYork,1988). 2. V.M.AgranovichandD.L.Mills,SurfacePolaritons,(Nauka,Moscow,1985). 3. A.V.ZayatsandI.I.Smolyaninov,“Near-fieldphotonics:surfaceplasmonspolaritonsandlocalizedsurfaceplas- mons,”J.Opt.A:PureAppl.Opt.5,S16-S50(2003). 4. A.V.Zayats,I.I.Smolyaninov,andA.A.Maradudin,“Nano-opticsofsurfaceplasmonpolaritons,”Phys.Rep. 408,131(2005). 5. S.I.BozhevolnyiandV.M.Shalaev,“NanophotonicswithSurfacePlasmons,”PhotonicsSpectra,PartI,58;Part II,68(2006). 6. M.I.Stockman,“ElectromagneticTheoryofSERS,”inSpringerSeriesTopicsinAppliedPhysics,editedbyK. Kneipp,M.MoskovitsandH.Kneipp,SurfaceEnhancedRamanScatteringPhysicsandApplications(Springer- Verlag,HeidelbergNewYorkTokyo,2006). 7. JiriHomola,SinclairS.Yee,andGunterGauglitz,“Surfaceplasmonresonancesensors:review,”Sens.Actuators, B54,3-15(1999). 8. J.Homola,“Presentandfutureofsurfaceplasmonresonancebiosensors(review),”Anal.Bioanal.Chem.377, 528-539(2003). 9. P.V.Lambeck,“Integratedopticalsensorsforthechemicaldomain,”Meas.Sci.Technol.17,R93-R116(2006). 10. R.D.Harris,B.J.Luff,J.S.Wilkinson,J.Piehler,A.Brecht,G.Gauglitz,R.A.Abuknesha,“Integratedoptical surfaceplasmonresonanceimmunoprobeforsimazinedetection,” BiosensorsandBioelectronics 14,377-386 (1999). 11. R.D.Harris,J.S.Wilkinson,“Waveguidesurfaceplasmonresonancesensors,”SensorsandActuatorsB29,261- 267(1995). 12. H.J.M.Kreuwel,P.V.Lambeck,J.M.N.BeltmanandT.J.A.Popma(1987)“Modecoupling inmultilayer structuresappliedtoachemicalsensorandawavelengthselectivedirectionalcoupler,”Proc.ECIO’87(Glasgow, 11-13May)pp.217-220. 13. V.Mikhailov,G.Wurtz,J.Elliott,P.BayvelandA.V.P.Zayats,“DispersingLightwithSurfacePlasmonPolari- tonicCrystals,”Phys.Rev.Lett.99,083901-1(2007). 14. A.V.Kats,M.L.Nesterov,andA.Yu.Nikitin,“Polarizationpropertiesofaperiodically-modulatedmetalfilm inregionsofanomalousopticaltransparency,”Phys.Rev.B.72,193405(2005). #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20227 15. A.V.Kats,M.L.Nesterov,andA.Yu.Nikitin,“Excitationofsurfaceplasmon-polaritons inmetalfilmswith doubleperiodicmodulation:Anomalousopticaleffects,”Phys.Rev.B.76,045413(2007). 16. S.I.Bozhevolnyi,J.E.,K.Leosson,P.M.W.Skovgaard,andJ.M.Hvam,“WaveguidinginSurfacePlasmon PolaritonBandGapStructures,”Phys.Rev.Lett.86,3008-3011(2001). 17. A.Boltasseva, T.Nikolajsen, K.Leosson,K.Kjaer, M.S.Larsen,andS.I.Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmonpolaritons,” Journal ofLightwave Technology,23,413-422 (2005) 18. S.I.Bozhevolnyi,V.S.Volkov,E.Devaux,J.-Y.LaluetandT.W.Ebbesen,“Channelplasmonsubwavelength waveguidecomponentsincludinginterferometersandringresonantors,”Nature440,508-511(2006). 19. F.Lopez-Tejeira,S.G.Rodrigo,L.Martin-Moreno,F.J.Garcia-Vidal,E.Devaux,T.W.Ebbesen,J.R.Krenn, I.P.Radko,S.I.Bozhevolnyi,M.U.Gonzalez,J.-C.WeeberandA.Dereux,“Efficientunidirectionalnanoslit couplersforsurfaceplasmons,”Nat.Phys.3,324-328(2007). 20. G.Nemova,A.V.Kabashin,andR.Kashyap,“Surfaceplasmon-polaritonMach-Zehnderrefractiveindexsen- sor,”J.Opt.Soc.Am.B25,1673-1677(2008). 21. G.Stewartetal.,“Surfaceplasmonresonancesinthinmetalfilmsforopticalfiberdevices,”inProc.Optical FiberSensors,Washington,DC,1988,pp.328-331. 22. W.Johnstone,G.Stewart,T.Hart,andB.Culshaw,“Surfaceplasmonpolaritonsinthinmetalfilmsandtheirrole infiberopticpolarizingdevices,”J.LightwaveTechnol.8,538-44(1990). 23. J.HomolaandR.Slav´ık,“Fibre-OpticSensorbasedonSurfacePlasmonResonance,”ElectronicsLetters32,480 (1996). 24. B.Gauvreau,A.Hassani,M.FassiFehri,A.Kabashin,andM.A.Skorobogatiy,“Photonicbandgapfiber-based SurfacePlasmonResonancesensors,”Opt.Express15,11413-11426(2007) 25. G.Nemova, R.Kashyap, “Theoretical model of aplanar integrated refractive index sensor based onsurface plasmon-polaritonexcitation,”Opt.Commun.275,76-82,(2007). 26. Y.Y.ShevchenkoandJ.Albert,“Plasmonresonancesingold-coatedtiltedfiberBragggratings,”Opt.Lett.32, 211-213(2007) 27. M.SkorobogatiyandA.V.Kabashin,“Photoncrystalwaveguide-basedsurfaceplasmonresonancebiosensor,” Appl.Phys.Lett.89,143518(2006). 28. M.Skorobogatiy andA.Kabashin“Plasmonexcitation bytheGaussian-like coremodeofaphotoniccrystal waveguide,”Opt.Express14,8419-8424(2006). 29. H.Ditlbacher,N.Galler,D.M.Koller,A.Hohenau,A.Leitner,F.R.AusseneggandJ.R.Krenn“Couplingdielec- tricwaveguidemodestosurfaceplasmonpolaritons,”Opt.Express16,10455-10464(2008). 30. T.Nakano,K.Baba,andM.Miyagi,“Insertionlossandextinctionratioofasurfaceplasmon-polaritonpolarizer: theoreticalanalysis,”J.Opt.Soc.Am.B11,2030-2035(1994) 31. C-HChen,L.Wang,“DesignofFinite-lengthmetal-cladopticalwaveguidepolarizer,”IEEEJ.QuantumElec- tron.34,1089-97(1998). 32. S.G.Rodrigo, F.J.Garc´ıa-Vidal, and L.Mart´ın-Moreno, “Influence ofmaterial properties on extraordinary opticaltransmissionthroughholearrays,”Phys.Rev.B.77,075401(2008). 33. E.D.Palik,HandbookofOpticalConstantsandSolids,(Academic,Orlando,1985). 34. M.A.Ordal,L.L.Long,R.J.Bell,S.E.Bell,R.R.Bell,R.W.Alexander,andC.A.Ward,“Opticalpropertiesof themetalsAl,Co,Cu,Au,Fe,Pb,Ni,Pd,Pt,Ag,Ti,andWintheinfraredandfarinfrared,”App.Opt.22,1099 (1983). 35. KatsunariOkamoto,FundamentalsofOpticalWaveguides(AcademicPress,firstEdition,2000). 36. PocheYeh,OpticalWavesinLayeredMedia(JohnWiley&Sons,NewYork,1988). 37. A.Yariv,QuantumElectronics(JohnWiley&Sons,NewYork,1975). 38. J.Ctyroky,J.Homola,P.V.Lambeck,S.Musa,H.J.W.M.Hoekstra,R.D.Harris,J.S.Wilkinson,B.Usievich, N.M.Lyndin,“Theoryandmodellingofopticalwaveguidesensorsutilisingsurfaceplasmonresonance,”Sensors andActuatorsB5466-73(1999). 39. YogendraS.Dwivedi,AnujK.Sharma,B.D.Gupta,“InfluenceofDesignParametersonthePerformanceofa SurfacePlasmonResonanceBasedFiberOpticSensor,”Plasmonics379-86(2008). 1. Introduction Recentadvancesintheapplicationofsurfaceplasmonpolaritonsinthefieldsofchemicaland bio-sensorsandnano-sciencehasstimulatedboomingresearchanddevelopment.Surfaceplas- mon resonance(SPR) based optical bio-sensorsexploita special type of the electromagnetic surfacewavescoupledtothecollectiveelectronexcitation—surfaceplasmonpolaritons(see e.g.[1–6])toprobeinteractionsbetweenananalyteunderstudyandabio-molecularrecogni- tionelementimmobilizedontheSPRsensorsurface.Oneofthemostimportantcharacteristics oftheSPPs is theirabilitytodetectsmallscale effectsandfieldinteractionsat theinterfaces #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20228 betweenametalandanon-metal.Thesurfaceplasmonpolaritonsattractagreatdealofatten- tion as a quite unique possibility of the electromagneticfield localization and corresponding substantial enhancementof the electric field nearthe surface. Sucha high levelof a field lo- calizationresultsintotheenhancedsensitivityoftheSPRsensors.Specifically,SPPsinsand- wichedstructureshaveattractedmuchinterestasapromisingwaytoimplementsurfaceplas- monresonanceopticalsensors[7–11];waveguide-coupledSPRsensorwasfirstdemonstrated byHarrieKreuwelin[12].Manyofthekeypropertiesofsuchsensors,usingmulti-layersand- wichedstructures,aredeterminedbytheinteractionbetweenawaveguideandSPPmodes.The progressintheareaisveryfastandsomeproductsarealreadycommerciallyavailable.There isbroadrangeofpossibleschemesandconfigurations,anddespitesuccessfulfirstdemonstra- tionsofsuchdevices,manydesignproblemsarestillopenandinthispaperweexaminesome oftheseissues. WewouldliketopointoutthatSPP-basedtechnologyhasaverybroadspectrumofpotential applications. A feasibility of exploiting the high spectral dispersion achievable in plasmonic devicesinopticalcommunicationhasbeenrecentlydiscussedin[13].Surfacewavesplayan importantroleinmanyfundamentalresonantphenomena,suchase.g.the”Woodanomalies” in thereflectivityandtransmissivity[1,14,15]ofperiodicallycorrugatedmetalsamples, and are already practically exploited in a wide range of practical devices. A very important area of the SPP applicationsis in miniaturizationand integrationof optical circuits. A possibility of high localization of electromagnetic fields using SPP and subwavelength metal structures makes it possible to overcomethe diffractionlimit of light waves whichis a critical issue in thedevelopmentofphotoniccircuits.Considerableeffortshavebeenrecentlyplacedintothe developmentofplasmonsubwavelengthguidingandcouplingdevices[16–20]. Apromisingdirectioninthedevelopmentof SPP-baseddevicesandtechniquesistocom- bine surface plasmon approaches with well developed dielectric waveguide technologies, in particularwithfiber-optics[21–24].TheconventionalmodernSPRfibersensorsutilizeBragg gratingsorlongperiodgratingsto couplelightto the SPPs. Recentlythe couplingefficiency betweenthecoremodeofthewaveguideandSPPmodesofthemetalfilminplanarandcylin- drical geometry for sensing purposes have been examined in [25–29]. A variety of possible configurations of multi-layered structures offers a range of potential device designs and this fieldis still farfrombeenfullyexplored.EfficiencyofthecouplingbetweenSPP modesand thewaveguideisthekeytounlockingthefullpotentialofsuchsandwichedmulti-layerstruc- tureddevices.ThereexisttwokeypossibilitiestocoupleSPPandwaveguidemodes.Thefirst oneistousethegratingwithaproperreciprocalvectortofulfillthephasematchingconditions. The second one is through design, using appropriate materials and layers thicknesses at the givenoperationalwavelength,whenthephasematchingconditionsaresatisfiedduetothelight tunnelingthroughthebufferlayer.InthisworkweanalyzethebasicpropertiesoftheSPPand waveguide mode coupling and consider a possibility to optimize the SPR-sensors by system designthroughtuningdeviceparametersratherthanthroughadditionalgratingswritteninthe waveguide.Understandingof the details of the interactionof the SPP and waveguide modes isacriticalpointinthedevelopmentofthehighsensitivityreal-timeSPR-sensorandourgoal hereistoanalyzesuchinteractionforrathergeneralconfigurationthatcanberelevanttomany practicalsituations. 2. Fieldsrepresentationandboundaryconditions ConsidereigenmodesofthemultilayerstructuredepictedinFig.1thatistypicalfortheSPP- baseddevices.Theindicesc,b,w,−and+inwhatfollowsrelatetothecorrespondinglayers asshowninFig.1.TakingintoaccountthatSPPisaTM-polarizedwaveand,therefore,inthe geometryunderconsiderationitcaninteractonlywithTM-polarizedwaves,weconsiderTM- #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20229 polarizedeigenmodes(E={E ,0,E },H={0,H,0})ofthestructure.Thetimedependence x z ismovedoutoftheequationsbythecorrespondingFouriertransformandanalysisoftheplane waves having the form exp(−iωt). We are interested here in solutions that present outgoing ordecayingwavesbothintheupperhalf-planez≤0(τ=−),andintheregionz≥L+(cid:2)+d (τ=+)foranygivenfrequencyωandtangentialcomponentofthewavevectork , x Hτ(x,z)=Hτexp{ikxx+iτkzτ[z−δτ,+(d+(cid:2)+L)]}, (1) (cid:2) wherek=ω/cisthevacuumwavenumber,kzτ= k2ετ−kx2,Im(kzτ),Re(kzτ)≥0.Similarly, E z E E k sp SR LR x sp ε H - y 0 superstrate ε- x |εc(ω)| |ε| d metalεc(ω) ε k ε b ℓ+d sp buffer b ε E ε w wg waveguide w ε+ L+ℓ+d substrate ε+ z z Fig.1.Geometryoftheproblemandatypicaldielectricpermittivitydistribution.Thestruc- tureoftheSPPmodesforboththickandthinmetalfilmsareschematicallyshownalong withawaveguidemode. HM(x,z)= ∑ HM|σexp{ik x+iσkM[z−z ]}, (2) x z M σ=± inthemetal(M=c,z∈[0,d]),thebuffer(M=b,z∈[d,d+(cid:2)])andthewaveguide(M=w, z∈[d+(cid:2),d+(cid:2)+L])layer.Herez =0,z =d,z =d+(cid:2)andthebranchofthesquareroots, c b w kM,ischosensothatRe(kM)≥0,Im(kM)≥0andthusthesignσ=+(−)correspondstothe z z z waves propagatingor decayingin the positive(negative)directionofthe z-axis, respectively. Thex-dependenceinallthelayersisthesameduetoconservationofthetangentialmomentum (or,equivalently,as imposedby the boundaryconditions).The electric field componentscan be derivedfrom the Maxwell equations.Assuming all the media shown in Fig. 1 to be non- magneticwehave i ∂ Em(x,z)=− Hm(x,z), (3) x kε ∂z m i ∂ Em(x,z)= Hm(x,z), (4) z kε ∂x m wherem=τ,c,b,w,andε denotesdielectricpermittivityinthem-thlayer(medium),and m Euτ(x,z)=Euτexp{ikxx+iτkzτ[z−δτ,+(d+(cid:2)+L)]}, (5) EM(x,z)= ∑ EM|σexp{ik x+iσkM[z−z ]}. (6) u u x z M σ=± Hereu=x,y stays forthe correspondingcomponentsoftheelectricfield.Theamplitudesof τ M|σ theelectricfield,E ,E ,canbeexpressedbymeansofEqs.(3),(4)and(1),(2)as u u τkτ k Eτ= zHτ, Eτ=− x Hτ, (7) x kετ z kετ #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20230 EM|σ= σkzMHM|σ, EM|σ=− kx HM|σ. (8) x kε z kε M M Introducingdimensionlessvariables, km α=k /k, βm= z , (9) x kε m Eqs.(7),(8)canbepresentedintheform α Eτ=τβτHτ, Eτ=− Hτ, (10) x z ε τ α EM|σ=σβMHM|σ, EM|σ=− HM|σ. (11) x z ε M Continuityofthetangentialcomponentsofthefieldcrossingtheinterfacesresultsinthesys- temofeightlinearhomogeneousalgebraicequationsfortheeightamplitudesofthemagnetic field, HM|σ, Hτ. The nontrivial solutions of these system (eigenmodes of the layered struc- ture)existwhenthedeterminantisequaltozero.Thisleadsafterstraightforwardalgebratothe dispersionrelation: −βw[iawtanφ−bw]+β+[aw−ibwtanφ]=0, (12) where βb aw=ab+bbtanhF, bw= [abtanhF+bb], βw (cid:3) (cid:4) (13) β− ξ β− ab=1+ tanhΦ, bb= tanhΦ+ , ξ βb ξ ξ≡βcisthesurfaceimpedanceofthemetalfilm,and Φ=−ikcd, φ=kwL, F=−ikb(cid:2). (14) z z z ResolvingEq.(12)yieldsthedispersioncurves,ω=ω(k )[ork =K(ω)] correspondingto x x differentmodesof the system. For the sake ofclarity, but withoutloss of generality,in what followsweneglectfrequencydependenceofalldielectricpermittivitiesexceptthatoneofthe metallayer,εc=εc(ω).ForthelatterwewillusetheDrudemodel,εc(ω)=ε∞−ωp2/ω(ω+ iγ), where ε∞ is high-frequencyvalue of the permittivity εc(ω), ωp is the plasma frequency, andγisthedampingrate.InTable1thetypicalparametersforthecommonlyusedmaterials √ (fordesignofthesensors)areshown,heren = ε ,m=−,b,w,+,denoterefractiveindices m m ofthecorrespondingdielectriclayers. ∗ Table1.TableofcommonmaterialparametersfortheSPRsensingdevices metal silver[7] gold[7,25,26] aluminium[30] dielectriccore n=1.585[31] n=1.476[30] n=1.47[25] dielectriccladding n=1.439[31] n=1.473[30] n=1.45[25] ∗ Foropticalconstantsofsilver,goldandaluminiumsee[32–34]. Thefieldamplitudescanbeexpressedintermsoftheuppermediummagneticfieldampli- − tude,H : (cid:5) (cid:6) H− β− H− Hc|σ= 1−σ , Hb|σ= {ab−σbb}, 2 βc 2 (15) − H Hw|σ= {aw−σbw}, H+=H−[awcosφ−ibwsinφ]. 2 #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20231 Thedispersionrelationincludesanumberoflimitingcasescorrespondingtodifferentcom- binations of thick or thin limits of the building layers. For instance, in the limit of a large thicknessofthebufferlayer,(cid:2)→∞(F (cid:9)1),thedispersionrelationsplitsintotwodispersion branches, (cid:5) (cid:6) β+βb βb+β+−i βw+ tanφ=0, (16) βw ab+bb=0, (17) whichcorrespondtothewaveguideTMmodesandSPPmodesofthemetalfilm,respectively. Inturn,thederivedSPPdispersionrelation,Eq.(17),foraratherthickmetalfilm(Φ(cid:9)1)limit leadstostandardSPPmodes,ab+bb=0⇒(βb+ξ)(β−+ξ)=0.Inthecaseofafinitevalue ofΦthedispersionrelationdescribesthehybridizeddouble-interface-localizedSPPmodes, (βbtanhΦ+ξ)(β−tanhΦ+ξ)−ξ2cosh−2Φ=0. (18) Morespecifically,whenthedielectricpermittivitiesofthesuperstrateandthebuffercoincide, εb=ε−,thenEq.(18)splitsintotwobranchesandyieldsthedispersionrelationsfortheshort- range(symmetric)SPPandlong-range(antisymmetric)SPPmodes[1],seeFig.1, βb=β+b ≡−ξtanh(Φ/2), βb=β−b ≡−ξcoth(Φ/2), (19) wheresubscripts“+”and“−”correspondtothelong-range(LR),andshort-range(SR)mode, respectively. Similartothat,thesolitarywaveguidemodes((cid:2)→∞)dependonthewaveguidelayerthick- nessandpermittivity.Namely,inthislimitingcasethesolutionofEq.(16)reads (cid:3) (cid:4) 1 (βb+β+)βw nπ ε kL= arctan −i + , n=0,±1,... (20) w βw (βw)2+βbβ+ βw At the crossingpoints ofthe dispersioncurvesthe phase matchingconditionsaresatisfied andaninteractionbetweenwavesofdifferentbranchesismostefficient.However,inorderto stress thedifferencebetweenthesituationswhenthephasematchingconditionsareprovided by an additional grating and the problem considered here we will use in what follows term hybridizationofmodes.Intheproblemconsideredherethefinitethicknessofthebufferlayer resultsinhybridization(combination)ofthewaveguideandSPPmodes.Theresultinghybrid eigenmodes of the system might have spatial distributions with energy both in the dielectric waveguideandintheSPPmodes.Wewouldliketoemphasizethatthemostinterestingsitua- tionsforthedesignofthesensorstakesplacewhenthelevelofthemodehybridization(strong couplingofthewaveguideandSPPmodes)isratherhigh.Thisoccurswhenthebufferlayeris relativelythinandinthevicinityofthepointsintheω−k planewherethedispersioncurves x ofthefreeSPPandwaveguidemodesintersect.Inthevicinityofsuchpointsthehybridization ishighandcontrolofoperationnearthispointcanbeprovidedbytheadjustmentofthebuffer layer.Thisconsiderationoutlinesthedesignrulesandexplainsthechoiceoftheparametersin theexamplespresentedbelow. The solutions of the dispersion relation of the multi-layer system, Eq. (12), are plotted in Fig.2whereweusethenormalizedfrequencyparameterkL=Lω/c,versusthesquarednor- malizedtangentialcomponentofthewavenumber(i.e.,thesquaredeffectiverefractionindex, n2 ≡α2 =c2k2/ω2). The most interestingarea forthe parameterslies is the vicinityof the eff x intersectionbetweenthesilver-superstrateSPPbranchandthatofthelowest-frequency(funda- mental)waveguidemode,seeinsetinFig.2. #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20232 12 WG WG WG n=2 n=1 n=0 3 10 kL 2 y, c 8 en u q e metal-superstrate SPP 6 d fr e z hilgohss reasd iaarteioan 3 4 mali a 2 1 resonance or metal-buffer SPP frequency 2 n b ε ε=ε ε 0 1.2 1.4 1.6 1.8 - 2 b + 2.2 2.4 w 2.6 2.8 normalized propagation constant, α2 Fig.2.Dispersionrelationsforthemulti-layersystemofFig.1.Thick(red)curvesrepresent thesolutionsofthecompletedispersionrelationgiveninEq.(12).Thin(gray)WG-named curvescorrespondtothedispersionrelationofthesolitarydielectricwaveguide,Eq.(20), andathicksilvermetalfilm,d→∞.Thedashed(blue)curvesrepresentthehigh-frequency andlow-frequencysolutionsofthedispersionrelationforasolitarythinsilvermetalfilm. Theparametersare:n−=1.37,nb=n+=1.439,nw=1.585,thethicknessesofthelayers ared=58nm,(cid:2)=400nm,L=250nm. Thecouplingofthesemodesduetothefinite-thicknessofthebufferlayerresultsinarepul- sionofthedispersionbranches.However,inthevicinityoftheinoculatingcurvesintersection thedistancebetweenthemodifieddispersionbranchesisrelativelysmall.Theintersectionde- finesthe“resonancefrequency”,k L=3.37(ω /(2π)=6.44·1014Hz)forL=250nm,see res res Fig.2,thatoptimizestheconsideredstructurepropertiesforsensorapplications.Notethatour approachcanbealsousedinthereverseproblem-whenthedesignofthemulti-layerstructure isadjustedtosomerequiredoperationalfrequency. The magnetic field evolution along the x-axis for the solitary metal film SPP modes, i.e., when the buffer and the waveguide thicknesses are zero-valued, (cid:2),L→0, could be derived fromEqs.(1), (2)and(15),wherek and ωobeyEq.(18).Thisdistributionin (z,x) planeis x showninFig.3fortheabove“resonancefrequency”,ω . res Fieldevolutionfortheeigenmodesofthesolitarydielectricwaveguide(weconsiderherethe limitorvanishingbufferandthemetallayerthicknesses:d,(cid:2)→0)couldbederivedfromthe sameequationsbutfork andωobeyingEq.(20).Thecorrespondingmagneticfielddistribu- x tionisshowninFig.4,forω=ω . res The magnetic field distributions in the plane (z,x) for three eigenmodes of the multilayer systematthe“resonancefrequency”areshowninFigs.5,6and7. Itisseenthatbyanappropriatefittingoftheparametersofamulti-layerstructureitispos- sible to switch between different regimes and to control efficiency of coupling between the waveguidemodeandSPPmodes. 3. Transmissionpropertiesofthemulti-layerstructure Considernowtransmittanceofthedescribedabovemulti-layersystem with thelengthofthe metal layer that differsfromthe dielectric waveguidelength.We calculate here the transmit- tanceasaratiobetweenthetotaloutputenergyfluxatx=100μ m,andtheinputenergyflux atx=0.Theinputenergyfluxatthestartingpointx=0correspondstothesolitarywaveguide #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20233 high-frequency SPP mode 1000 e m) ud nate , (nz 5000 claddingε- 01.75eld amplit oordi metal filmεc claddingεb etic fi c -500 -1.75gn a m (a) -1000 0 500 1000 1500 2000 2500 propagation direction x, (nm) low-frequency SPP mode 1000 e m) ud nate , (nz 5000 metal filmεc claddingε- 01.75eld amplit oordi claddingεb etic fi c -500 -1.75gn a m (b) -1000 0 500 1000 1500 2000 2500 propagation direction x, (nm) Fig.3.ThemagneticfielddistributionforthetwoSPPeigenmodesofthesolitarymetalfilm atω=ωres (ωresL/c=3.37).αh2igh=2.268,αl2ow=2.649otherparametersarethesame asinFig.2.Thea(b)figureisthefielddistributionforthehigh-frequency(low-frequency) SPPmode of the metal filmcorresponding to the upper (lower) SPPdispersion curve in Fig.2. waveguide mode 1000 e m) 500 ud zoordinate , (n-1-0500000 wavcclleaagdduddiiidnnggeεεε+bw 01.75etic field amplit c -1.75gn -1500 ma -2000 0 1000 2000 3000 4000 5000 propagation direction x, (nm) Fig. 4. The magnetic field evolution for the solitary waveguide mode, α=1.56, other parametersarethesameasinFig.2 fundamentalmode,and the outputenergyflux is obtainedbyintegratingthe x-componentof the energy flux density across the section x=100 μ m from z=−3 μ m to z=6 μ m. The electromagneticfieldwithinthestructurewasobtainedbydirectnumericalsimulationsofthe problembymeansofthefiniteelementmethod(FEM),byusingacommercialtoolCOMSOL. The calculationlengthof100 μ m was chosenbecauseit was foundto be enoughto observe theeffect.Thecomputationofthelongerstructuresrequiressignificantlylargercomputerre- sources.However,it does notaddsignificantlynewinformation— use ofa longercomputa- tionaldomainleadstoamoreprecisecharacterizationofafinestructureoftheregionnearthe #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20234 500 1 e zoordinate , (nm) --5000 metal filmεc wsbuuaspfvfueeebrrgss luttarriyaadetteeerεεεεw+b- 01.75etic field amplitud c -1000 -1.75gn a m -1500 0 200 400 600 800 1000 propagation direction x, (nm) Fig. 5. The magnetic field evolution for the eigenmode of the system corresponding to the point 1 in Fig. 2. Compare the field distribution with that of the right in Fig. 3. The parametersarethesameasinFig.2. 500 2 e zoordinate , (nm) -5000 metal filmεc wsbuuaspfvfueeebrrgss luttarriyaadetteeerεεεεw+b- 01.75etic field amplitud c-1000 -1.75gn a (a) m -1500 0 200 400 600 800 1000 propagation direction x, (nm) 500 3 e zoordinate , (nm) -5000 metal filmεc wsbuuaspfvfueeebrrgss luttarriyaadetteeerεεεεw+b- 01.75etic field amplitud c -1000 -1.75gn a m (b) -1500 0 200 400 600 800 1000 propagation direction x, (nm) Fig.6.Themagneticfieldevolutionfortheeigenmodesofthesystemcorrespondingtothe points2(a)and3(b)inFig.2. minimumattheresonancefrequency(itbecomesslightlywideranddeeper),butthemainfea- turesofthefrequencydependenceofthetransmittancearepracticallynotchanged.Thedirect numericalsimulationisconvenientforshortstructures,becauseitcouldbeeasilyappliedina widefrequencyrange.Consideringnarrowfrequencyrangeapplicationswithlongerstructures, analyticalmethods,e.g.suchasapproachesthatwediscussbelow,mightbepreferable. Theresultsofthenumericalmodelingofthetransmissioncoefficientforthelongmetalfilm lengthL >100 μ m (formally,L →∞) are presentedin Fig. 8. Thefrequencyrangein the calculationscorrespondstothestripeareaintheFig.2. One can see rather narrowdip in the transmission coefficientnear the defined above“res- onance frequency”,shown by the vertical line. Evidently, the transmission falls due to exci- #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20235 mode H1 5 mode H2 mode H3 dielectric permittivity distribution -400 -200 200 400 600 800 1000 ε y vit coordinate z, (nm) mitti -5 er p c ctri e el di-10 Fig.7.Squaredmagneticfieldevolutionforthreeeigenmodesofthesystemforthepoints 1,2and3ofFig.2,andthedielectricpermittivitydistribution.Theparametersarethesame asinFig.2. tationoftheSPP modesaccompaniedbystrongenhancementofthedissipativelosses.Other localminimaofthetransmissioncoefficientarecausedbyappearanceoftheradiationlosses, cf.Fig.2.Wewouldliketoemphasizethatintheconsideredstructurethereexists3eigenmodes ofthesystemsimultaneously(forsomegiveninputfrequency),seeFig.2.Thisfactleadstothe fieldinterferencepatterneasilyseeninFig.9.Forthe“resonancefrequency”thelargestperiod ofthepatternisgivenbythefollowingsimpleexpression: 2π X = , (21) beat k −k x2 x3 wherek andk aretherealpartsofthepropagationconstantsofthelong-periodmodes2and x2 x3 3 of the complete system, and could be foundfrom the dispersionrelation. In this particular instanceX ≈69.5μ m.Thesmallfeaturesinthepatternareduetointerferenceoftheshort- beat periodmode1withthelong-periodmodes2and3.Thatis,correspondingcharacteristiclength of the pattern is X(cid:12) (cid:13)2π/(k −k )(cid:13)3.9 μ m, cf. Fig. 9. These features are in excellent beat x1 x2 agreementwiththeresultsoftherecentexperimentalwork[29],whereauthorsconsidersimilar geometryand discuss the couplinglengthandenergyexchangebetweenwaveguideandSPP modes. Attheinputofthesystemmainpartoftheenergywasinthedielectricwaveguideandthen isgraduallytransferredtothemetalfilm.Itisseenthatthebeathalf-periodX /2givesusa beat characteristiclengthforenergyexchangebetweenthecore-andthehigh-frequencymetalfilm- localized mode(couplinglength)and at the distance x=X /2the maximaltransferof the beat energyintothemetal-film-localizedmodeoccurs,seeFig.9.Consequently,lowtransmission coefficients (corresponding to almost total energy transfer from waveguide to the SPP) can be achieved by choosing the metal film length of the order L =X /2, see Fig. 8. This opt beat distanceis definedasaminimallengthofthemetalfilmthatcanprovideforthetotalenergy transfer from the waveguidecore to the metal. Since the process of the energytransfer from the core to the SPP and in the backward direction in the absence of losses is cyclic, there existanumberofmetalfilmlengthsforwhichtheenergytotalvanishinginthecoreappears: L =X /2+mX ;m=0,1,2,....However,theminimalmetalfilmlengthhasadvantage m beat beat ofa largecontrastbetweenresonantandnon-resonanttransmission(transmissionat resonant and non-resonant frequencies) due to the small dissipation losses in the shorter metal film. #100122 - $15.00 USDReceived 14 Aug 2008; revised 12 Nov 2008; accepted 15 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20236

Description:
1 Choices abound—How to find the best vehicle for you I am a car buff, and always have been from a very early age. As I write this book, out of the corner of my eye
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.