ebook img

Chiral-Scale Perturbation Theory About an Infrared Fixed Point PDF

0.07 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chiral-Scale Perturbation Theory About an Infrared Fixed Point

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2014 4 1 0 2 Chiral-Scale Perturbation Theory About an Infrared Fixed Point n a J 1 R.J.Crewther1,a and LewisC.Tunstall1,2,b,c 3 1CSSMandARCCentreofExcellenceforParticlePhysicsattheTera-scale,DepartmentofPhysics,Uni- versityofAdelaide,AdelaideSA5005Australia ] h 2AlbertEinsteinCentreforFundamentalPhysics,InstituteforTheoreticalPhysics,UniversityofBern,Sidler- p strasse5,CH-3012Bern,Switzerland - p e Abstract. We review the failure of lowest order chiral SU(3) ×SU(3) perturbation L R h theory χPT toaccount foramplitudes involving the f (500) resonance and O(m )ex- [ 3 0 K trapolations inmomenta. We summarize our proposal toreplace χPT3 with anew ef- 1 fective theory χPTσ based on a low-energy expansion about an infrared fixed point in v 3-flavourQCD.Atthefixedpoint,thequarkcondensatehq¯qi ,0inducesnineNambu- vac 8 Goldstonebosons: π,K,ηandaQCDdilatonσwhichweidentifywiththe f (500)res- 0 3 onance. We discuss the construction of the χPT Lagrangian and its implications for σ 2 mesonphenomenology atlow-energies. Ourmainresultsincludeasimpleexplanation 8 forthe∆I =1/2ruleinK-decaysandanestimatefortheDrell-Yanratiointheinfrared . 1 limit. 0 4 1 : 1 Three-flavorchiralexpansions: problems in the scalar-isoscalarchannel v i X Chiral SU(3)L × SU(3)R perturbation theory χPT3 is nowadays well established as the framework to systematically analyze the low-energy interactions of π,K,η mesons — the pseudo Nambu- r a Goldstone (NG) bosons of approximate chiral symmetry. The method relies on expansions about aNG-symmetry,viz., low-energyscatteringamplitudesandmatrixelementscanbedescribedbyan asymptoticseries A={A +A +A +...} (1) LO NLO NNLO χPT3 inpowersandlogarithmsofO(m )momentumandquarkmassesm = O(m2),withm /m held K u,d,s K u,d s fixed. The scheme works provided that contributions from the NG sector {π,K,η} dominate those fromthenon-NGsector{ρ,ω,...};anassumptionknownasthepartialconservationofaxialcurrent (PCAC)hypothesis. Ithasbeenobserved[1],however,thattheχPT expansion(1)isafflictedwithapeculiarmalady: 3 it typically diverges for amplitudes which involve both a 0++ channel and O(m ) extrapolationsin K momenta. The originof thisphenomenoncanbe tracedto the f (500)resonance,a broad0++ state 0 whosecomplexpolemassandresidue[2] m =441−i272MeV and |g |=3.31GeV (2) f0 f0ππ ae-mail:[email protected] be-mail:[email protected] cSpeaker. EPJWebofConferences NGbosonsp·p′=O(m2K) 0 (mass)2 β π K η Nf=3proposal χPT 3 O α f0 ρ αIR s (mass)2 0 NotNGbosons Nf=0lattice χPTσ0NGbosonsp·p′=O(m2K) sepsacraaletion NbootsoNnGs (mass)2 (flba)vPorroQpoCsDedwβi-tfhunincftriaorned(sfiolxieddlipnoei)nftoαrINR.f T=h3e π f0 K η ρ dashedlineshowstheYang-Mills(Nf =0)lat- ticeresult[6] forcontinued growthinα with s (a)ScaleseparationsbetweenNambu-Goldstone(NG)sec- decreasingscaleµ. Despiteextensiveliterature tors and other hadrons for each type of chiral perturba- [7]concerningtheexistenceofα ,thereiscur- IR tion theory χPT discussed in this proceeding. In con- rently no consensus which of the above two, ventional three-flavortheoryχPT (topdiagram), thereis physically distinct, scenarios is actually real- 3 no scale separation: the non-NG boson f (500) sits in ized in QCD. In particular, it is unclear how 0 the middle of the NG sector {π,K,η}. Our three-flavor sensitiveexistingresultsaretovariationsinN . f proposal χPT (bottom diagram) for O(m ) extrapola- Thisisperhapsunsurprising,sincemoderncal- σ K tionsinmomentaimpliesaclearscaleseparationbetween culationsutilizedifferent,nonperturbativedefi- the NG sector {π,K,η,σ = f } and the non-NG sector nitionsofα ,therebymakingcomparisonsbe- 0 s {ρ,ω,K∗,N,η′,...}. tweenvariousanalysesdifficult. Figure1 havebeendeterminedto remarkableprecision. Since χPT classes f pole termsas next-to-leading 3 0 order(NLO),figure1ashowswhythelow-energyexpansion(1)fails:thelocationof f anditsstrong 0 couplingtoπ,K,ηmesonsinvalidatestherequirementsofPCAC. 2 Three-flavorchiral-scaleexpansionsabout an infraredfixed point Inthisproceeding,wesummarizeourproposal[3]tosolvetheconvergenceproblemofχPT expan- 3 sions(1)bymodifyingtheleadingorder(LO)ofthe3-flavortheory. Inshort,oursolutioninvolves extendingthestandardNGsector{π,K,η}toinclude f (500)asaQCDdilatonσassociatedwiththe 0 spontaneousbreakingofscaleinvariance. ThescalesymmetriccounterpartofPCAC—partialcon- servationofdilatationcurrent(PCDC)—thenimpliesthatamplitudeswithσ/f poletermsdominate, 0 comparedwithcontributionsfromthenon-NGsector{ρ,ω,K∗,N,η′,...}.1 ThisscenariocanoccurinQCDifatlowenergyscalesµ ≪m ,thestrongcouplingα forthe t,b,c s 3-flavortheoryrunsnonperturbativelyto an infraredfixed pointα (figure1b). Atthe fixed point, IR thegluonicterminthestrongtraceanomaly[9] β(α ) θµµ = 4αs GaµνGaµν+(cid:0)1+γm(αs)(cid:1) X mqq¯q (3) s q=u,d,s vanishes,whichimpliesthatinthechirallimit θµ = 1+γ (α ) (m u¯u+m d¯d+m s¯s)→0, (4) µ(cid:12)(cid:12)αs=αIR (cid:0) m IR (cid:1) u d s (cid:12) 1AdiscussiononviolationsofPCDCandWeinberg’spowercountingscheme[8]inγγchannelsiscontainedin[3]. MENU2013 andthushq¯qi actsasacondensateforbothscaleandchiralSU(3) ×SU(3) transformations.2 By vac L R consideringinfraredexpansionsaboutthecombinedlimit m ∼0 and α .α , (5) u,d,s s IR our proposal is to replace χPT by chiral-scale perturbation theory χPT , where the strange quark 3 σ massm in (4) sets thescale ofm2 aswell asm2 and m2 (figure1a, bottomdiagram). Asa result, s f0 K η the rules forcountingpowersof m are changed: f pole amplitudes(NLO in χPT ) are promoted K 0 3 toLO.ThatfixestheLOproblemforamplitudesinvolving0++channelsandO(m )extrapolationsin K momenta.NotethatweachievethiswithoutupsettingsuccessfulLOχPT predictionsforamplitudes 3 whichdonotinvolvethe f ;thatisbecausetheχPT Lagrangianequalstheσ→0limitoftheχPT 0 3 σ Lagrangian. In the physicalregion0 < α < α , the effectivetheoryconsists ofoperatorsconstructedfrom s IR the SU(3) field U=U(π,K,η) and chiral invariant dilaton σ, with terms classified by their scaling dimensiond: L =L σ,U,U† =:Ld=4+Ld>4 +Ld<4 : . (6) χPTσ (cid:2) (cid:3) inv anom mass Explicitformulasforthestrong,weak,andelectromagneticinteractionsareobtainedbyscalingLa- grangianoperatorssuchasK U,U† = 1F2Tr(∂ U∂µU†)andK = 1∂ σ∂µσbyappropriatepowers (cid:2) (cid:3) 4 π µ σ 2 µ ofthed =1fieldeσ/Fσ. Forexample,theLOstrongLagrangianreads Lidn=v4,LO =(cid:8)c1K +c2Kσ+c3e2σ/Fσ(cid:9)e2σ/Fσ, Ladn>o4m,LO =(cid:8)(1−c1)K +(1−c2)Kσ+c4e2σ/Fσ(cid:9)e(2+β′)σ/Fσ, Ld<4 =Tr(MU†+UM†)e(3−γm)σ/Fσ, (7) mass,LO whereF ≈100MeVisthedilatondecayconstant,whosevalueisestimatedbyapplyingananalogue σ oftheGoldberger-TreimanrelationtoanalysesofNN-scattering[10].Heretheanomalousdimensions γ =γ (α )andβ′ =β(α )areevaluatedatthefixedpointbecauseweexpandinα aboutα . The m m IR IR s IR low-energyconstantsc andc arenotfixedbysymmetryargumentsalone,whilevacuumstabilityin 1 2 theσdirectionimpliesthatbothc andc areO(M). From(7),oneobtainsformulasforthedilaton 3 4 massm σ m2F2 = F2 m2 + 1m2 (3−γ )(1+γ ),−β′(4+β′)c (8) σ σ π(cid:0) K 2 π(cid:1) m m 4 andσππcoupling L = 2+(1−c )β′ |∂π|2−(3−γ )m2|π|2 σ/(2F ). (9) σππ (cid:8)(cid:0) 1 (cid:1) m π (cid:9) σ Note that (9) is derivative, so an on-shell dilaton is O(m2) and consistent with σ being the broad σ resonance f (500). 0 OurproposedreplacementforχPT possessessomedesirablefeatures,theforemostbeing: 3 1. The∆I =1/2ruleforK-decaysemergesasaconsequenceofχPT ,withadilatonpolediagram σ (figure2a)accountingforthelargeI =0amplitudeinK →ππ. Here,vacuumalignment[13] S oftheeffectivepotentialinducesaninteractionL =g K σwhichmixesK andσinLO. KSσ KSσ S S The effective couplingg is fixed by data on γγ → π0π0 and K → γγ, with ourestimate KSσ S |g | ≈ 4.4× 103keV2 accurate to a precision . 30% expected from a 3-flavor expansion. KSσ Combinedwithdataforthe f width(Eq.(2)),wefindanamplitude A ≈0.34keVwhich 0 (cid:12) σ-pole(cid:12) accountsforthelargemagnitude|A | = 0.33keV. Consequently,(cid:12)(cid:12)theLO(cid:12)(cid:12) ofχPT explains 0expt. σ the∆I =1/2ruleforkaondecays. 2Theformerpropertyisasimpleconsequenceofthefacttheq¯qisnotasingletunderdilatations. Thedualroleofhq¯qivac wasexplored[4,5]insomedetailpriortotheadventofQCD. EPJWebofConferences γ π π σ σ g g KS g8,27 + gKSσ gσππ γ σγγ σππ π π (b) Dilaton pole in γγ → ππ. Low- (a)TreediagramsintheeffectivetheoryχPT forthedecayK → est order χPT includes other tree di- σ S σ ππ.Thevertexamplitudesdueto8and27contactcouplingsg and agrams(forπ+π− production) andalso 8 g aredominated bytheσ/f -poleamplitude. Themagnitude of π±,K± loopdiagrams(suppressedbya 27 0 g isfoundbyapplyingχPT toK →γγandγγ→ππ. factor1/N )coupledtobothphotons. KSσ σ S c Figure2 2. Our analysis of γγ channelsand the electromagnetictrace anomaly [11, 12] yields a relation betweentheeffectiveσγγcouplingandthenonperturbativeDrell-YanratioR atα : IR IR 2α g = R − 1 . (10) σγγ 3πF (cid:16) IR 2(cid:17) σ AphenomenologicalvalueforR isdeducedbyconsideringγγ → π0π0 inthelarge-N limit IR c (figure2b). Dispersiveanalyses[14]ofthisprocessesareabletodeterminetheradiativewidth of f (500),whichinturnconstrainsg andyieldstheestimateR ≈5. 0 σγγ IR References [1] U.-G.Meissner,CommentsNucl.Part.Phys.20,119(1991);Rep.Prog.Phys.56,903(1993). [2] I.Caprini,G.Colangelo,andH.Leutwyler,Phys.Rev.Lett.96,132001(2006). [3] R.J.CrewtherandL.C.Tunstall,arXiv:1312.3319[hep-ph];arXiv:1203.1321[hep-ph]. [4] J.Ellis,Nucl.Phys.B22,478(1970). [5] R.J.Crewther,Phys.Lett.B33,305(1970). [6] M.Lüscher,R.Sommer,P.Weisz,andU.Wolff,Nucl.Phys.B413,481(1994). [7] T.BanksandA.Zaks,Nucl.Phys.B196,189(1982);L.vonSmekal,A.HauckandR.Alkofer, Phys.Rev.Lett.79,3591(1997);C.S.FischerandR.Alkofer,Phys.Rev.D 67,094020(2003); A.C.Aguilar,D.BinosiandJ.Papavassiliou,J.HighEnergyPhys.07(2010)002;S.J.Brodsky, G. F. de Teramond and A. Deur, Phys. Rev. D 81, 096010 (2010); L. Del Debbio, Proc. Sci. LATTICE2010(2010)004;R.Horsleyetal.,Phys.Lett.B728,1(2014). [8] S.Weinberg,PhysicaA96,327(1979). [9] S. L. Adler, J. C. Collins and A. Duncan, Phys. Rev. D 15, 1712 (1977); P. Minkowski, Berne PRINT-76-0813, September 1976; N. K. Nielsen, Nucl. Phys. B 120, 212 (1977); J. C. Collins, A.DuncanandS.D.Joglekar,Phys.Rev.D16,438(1977). [10] A. Calle Cordón and E. Ruiz Arriola, AIP Conf. Proc. 1030, 334 (2008); Phys. Rev. C 81, 044002(2010). [11] R.J.Crewther,Phys.Rev.Lett.28,1421(1972). [12] M.S.ChanowitzandJ.Ellis,Phys.Lett.B40,397(1972);Phys.Rev.D7,2490(1973). [13] R.J.Crewther,Nucl.Phys.B264,277(1986). [14] M.Hoferichter,D.R.PhillipsandC.Schat,Eur.Phys.J.C71,1743(2011).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.