EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2014 4 1 0 2 Chiral-Scale Perturbation Theory About an Infrared Fixed Point n a J 1 R.J.Crewther1,a and LewisC.Tunstall1,2,b,c 3 1CSSMandARCCentreofExcellenceforParticlePhysicsattheTera-scale,DepartmentofPhysics,Uni- versityofAdelaide,AdelaideSA5005Australia ] h 2AlbertEinsteinCentreforFundamentalPhysics,InstituteforTheoreticalPhysics,UniversityofBern,Sidler- p strasse5,CH-3012Bern,Switzerland - p e Abstract. We review the failure of lowest order chiral SU(3) ×SU(3) perturbation L R h theory χPT toaccount foramplitudes involving the f (500) resonance and O(m )ex- [ 3 0 K trapolations inmomenta. We summarize our proposal toreplace χPT3 with anew ef- 1 fective theory χPTσ based on a low-energy expansion about an infrared fixed point in v 3-flavourQCD.Atthefixedpoint,thequarkcondensatehq¯qi ,0inducesnineNambu- vac 8 Goldstonebosons: π,K,ηandaQCDdilatonσwhichweidentifywiththe f (500)res- 0 3 onance. We discuss the construction of the χPT Lagrangian and its implications for σ 2 mesonphenomenology atlow-energies. Ourmainresultsincludeasimpleexplanation 8 forthe∆I =1/2ruleinK-decaysandanestimatefortheDrell-Yanratiointheinfrared . 1 limit. 0 4 1 : 1 Three-flavorchiralexpansions: problems in the scalar-isoscalarchannel v i X Chiral SU(3)L × SU(3)R perturbation theory χPT3 is nowadays well established as the framework to systematically analyze the low-energy interactions of π,K,η mesons — the pseudo Nambu- r a Goldstone (NG) bosons of approximate chiral symmetry. The method relies on expansions about aNG-symmetry,viz., low-energyscatteringamplitudesandmatrixelementscanbedescribedbyan asymptoticseries A={A +A +A +...} (1) LO NLO NNLO χPT3 inpowersandlogarithmsofO(m )momentumandquarkmassesm = O(m2),withm /m held K u,d,s K u,d s fixed. The scheme works provided that contributions from the NG sector {π,K,η} dominate those fromthenon-NGsector{ρ,ω,...};anassumptionknownasthepartialconservationofaxialcurrent (PCAC)hypothesis. Ithasbeenobserved[1],however,thattheχPT expansion(1)isafflictedwithapeculiarmalady: 3 it typically diverges for amplitudes which involve both a 0++ channel and O(m ) extrapolationsin K momenta. The originof thisphenomenoncanbe tracedto the f (500)resonance,a broad0++ state 0 whosecomplexpolemassandresidue[2] m =441−i272MeV and |g |=3.31GeV (2) f0 f0ππ ae-mail:[email protected] be-mail:[email protected] cSpeaker. EPJWebofConferences NGbosonsp·p′=O(m2K) 0 (mass)2 β π K η Nf=3proposal χPT 3 O α f0 ρ αIR s (mass)2 0 NotNGbosons Nf=0lattice χPTσ0NGbosonsp·p′=O(m2K) sepsacraaletion NbootsoNnGs (mass)2 (flba)vPorroQpoCsDedwβi-tfhunincftriaorned(sfiolxieddlipnoei)nftoαrINR.f T=h3e π f0 K η ρ dashedlineshowstheYang-Mills(Nf =0)lat- ticeresult[6] forcontinued growthinα with s (a)ScaleseparationsbetweenNambu-Goldstone(NG)sec- decreasingscaleµ. Despiteextensiveliterature tors and other hadrons for each type of chiral perturba- [7]concerningtheexistenceofα ,thereiscur- IR tion theory χPT discussed in this proceeding. In con- rently no consensus which of the above two, ventional three-flavortheoryχPT (topdiagram), thereis physically distinct, scenarios is actually real- 3 no scale separation: the non-NG boson f (500) sits in ized in QCD. In particular, it is unclear how 0 the middle of the NG sector {π,K,η}. Our three-flavor sensitiveexistingresultsaretovariationsinN . f proposal χPT (bottom diagram) for O(m ) extrapola- Thisisperhapsunsurprising,sincemoderncal- σ K tionsinmomentaimpliesaclearscaleseparationbetween culationsutilizedifferent,nonperturbativedefi- the NG sector {π,K,η,σ = f } and the non-NG sector nitionsofα ,therebymakingcomparisonsbe- 0 s {ρ,ω,K∗,N,η′,...}. tweenvariousanalysesdifficult. Figure1 havebeendeterminedto remarkableprecision. Since χPT classes f pole termsas next-to-leading 3 0 order(NLO),figure1ashowswhythelow-energyexpansion(1)fails:thelocationof f anditsstrong 0 couplingtoπ,K,ηmesonsinvalidatestherequirementsofPCAC. 2 Three-flavorchiral-scaleexpansionsabout an infraredfixed point Inthisproceeding,wesummarizeourproposal[3]tosolvetheconvergenceproblemofχPT expan- 3 sions(1)bymodifyingtheleadingorder(LO)ofthe3-flavortheory. Inshort,oursolutioninvolves extendingthestandardNGsector{π,K,η}toinclude f (500)asaQCDdilatonσassociatedwiththe 0 spontaneousbreakingofscaleinvariance. ThescalesymmetriccounterpartofPCAC—partialcon- servationofdilatationcurrent(PCDC)—thenimpliesthatamplitudeswithσ/f poletermsdominate, 0 comparedwithcontributionsfromthenon-NGsector{ρ,ω,K∗,N,η′,...}.1 ThisscenariocanoccurinQCDifatlowenergyscalesµ ≪m ,thestrongcouplingα forthe t,b,c s 3-flavortheoryrunsnonperturbativelyto an infraredfixed pointα (figure1b). Atthe fixed point, IR thegluonicterminthestrongtraceanomaly[9] β(α ) θµµ = 4αs GaµνGaµν+(cid:0)1+γm(αs)(cid:1) X mqq¯q (3) s q=u,d,s vanishes,whichimpliesthatinthechirallimit θµ = 1+γ (α ) (m u¯u+m d¯d+m s¯s)→0, (4) µ(cid:12)(cid:12)αs=αIR (cid:0) m IR (cid:1) u d s (cid:12) 1AdiscussiononviolationsofPCDCandWeinberg’spowercountingscheme[8]inγγchannelsiscontainedin[3]. MENU2013 andthushq¯qi actsasacondensateforbothscaleandchiralSU(3) ×SU(3) transformations.2 By vac L R consideringinfraredexpansionsaboutthecombinedlimit m ∼0 and α .α , (5) u,d,s s IR our proposal is to replace χPT by chiral-scale perturbation theory χPT , where the strange quark 3 σ massm in (4) sets thescale ofm2 aswell asm2 and m2 (figure1a, bottomdiagram). Asa result, s f0 K η the rules forcountingpowersof m are changed: f pole amplitudes(NLO in χPT ) are promoted K 0 3 toLO.ThatfixestheLOproblemforamplitudesinvolving0++channelsandO(m )extrapolationsin K momenta.NotethatweachievethiswithoutupsettingsuccessfulLOχPT predictionsforamplitudes 3 whichdonotinvolvethe f ;thatisbecausetheχPT Lagrangianequalstheσ→0limitoftheχPT 0 3 σ Lagrangian. In the physicalregion0 < α < α , the effectivetheoryconsists ofoperatorsconstructedfrom s IR the SU(3) field U=U(π,K,η) and chiral invariant dilaton σ, with terms classified by their scaling dimensiond: L =L σ,U,U† =:Ld=4+Ld>4 +Ld<4 : . (6) χPTσ (cid:2) (cid:3) inv anom mass Explicitformulasforthestrong,weak,andelectromagneticinteractionsareobtainedbyscalingLa- grangianoperatorssuchasK U,U† = 1F2Tr(∂ U∂µU†)andK = 1∂ σ∂µσbyappropriatepowers (cid:2) (cid:3) 4 π µ σ 2 µ ofthed =1fieldeσ/Fσ. Forexample,theLOstrongLagrangianreads Lidn=v4,LO =(cid:8)c1K +c2Kσ+c3e2σ/Fσ(cid:9)e2σ/Fσ, Ladn>o4m,LO =(cid:8)(1−c1)K +(1−c2)Kσ+c4e2σ/Fσ(cid:9)e(2+β′)σ/Fσ, Ld<4 =Tr(MU†+UM†)e(3−γm)σ/Fσ, (7) mass,LO whereF ≈100MeVisthedilatondecayconstant,whosevalueisestimatedbyapplyingananalogue σ oftheGoldberger-TreimanrelationtoanalysesofNN-scattering[10].Heretheanomalousdimensions γ =γ (α )andβ′ =β(α )areevaluatedatthefixedpointbecauseweexpandinα aboutα . The m m IR IR s IR low-energyconstantsc andc arenotfixedbysymmetryargumentsalone,whilevacuumstabilityin 1 2 theσdirectionimpliesthatbothc andc areO(M). From(7),oneobtainsformulasforthedilaton 3 4 massm σ m2F2 = F2 m2 + 1m2 (3−γ )(1+γ ),−β′(4+β′)c (8) σ σ π(cid:0) K 2 π(cid:1) m m 4 andσππcoupling L = 2+(1−c )β′ |∂π|2−(3−γ )m2|π|2 σ/(2F ). (9) σππ (cid:8)(cid:0) 1 (cid:1) m π (cid:9) σ Note that (9) is derivative, so an on-shell dilaton is O(m2) and consistent with σ being the broad σ resonance f (500). 0 OurproposedreplacementforχPT possessessomedesirablefeatures,theforemostbeing: 3 1. The∆I =1/2ruleforK-decaysemergesasaconsequenceofχPT ,withadilatonpolediagram σ (figure2a)accountingforthelargeI =0amplitudeinK →ππ. Here,vacuumalignment[13] S oftheeffectivepotentialinducesaninteractionL =g K σwhichmixesK andσinLO. KSσ KSσ S S The effective couplingg is fixed by data on γγ → π0π0 and K → γγ, with ourestimate KSσ S |g | ≈ 4.4× 103keV2 accurate to a precision . 30% expected from a 3-flavor expansion. KSσ Combinedwithdataforthe f width(Eq.(2)),wefindanamplitude A ≈0.34keVwhich 0 (cid:12) σ-pole(cid:12) accountsforthelargemagnitude|A | = 0.33keV. Consequently,(cid:12)(cid:12)theLO(cid:12)(cid:12) ofχPT explains 0expt. σ the∆I =1/2ruleforkaondecays. 2Theformerpropertyisasimpleconsequenceofthefacttheq¯qisnotasingletunderdilatations. Thedualroleofhq¯qivac wasexplored[4,5]insomedetailpriortotheadventofQCD. EPJWebofConferences γ π π σ σ g g KS g8,27 + gKSσ gσππ γ σγγ σππ π π (b) Dilaton pole in γγ → ππ. Low- (a)TreediagramsintheeffectivetheoryχPT forthedecayK → est order χPT includes other tree di- σ S σ ππ.Thevertexamplitudesdueto8and27contactcouplingsg and agrams(forπ+π− production) andalso 8 g aredominated bytheσ/f -poleamplitude. Themagnitude of π±,K± loopdiagrams(suppressedbya 27 0 g isfoundbyapplyingχPT toK →γγandγγ→ππ. factor1/N )coupledtobothphotons. KSσ σ S c Figure2 2. Our analysis of γγ channelsand the electromagnetictrace anomaly [11, 12] yields a relation betweentheeffectiveσγγcouplingandthenonperturbativeDrell-YanratioR atα : IR IR 2α g = R − 1 . (10) σγγ 3πF (cid:16) IR 2(cid:17) σ AphenomenologicalvalueforR isdeducedbyconsideringγγ → π0π0 inthelarge-N limit IR c (figure2b). Dispersiveanalyses[14]ofthisprocessesareabletodeterminetheradiativewidth of f (500),whichinturnconstrainsg andyieldstheestimateR ≈5. 0 σγγ IR References [1] U.-G.Meissner,CommentsNucl.Part.Phys.20,119(1991);Rep.Prog.Phys.56,903(1993). [2] I.Caprini,G.Colangelo,andH.Leutwyler,Phys.Rev.Lett.96,132001(2006). [3] R.J.CrewtherandL.C.Tunstall,arXiv:1312.3319[hep-ph];arXiv:1203.1321[hep-ph]. [4] J.Ellis,Nucl.Phys.B22,478(1970). [5] R.J.Crewther,Phys.Lett.B33,305(1970). [6] M.Lüscher,R.Sommer,P.Weisz,andU.Wolff,Nucl.Phys.B413,481(1994). [7] T.BanksandA.Zaks,Nucl.Phys.B196,189(1982);L.vonSmekal,A.HauckandR.Alkofer, Phys.Rev.Lett.79,3591(1997);C.S.FischerandR.Alkofer,Phys.Rev.D 67,094020(2003); A.C.Aguilar,D.BinosiandJ.Papavassiliou,J.HighEnergyPhys.07(2010)002;S.J.Brodsky, G. F. de Teramond and A. Deur, Phys. Rev. D 81, 096010 (2010); L. Del Debbio, Proc. Sci. LATTICE2010(2010)004;R.Horsleyetal.,Phys.Lett.B728,1(2014). [8] S.Weinberg,PhysicaA96,327(1979). [9] S. L. Adler, J. C. Collins and A. Duncan, Phys. Rev. D 15, 1712 (1977); P. Minkowski, Berne PRINT-76-0813, September 1976; N. K. Nielsen, Nucl. Phys. B 120, 212 (1977); J. C. Collins, A.DuncanandS.D.Joglekar,Phys.Rev.D16,438(1977). [10] A. Calle Cordón and E. Ruiz Arriola, AIP Conf. Proc. 1030, 334 (2008); Phys. Rev. C 81, 044002(2010). [11] R.J.Crewther,Phys.Rev.Lett.28,1421(1972). [12] M.S.ChanowitzandJ.Ellis,Phys.Lett.B40,397(1972);Phys.Rev.D7,2490(1973). [13] R.J.Crewther,Nucl.Phys.B264,277(1986). [14] M.Hoferichter,D.R.PhillipsandC.Schat,Eur.Phys.J.C71,1743(2011).