ebook img

Chiang Solution PDF

144 Pages·2005·1.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chiang Solution

Instructor’s Manual to accompany Fundamental Methods of Mathematical Economics Fourth Edition Alpha C. Chiang University of Connecticut Kevin Wainwright British Columbia Institute of Technology www.mhhe.com Title of Supplement to accompany FUNDAMENTAL METHODS OF MATHEMATICAL ECONOMICS Alpha C. Chiang, Kevin Wainwright Published by McGraw-Hill, an imprint of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright  2005, 1984, 1974, 1967 by The McGraw-Hill Companies, Inc. All rights reserved. The contents, or parts thereof, may be reproduced in print form solely for classroom use with FUNDAMENTAL METHODS OF MATHEMATICAL ECONOMICS provided such reproductions bear copyright notice, but may not be reproduced in any other form or for any other purpose without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning. ISBN 0-07-286591-1 (CD-ROM) Contents CONTENTS 1 CHAPTER 2 6 Exercise 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Exercise 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Exercise 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 CHAPTER 3 9 Exercise 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Exercise 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Exercise 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Exercise 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CHAPTER 4 13 Exercise 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Exercise 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Exercise 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Exercise 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Exercise 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Exercise 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Exercise 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CHAPTER 5 22 Exercise 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Exercise 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Exercise 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Exercise 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Exercise 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Exercise 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Exercise 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CHAPTER 6 32 1 Exercise 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Exercise 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Exercise 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Exercise 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Exercise 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 CHAPTER 7 35 Exercise 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Exercise 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Exercise 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Exercise 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Exercise 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Exercise 7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CHAPTER 8 40 Exercise 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Exercise 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Exercise 8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Exercise 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Exercise 8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Exercise 8.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CHAPTER 9 51 Exercise 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Exercise 9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Exercise 9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Exercise 9.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Exercise 9.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 CHAPTER 10 56 Exercise 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Exercise 10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Exercise 10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Exercise 10.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2 Exercise 10.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Exercise 10.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Exercise 10.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 CHAPTER 11 63 Exercise 11.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Exercise 11.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Exercise 11.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Exercise 11.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Exercise 11.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Exercise 11.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 CHAPTER 12 76 Exercise 12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Exercise 12.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Exercise 12.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Exercise 12.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Exercise 12.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Exercise 12.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 CHAPTER 13 87 Exercise 13.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Exercise 13.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Exercise 13.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 CHAPTER 14 92 Exercise 14.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Exercise 14.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Exercise 14.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Exercise 14.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Exercise 14.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 CHAPTER 15 98 Exercise 15.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3 Exercise 15.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Exercise 15.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Exercise 15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Exercise 15.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Exercise 15.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Exercise 15.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 CHAPTER 16 106 Exercise 16.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Exercise 16.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Exercise 16.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Exercise 16.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Exercise 16.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Exercise 16.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Exercise 16.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 CHAPTER 17 117 Exercise 17.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Exercise 17.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Exercise 17.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Exercise 17.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Exercise 17.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 CHAPTER 18 123 Exercise 18.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Exercise 18.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Exercise 18.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Exercise 18.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 CHAPTER 19 129 Exercise 19.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Exercise 19.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Exercise 19.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Exercise 19.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4 Exercise 19.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 CHAPTER 20 141 Exercise 20.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5 CHAPTER 2 Exercise 2.3 1. (a) {x | x > 34} (b) {x | 8 < x < 65} 2. True statements: (a), (d), (f), (g), and (h) 3. (a) {2,4,6,7} (b) {2,4,6} (c) {2,6} (d) {2} (e) {2} (f) {2,4,6} 4. All are valid. 5. First part: A∪(B∩C) = {4, 5, 6}∪{3, 6} = {3, 4, 5, 6} ; and (A∪B)∩(A∪C) = {3, 4, 5, 6, 7}∩ {2, 3, 4, 5, 6} = {3, 4, 5, 6} too. Second part: A ∩ (B ∪ C) = {4, 5, 6} ∩ {2, 3, 4, 6, 7} = {4, 6} ; and (A ∩ B) ∪ (A ∩ C) = {4, 6} ∪ {6} = {4, 6} too. 6. N/A 7. ∅, {5}, {6}, {7}, {5, 6}, {5, 7}, {6, 7}, {5, 6, 7} 8. There are 24 = 16 subsets: ∅, {a}, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, and {a,b,c,d}. 9. The complement of U is ˜U = {x | x /∈ U}. Here the notation of ”not in U” is expressed via the /∈ symbol which relates an element (x) to a set (U). In contrast, when we say ”∅ is a subset of U,” the notion of ”in U” is expressed via the ⊂ symbol which relates a subset(∅) to a set (U). Hence, we have two different contexts, and there exists no paradox at all. Exercise 2.4 1. (a) {(3,a), (3,b), (6,a), (6,b) (9,a), (9,b)} (b) {(a,m), (a,n), (b,m), (b,n)} (c) { (m,3), (m,6), (m,9), (n,3), (n,6), (n,9)} 2. {(3,a,m), (3,a,n), (3,b,m), (3,b,n), (6,a,m), (6,a,n), (6,b,m), (6,b,n), (9,a,m), (9,a,n), (9,b,m), (9,b,n),} 6 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual 3. No. When S1 = S2. 4. Only (d) represents a function. 5. Range = {y | 8 ≤ y ≤ 32} 6. The range is the set of all nonpositive numbers. 7. (a) No. (b) Yes. 8. For each level of output, we should discard all the inefficient cost figures, and take the lowest cost figure as the total cost for that output level. This would establish the uniqueness as required by the definition of a function. Exercise 2.5 1. N/a 2. Eqs. (a) and (b) differ in the sign of the coefficient of x; a positive (negative) sign means an upward (downward) slope. Eqs. (a) and (c) differ in the constant terms; a larger constant means a higher vertical intercept. 3. A negative coefficient (say, -1) for the x2 term is associated with a hill. as the value of x is steadily increased or reduced, the −x2 term will exert a more dominant influence in determining the value of y. Being negative, this term serves to pull down the y values at the two extreme ends of the curve. 4. If negative values can occur there will appear in quadrant III a curve which is the mirror image of the one in quadrant I. 5. (a) x19 (b) xa+b+c (c) (xyz)3 6. (a) x6 (b) x1/6 7. By Rules VI and V, we can successively write xm/n = (xm)1/n = n√xm; by the same two rules, we also have xm/n = (x1/n)m = ( n√x)m 8. Rule VI: (xm)n = xm × xm × ... × xm | {z } n terms = x × x × ... × x | {z } = mn terms xmn 7 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual Rule VII: xm × ym = x × x × ... × x | {z } m terms × y × y . . . × y | {z } m terms = (xy) × (xy) × . . . × (xy) | {z } m terms = (xy)m 8 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual CHAPTER 3 Exercise 3.2 1. (a) By substitution, we get 21 − 3P = −4 + 8P or 11P = 25. Thus P ∗ = 2 3 11. Substituting P ∗ into the second equation or the third equation, we find Q∗ = 14 2 11. (b) With a = 21, b = 3, c = 4, d = 8, the formula yields P ∗ = 25 11 = 2 3 11 Q∗ = 156 11 = 14 2 11 2. (a) P ∗ = 61 9 = 6 7 9 Q∗ = 276 9 = 30 2 3 (b) P ∗ = 36 7 = 5 1 7 Q∗ = 138 7 = 19 5 7 3. N/A 4. If b+d = 0 then P ∗ and Q∗ in (3.4) and (3.5) would involve division by zero, which is undefined. 5. If b + d = 0 then d = −b and the demand and supply curves would have the same slope (though different vertical intercepts). The two curves would be parallel, with no equilibrium intersection point in Fig. 3.1 Exercise 3.3 1. (a) x∗ 1 = 5; x∗ 2 = 3 (b) x∗ 1 = 4; x∗ 2 = −2 2. (a) x∗ 1 = 5; x∗ 2 = 3 (b) x∗ 1 = 4; x∗ 2 = −2 3. (a) (x − 6)(x + 1)(x − 3) = 0, or x3 − 8x2 + 9x + 18 = 0 (b) (x − 1)(x − 2)(x − 3)(x − 5) = 0, or x4 − 11x3 + 41x2 − 61x + 30 = 0 4. By Theorem III, we find: (a) Yes. (b) No. (c) Yes. 9 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual 5. (a) By Theorem I, any integer root must be a divisor of 6; thus there are six candidates: ±1, ±2, and ±3. Among these, −1, 1 2, and − 1 4 (b) By Theorem II, any rational root r/s must have r being a divisor of −1 and s being a divisor of 8. The r set is {1, −1}, and the s set is {1, −1, 2, −2, 4, −4, 8, −8}; these give us eight root candidates: ±1, ± 1 2, ± 1 4, and ± 1 8. Among these, −1, 2, and 3 satisfy the equation, and they constitute the three roots. (c) To get rid of the fractional coefficients, we multiply every term by 8. The resulting equation is the same as the one in (b) above. (d) To get rid of the fractional coefficients, we multiply every term by 4 to obtain 4x4 − 24x3 + 31x2 − 6x − 8 = 0 By Theorem II, any rational root r/s must have r being a divisor of −8 and s being a divisor of 4. The r set is {±1, ±2, ±4, ±8}, and the s set is {±1, ±2, ±4}; these give us the root candidates ±1, ± 1 2, ± 1 4, ±2, ±4, ±8. Among these, 1 2, − 1 2, 2, and 4 constitute the four roots. 6. (a) The model reduces to P 2 + 6P − 7 = 0. By the quadratic formula, we have P ∗ 1 = 1 and P ∗ 2 = −7, but only the first root is acceptable. Substituting that root into the second or the third equation, we find Q∗ = 2. (b) The model reduces to 2P 2−10 = 0 or P 2 = 5 with the two roots P ∗ 1 = √ 5 and P ∗ 2 = − √ 5. Only the first root is admissible, and it yields Q∗ = 3. 7. Equation (3.7) is the equilibrium stated in the form of ”the excess supply be zero.” Exercise 3.4 1. N/A 10 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual 2. P ∗ 1 = (a2 − b2)(α0 − β0) − (a0 − b0)(α2 − β2) (a1 − b1)(α2 − β2) − (a2 − b2)(α1 − β1) P ∗ 2 = (a0 − b0)(α1 − β1) − (a1 − b1)(α0 − β0) (a1 − b1)(α2 − β2) − (a2 − b2)(α1 − β1) 3. Since we have c0 = 18 + 2 = 20 c1 = −3 − 4 = −7 c2 = 1 γ0 = 12 + 2 = 14 γ1 = 1 γ2 = −2 − 3 = −5 it follows that P ∗ 1 = 14+100 35−1 = 57 17 = 3 6 17 and P ∗ 2 = 20+98 35−1 = 59 17 = 3 8 17 Substitution into the given demand or supply function yields Q∗ 1 = 194 17 = 11 7 17 and Q∗ 2 = 143 17 = 8 7 17 Exercise 3.5 1. (a) Three variables are endogenous: Y, C, and T. (b) By substituting the third equation into the second and then the second into the first, we obtain Y = a − bd + b(1 − t)Y + I0 + G0 or [1 − b(1 − t)]Y = a − bd + I0 + G0 Thus Y ∗ = a − bd + I0 + G0 1 − b(1 − t) Then it follows that the equilibrium values of the other two endogenous variables are T ∗ = d + tY ∗ = d(1 − b) + t(a + I0 + G0) 1 − b(1 − t) and C∗ = Y ∗ − I0 − G0 = a − bd + b(1 − t)(I0 + G0) 1 − b(1 − t) 11 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual 2. (a) The endogenous variables are Y, C, and G. (b) g = G/Y = proportion of national income spent as government expenditure. (c) Substituting the last two equations into the first, we get Y = a + b(Y − T0) + I0 + gY Thus Y ∗ = a − bT0 + I0 1 − b − g (d) The restriction b + g 6= 1 is needed to avoid division by zero. 3. Upon substitution, the first equation can be reduced to the form Y − 6Y 1/2 − 55 = 0 or w2 − 6w − 55 = 0 (where w = Y 1/2) The latter is a quadratic equation, with roots w∗ 1, w∗ 2 = ∙1 26 ± (36 + 220)1/2 ¸ = 11, −5 From the first root, we can get Y ∗ = w∗2 1 = 121 and C∗ = 25 + 6(11) = 91 On the other hand, the second root is inadmissible because it leads to a negative value for C: C∗ = 25 + 6(−5) = −5 12 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual CHAPTER 4 Exercise 4.1 1. Qd −Qs = 0 Qd +bP = a Qs −dP = −c Coefficient Matrix: ⎡ ⎢⎢⎢⎣ 1 −1 0 1 0 b 0 1 −d ⎤ ⎥⎥⎥⎦ Vector of Constants: ⎡ ⎢⎢⎢⎣ 0 a −c ⎤ ⎥⎥⎥⎦ 2. Qd1 −Qs1 = 0 Qd1 −a1P1 −a2P2 = a0 Qs1 −b1P1 −b2P2 = b0 Qd2 −Qs2 = 0 Qd2 −α1P1 −α2P2 = α0 Qs2 −β1P1 −β2P2 = β0 Coefficient matrix: ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 −1 0 0 0 0 1 0 0 0 −a1 −a2 0 1 0 0 −b1 −b2 0 0 1 −1 0 0 0 0 1 0 −α1 −α2 0 0 0 1 −β1 −β2 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Variable vector: ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ Qd1 Qs1 Qd2 Qs2 P1 P2 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Constant vector: ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 a0 b0 0 α0 β0 ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 3. No, because the equation system is nonlinear 4. Y − C = I0 + G0 −bY + C = a The coefficient matrix and constant vector are ⎡ ⎣ 1 −1 −b 1 ⎤ ⎦ ⎡ ⎣ I0 + G0 a ⎤ ⎦ 13 Chiang/Wainwright: Fundamental Methods of Mathematical Economics Instructor’s Manual

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.