P1:GWO/GQE P2:GWO/GQE QC:GWO/LAY T1:... CB446-FM CB446/Mansour July17,2002 16:14 Chemotherapeutic Targets in Parasites Contemporary Strategies Tag E. Mansour withtheassistanceof JoanMacKinnonMansour iii P1:GWO/GQE P2:GWO/GQE QC:GWO/LAY T1:... CB446-FM CB446/Mansour July17,2002 16:14 PUBLISHEDBYTHEPRESSSYNDICATEOFTHEUNIVERSITYOFCAMBRIDGE ThePittBuilding,TrumpingtonStreet,Cambridge,UnitedKingdom CAMBRIDGEUNIVERSITYPRESS TheEdinburghBuilding,CambridgeCB22RU,UK 40West20thStreet,NewYork,NY10011-4211,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia RuizdeAlarco´n13,28014Madrid,Spain DockHouse,TheWaterfront,CapeTown8001,SouthAfrica http://www.cambridge.org (cid:2)C TagE.Mansour2002 Thisbookisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2002 PrintedintheUnitedStatesofAmerica TypefacesBertholdGaramond10/13pt.andFrutiger SystemLATEX2ε [TB] AcatalogrecordforthisbookisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationData Mansour,TagE. Chemotherapeutictargetsinparasites:contemporarystrategies/TagE.Mansour. p. cm. Includesbibliographicalreferencesandindex. ISBN0-521-62065-1(hc) 1.Antiparasiticagents. 2.Parasiticdiseases–Chemotherapy. I.Title. RM412.M365 2002 616.9(cid:3)6061–dc21 2002067057 ISBN0521620651hardback iv P1:GWO/GQE P2:GWO/GQE QC:GWO/LAY T1:... CB446-FM CB446/Mansour July17,2002 16:14 Contents Preface pagexi Acknowledgments xiv 1 TheSearchforAntiparasiticAgents 1 EarlyBeginningsofChemotherapy 1 PaulEhrlichandthePrincipleofSelectiveToxicity 2 RationalDiscoveryofAntiparasiticAgents 3 BiologyofParasites 4 BiochemicalAdaptationofParasitestotheHost 5 DrugReceptorSelectivity 6 MetabolicPathwaysasTargets 7 EmpiricalScreeningofAntiparasiticAgents 8 UseofAnimalModelsinScreening 9 UseofinvitroParasiteCulturesforScreening 9 DesigningChemicalsforSelectiveTargets 12 RelationshipbetweenChemicalStructureandBiological ActivityofInhibitors 13 QuantitativeStructureActivityRelationship 13 CombinatorialTechnologyinDrugDiscovery 14 References 16 2 Biophysical,Genomic,andProteomicAnalysisofDrugTargets 19 BiophysicalTechniquesforStudyingDrugTargets 19 X-RayCrystallography 19 NuclearMagneticResonance 20 UseofRecombinantDNATechnologyforStudiesonDrugTargets 22 IdentificationofPotentialDrugTargetsandCandidateAntigens forVaccinesUsingExpressedSequenceTags 23 v P1:GWO/GQE P2:GWO/GQE QC:GWO/LAY T1:... CB446-FM CB446/Mansour July17,2002 16:14 vi Contents GenomicAnalysisofParasiticHelminths 24 CaenorhabditiselegansGenome 25 GenomeAnalysisofTrypanosomatids 25 GenomeAnalysisofPlasmodiumfalciparum 26 StructuralGenomics 27 Proteomics 28 References 30 3 EnergyMetabolisminParasiticHelminths:Targets forAntiparasiticAgents 33 LifeCyclesofRepresentativeHelminths 33 Schistosomes(BloodFlukes) 34 TheLiverFlukeFasciolahepatica 34 TheIntestinalNematodeAscarissuum 34 EnergyMetabolismofS.mansoni 35 GlucoseTransporters 36 TheGlycolyticPathway 37 InhibitionofGlucoseUtilization 39 Phosphofructokinase(PFK) 40 RegulationofPFK 40 ActivationofPFKandGlycolysisbySerotonin 41 PFKasaTargetforAntischistosomalAntimonials 44 EnzymesInvolvedinPhosphoenolpyruvateMetabolism 46 MitochondrialAnaerobicEnergy-GeneratingPathways inHelminths 46 PhosphoenolpyruvateCarboxykinase(PEPCK) 49 FumarateReductase 49 PyruvateDehydrogenaseComplex(PDC) 49 AnaerobicMitochondrialMetabolismasPossibleTargets forAntiparasiticAgents 50 References 54 4 AntimalarialAgentsandTheirTargets 58 QuinineandQuinidine 60 Chloroquine 61 ConcentrationofChloroquineinPlasmodium FoodVacuoles 62 HemePolymerization:ATargetforChloroquineAction 63 TheProteasesofHemoglobinDigestion 64 ResistancetoChloroquine 70 P1:GWO/GQE P2:GWO/GQE QC:GWO/LAY T1:... CB446-FM CB446/Mansour July17,2002 16:14 Contents vii AntimalarialsUsedagainstChloroquine-ResistantMalaria 74 HalofantrineandMefloquine 74 Artemisinin(Qinghaosu) 74 Quinine 76 Primaquine 76 AntifolatesandTheirTargets 77 DihydropteroateSynthase 77 DihydrofolateReductase-ThymidylateSynthase(DHFR-TS) 80 MalariaResistancetoPyrimethamine 82 ProteasesandMerozoiteEntranceandExitfromErythrocytes 83 AntisenseOligodeoxynucleotides 84 References 86 5 AntitrypanosomalandAntileishmanialTargets 90 TripanothioneandTripanothioneReductaseinProtozoa 91 TrypanothioneReductaseasaTargetforDrugDesign 93 BiosynthesisofTrypanothione 93 EffectofAntitrypanosomalAgentsontheTrypanothioneSystem 94 InhibitionofTrypanothioneReductasefromLeishmania byTrivalentAntimonials 96 Tryparedoxins 97 AntiprotozoalEffectsofNifurtimox 97 PolyaminesandOrnithineDecarboxylase 98 OrnithineDecarboxylaseInhibitorsasAntiparasiticAgents 99 Glycolysis:ATargetforAntitrypanosomalAgents 101 TheGlycosome 101 GlucoseTransporters 104 PyruvateTransporters 104 α-GlycerophosphateOxidase 105 OtherGlycolyticTargets 105 SuraminandGlycolysis 106 Melarsoprol 107 MitochondrialDNAasaTargetforAntitrypanosomalAgents 107 PurineandPyrimidineMetabolismasTargets 108 PurineSalvagePathways 109 NucleosideTransporters 111 NucleosideRibohydrolases 112 PurineAnalogsasAntiparasiticAgents 112 PyrimidineMetabolismPathwaysasPossibleTargets 115 PteridinReductaseinLeishmaniamajorasaTarget 116 P1:GWO/GQE P2:GWO/GQE QC:GWO/LAY T1:... CB446-FM CB446/Mansour July17,2002 16:14 viii Contents AntigenicVariationinAfricanTrypanosomesandtheDesign ofAntiparasiticAgents 117 ProteinFarnesylationasaDrugTarget 119 CysteineProteasesasTargetsforAntitrypanosomal andAntileishmanialAgents 120 References 122 6 TargetsinAmitochondrialProtists 129 BiologyofAmitochondrialProtists 129 Entamoebahistolytica 130 Giardiaintestinalis(G.duodenalis) 130 Trichomonasvaginalis 131 CarbohydrateMetabolismofEntamoebahistolytica 131 EnergyMetabolismofGiardiaintestinalis 134 HydrogenosomesandEnergyMetabolisminTrichomonads 135 Pyruvate:FerredoxinOxidoreductase 137 MechanismofAntiprotozoalEffectsofMetronidazole andRelated5-Nitroimidazoles 138 ResistancetoMetronidazole 141 PotentialsforNewDrugTargets 143 PyrophosphateKinases 143 AlcoholDehydrogenasesandIdentificationofAntiparasitic DrugsbyComplementationofE.coliMutants 146 PFORasaTarget 147 ProteinasesasTargets 148 References 150 7 NeuromuscularStructuresandMicrotubulesasTargets 156 NeuromuscularPhysiologyofNematodes 156 NicotinicAcetylcholineReceptors(nAChRs) 157 NicotinicAcetylcholineReceptorsinNematodes 158 γ-AminoButyricAcid(GABA) 163 TheActionofPiperazine(Diethylenediamine)onGABAReceptors 164 GlutamateasaNeurotransmitterinNematodes 164 ActionofAvermectinsonGlutamate-GatedChlorideChannels 165 GlutamateReceptorsinthePharynxofNematodes 167 BioamineReceptorsinNematodes 169 MicrotubulesasaTargetforBenzimidazolesinNematodes 170 AntimicrotubuleDrugs 171 BenzimidazolesasAnthelmintics 173 ResistancetoBenzimidazoles 173 P1:GWO/GQE P2:GWO/GQE QC:GWO/LAY T1:... CB446-FM CB446/Mansour July17,2002 16:14 Contents ix NeuroactivePeptidesinNematodes 174 TheNeuromuscularSystemofFlatworms 175 EvaluationofMotilityofFlatworms 176 5-Hydroxytryptamine(Serotonin)inParasiticFlatworms 176 CholinergicSystemsinFlatworms 178 InfluenceofParasiteMotilityonParasiteLocationintheHost 178 AnthelminticsThatActonMotilityinPlatyhelminths 180 NeuropeptidesinFlatworms 180 PotentialResearchonAnthelmintics 181 References 183 8 TargetsintheTegumentofFlatworms 189 StructureandFunctionofSchistosomeTegument 189 SomeProteinsIdentifiedinSchistosomeTegument 192 ProteinAttachmenttotheTegument 193 GlucoseTransportacrosstheTegument 194 TegumentalAcetylcholineReceptors,Acetylcholinesterase, andGlucoseUptakebySchistosomes 196 Metrifonate(Bilarcil)asAChEInhibitor andAntischistosomalAgent 197 PotentialStudiesonTegumentalNicotinicTargets 198 Praziquantel(PZQ) 199 MechanismofActionofPraziquantel 199 AntigensThatAttracttheHost’sImmuneSystem 201 ResistanceofSchistosomestoPZQ 202 PotentialStudiesonCa2+ InfluxacrosstheTegument 204 Oxamniquine 205 DyneinsinSchistosomamansoni 206 TheEffectofTriclabendazoleonFasciolahepaticaTegument 207 DrugsActingontheTegumentofCestodes(Tapeworms) 208 References 209 Epilogue 215 References 219 Index 221 P1:FGU/GQE P2:FGU/- QC:FGU/FGP T1:- CB446-01 CB446/Mansour April9,2002 18:18 1 The Search for Antiparasitic Agents Early Beginnings of Chemotherapy Historicalrecordsfromalmosteveryculturehaveexamplesofsuccessfultreat- ment of different ailments by potions, mainly from vegetable sources and oc- casionallyfromanimals.Agoodexampleofanantiparasiticagentiscinchona bark(quinine),whichwasusedagainstmalariabytheearlyPeruviansandintro- ducedtotheWesternWorldbytheJesuits.Extractsofmalefernandofsantonin obtainedfromArtemisiamaritimavar.anthelminticawereheldinhighregardas anthelmintics by Theophratus (370–285 B.C.) and Galen (A.D. 130–201) and were also recommended as effective anthelmintics until the 1940s and 1950s (Goodman&Gilman,1955). Thebeginningofchemotherapyasasciencehadtoawaittheestablishmentof thegermtheoryofinfectionbyLouisPasteurmorethanacenturyago.Rather thanacceptingtheconceptofspontaneousgenerationofinfection,Pasteursug- gestedthatdiseasesarecausedbymicrobesthataretransmittedamonghumans. Pasteur’sinspirationforthistheorycameduringhisearlystudiesonfermentation forthewineindustryinFrance.Pasteur’scontributionsinfluencedbacteriology, immunology, the study of antibiotics, sterilization, epidemiology, and public health.Thisremarkableerawasfollowedbythediscoveryandidentificationof many of the infectious microorganisms and methods for their culture in the laboratory and for infecting experimental animals. The study of parasites was initiated at the time of Sir Patrick Manson (1844–1922), who established the first institute for studying and teaching about tropical diseases: The London SchoolofHygieneandTropicalMedicine.Mansonwasaprominentresearcher who made the seminal identification of the life cycle of the filarial nematode Wuchereria bancrofti in humans and the mosquito vector. He emphasized the importance of studies on tropical diseases and parasitology. The early part of thetwentiethcenturysawtheidentificationofmanyofthemainparasitesthat 1 P1:FGU/GQE P2:FGU/- QC:FGU/FGP T1:- CB446-01 CB446/Mansour April9,2002 18:18 2 TheSearchforAntiparasiticAgents afflicthumansinthetropics.Theseincludedtrypanosomiasis(sleepingsickness), leishmaniasis(kalaazar),lymphaticfilariasis,andmalaria. Paul Ehrlich and the Principle of Selective Toxicity ThefatherofchemotherapywasPaulEhrlich(1854–1915),aphysicianinitially interested in immunology. He won the Nobel Prize in 1908 for his work in the field of immunology following Emil Behring (1901), Ronald Ross (1902), andRobertKoch(1905).Ehrlichwasfascinatedbytheselectivityofinteraction betweenantigensandtheantibodiesthatcouldbeproducedtothembyanimals. Inthe1870sand1880s,whileusingdifferentdyestostaintissuesandparasites, hesawasimilarkindofselectivity.Someofthesedyescouldbindtocertaincells and even to certain parts of the cell whereas other cells remained free of dye. Hewasattractedtotheideathatselectivityofbindingofchemicalagentsthat are toxic to parasites but not to human cells could be the basis of identifying effectivechemotherapeuticagents.Theseobservationsinhislaboratoryinspired histhoughtsaboutthebasicprinciplesofchemotherapy.ItalsoprovedPasteur’s famousdictum“Chanceonlyfavorsthepreparedmind.” During the first decade of the twentieth century there was a great interest amongEuropeancountriesinexploitingthenaturalresourcesfromtheirAfrican colonies.AwayhadtobefoundtoprotecttheEuropeancolonizersandthena- tiveworkerstheyemployedfromendemicdiseasesinthetropics.Attemptstouse theirknowledgeofimmunologywerenotsuccessfulinprotectingpeopleagainst parasiticinfections.Inaddition,verylittlewasknownaboutthebiologyofthese parasites.Therewasagreatneedforchemicalagentstotreattheseinfections. Germany,atthattime,hadoneofthelargestandmostmodernchemicalin- dustriesinEurope,particularlyforthemanufactureofdyes.Guidedbyhisearly observationthatsomedyeshaveselectiveaffinitytocertaincellsandtheavail- abilityofthousandsofdyesfromtheneighboringHo¨chstlaboratoriesEhrlich embarked on a program to identify dyes that would have selective affinity to microorganismsresponsiblefordifferentinfections.Hestartedwithmethylene blue,whichshowedsomeeffectsagainstmalariabutalsohadaspecificaffinity to nerve cells and was therefore too toxic to humans. Hundreds of dyes were examinedagainstbothmalariaandtrypanosomeinfectionsinexperimentalan- imalswithoutsuccess. Paul Ehrlich’s new strategy was based on rational screening for identifying newchemotherapeuticagents.Oneshouldtrytofindchemicalsthathavebeen proven to be selectively toxic to the microorganisms but not to the human hosts. Ehrlich’s thinking was greatly influenced by the specificity of antibody P1:FGU/GQE P2:FGU/- QC:FGU/FGP T1:- CB446-01 CB446/Mansour April9,2002 18:18 RationalDiscoveryofAntiparasiticAgents 3 formationinresponsetoantigensfrominfectiousmicroorganisms.Heperceived ananalogybetweentheprocessofantigen/antibodyinteractionandtheselective toxicityofchemicalagentsagainstparasites.Headvocatedthesearchforatoxic chemicalagentthatcanselectivelybindtoareceptorintheparasitebutnotto oneinthehost.Inanaddresstothe17thInternationalCongressofMedicine in England (Ehrlich, 1913) he presented his ideas about the rational approach to chemotherapy. His first principle was “If the law is true in chemistry that Corporanonaguntnisiliquida(substancesareeffectiveonlyinthefluidstate),then for chemotherapy the principle is true that Corpora non agunt nisi fixata (only attached, anchored substances are effective).” A metaphoric term “the magic bullet”wasgiventotheidealchemotherapeuticagent,adrugthatdisablesthe “germ”butnotthehostcells.Ehrlichenvisioneda“therapiasterilisansmagna... that by means of one or at most two injections the body is freed from the parasites.”ChemotherapyisatermthatwasinventedbyPaulEhrlichandwas definedastheuseofchemicalagentsto“injure”aninvadingorganismwithout harmingthehost. In 1906, after his disappointing work with dyes, Ehrlich shifted his atten- tion to the spirochetes that cause syphilis (which was widespread in Europe at that time). Mercury was the only known treatment, but this metal did not meet Ehrlich’s conception of therapia sterilisans magna. Ehrlich studied arseni- calsforhisfirstresearchonidentifyingnew,effectivechemotherapeuticagents against syphilis. At that time Atoxyl (sodium arsanilate) was being used as an antiprotozoal agent, but because of toxicity, its therapeutic usage was discon- tinued. Several hundred arsanilate derivatives were examined against an infec- tionofaspirochete-likeorganism,Spirillummorsusmuris,inlaboratoryanimals. Compound606(diaminodioxyarsenobenzol)wassuccessfulintreatingSpirilla infections in chickens, rabbits, rats, and mice because Spirilla readily absorbed the drug, killing the bacterial cells (Baumler, 1965). Subsequently, Compound 606 was used with a dramatic effect in patients suffering from syphilis. The human cells did not appear to take up the drug. An improved preparation of Compound606(neosalvarsan,Nadiaminodihydroxyarsenobenzenemethanol sulfoxylate),whichwasmoresolubleandthusmoresuitableforinjection,was subsequentlydiscovered.Withinfiveyearstheincidenceofsyphiliswasgreatly reducedinmanyEuropeancountries.Thiswasatriumphantsuccess. Rational Discovery of Antiparasitic Agents SubsequenttotheworkofPaulEhrlich,astrategywasgraduallyestablishedto searchforantiparasiticagentsonthebasisofidentifyingdrugsthatareselectively
Description: