ebook img

Chemosensory Activation of an Antennular Grooming Behavior in the Spiny Lobster, Panulirus argus, Is Tuned Narrowly to L-Glutamate PDF

9 Pages·1997·3.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemosensory Activation of an Antennular Grooming Behavior in the Spiny Lobster, Panulirus argus, Is Tuned Narrowly to L-Glutamate

Reference:Bio/. Bull. 193: 107-115.(October. 1997) Chemosensory Activation of an Antennular Grooming Behavior in the Spiny Lobster, Panulirus argus, Is Tuned Narrowly to L-Glutamate JOHN C. BARBATO AND PETER C. DANIEL* DepartmentofBiology, Hofstra University. Hempstead, New York 11549 Abstract. Antennular grooming behavior (AGB) is a staticadherencetotheantennularcuticle,L-Gluisasensi- stereotypedbehaviorincrustaceansinwhichthefirstpair tiveindicatoroffoulingbyfood-associatedchemicalsand ofantennae, the majorolfactory organs, are clasped and thus an appropriate compound to stimulate antennular wiped repetitively by the third maxillipeds, which also grooming. serve as feeding appendages. AGB apparently functions to clear away accumulating debris on or between the Introduction antennular aesthetascs (olfactory sensilla). The purpose ofthis research was to determine whether AGB can be Odorantaccessandremovalfromreceptorsareequally activated by chemicals commonly found in food odors. important for effective chemical detection. To facilitate Lobsterswerepresented, viaheadsetorhandheldpipette, these two processes, animals have evolved short- and with 27 chemicals found in theirfood. One chemical, L- long-term mechanisms that include elimination of stag- glutamate,evokedveryhighfrequenciesofwiping. Most nant boundary layers, alteration and internalization of chemicals tested were not stimulatory and only a few chemostimulants,andgroomingofchemosensoryorgans. were weakly stimulatory (adenosine-5'-monophosphate. Thesemechanismsmaintainthesensitivityofthereceptor glycine,D-glutamate).Thisissurprisingbecauseprevious cell and. inthecase ofgrooming, the structural integrity studieshaveshownthatotherbehaviors(antennularflick, ofthe chemosensory organ. search)canbeevokedbyamuchbroaderarrayofchemi- Crustaceans are good models in which to investigate calsfoundinfoododorants. Onthebasisoftheseresults, chemoreceptionbecausetheyrespondtochemostimulants we propose that chemosensory neurons that specifically with highly stereotypical and quantifiable behaviors. detect L-Glu activate AGB through a recently described Chemical cues regulate many components ofcrustacean non-olfactorypathway. Furthermore,weproposethatthe behaviorincludingfoodrecognition(Hazlett, 1968;Carr, roleofL-GluinevokingAGBisbasedonitselectrostatic 1978; Carr, 1982; Schembri, 1981; Fine-Levy et al., properties. Because it has a high probability ofelectro- 1988), courtship behavior (Atema and Engstrom, 1971; Dunham, 1978; Atemaetal., 1979; Gleeson, 1980), and predator avoidance (Mackie and Grant, 1974). Received 18February 1997;accepted20June 1997. Electrophysiological recordings of receptor neurons caelpaA*ntbAiobunrretenhv(eoiDura-rto&tionosnLws-(:hAOloaRam)nN,tsce)Lno-.nraurralegdaisernpnioongnserdioe(nonLecm--eAi5rn'gsg-)h,mobouLenl-hodaapsvbhpieoaosrraapdgh(diarAnteGeesBs()(eL,dA-.AMsoPnl))f,,acLtD-o-arsy&parrLe--- a((enD.deg.r,bbyDeehaarnvbdiyoAraatnledmasAt.cuhd1ei9,e8s21;9e8mF4pi;lnoeAy-niLdneevgrysoaebntlaaalt.ni,don1A9c8th8ee;c,hDna1in9qi8ue5el)s tate(L-Asp),betaine(Bet),L-cysteine(L-Cys),D-&L-glutamate(D-& and Derby, 1991) have shown that antennules are the L-Glu),glycine(Gly),L-histidine(L-His),L-hydroxyproline(L-Hyp),L- primary organs for detecting odors. Therefore, mecha- isoleucine(L-Ile),L-lactate(L-Lac),L-leucine(L-Leu),L-lysine(L-Lys), nisms that enhance odorant access to and removal from tLSae-trme)e,t(hLNi-MosnDuicAnc)ei.na(tLLe--Mpe(htLe)-n,Syulaca)ml,manotiannuireiun(meL-c(PhThlaeou)r),i,dLe-Lp-(rtNohlrHie4noCen1i)(n,Le-NP-(rmLo-e)Tt,hhryL)l-,-seDLr--iavnsaeplai(rnL-e- ttihaelpteorircercuespttaocreaennvbierhoanvmieonr.toSfutchheamnetcehnanunliessmsareinecslsuedne- (L-Val),artificialseawater(ASW). antennular flicking (Snow, 1973; Gleeson et al., 1993), 107 108 J C. BARBATO AND P.C. DANIEL biochemicalremovalofstimuli(Gleesonetul., 1987;Carr nules are favorable substrates for microbes and detritus. et ul., 1989), and antennular grooming (Bauer, 1989). Ifthismaterialisnotremoved,chitinivorousmicroorgan- Antennularflicking,whichoccursatfrequenciesof0.5 isms can damage the exoskeleton and the presence of to 2Hz in Punulirusargus(Schmitt and Ache, 1979). is otherfoulingorganismscancauserespiratoryandsensory defined asthe verticaldeflectionofthelateralfilamentto impairment. When a shrimp, Heptacarpus pictus, was apositionnearlycontactingthemedialfilament(Zimmer- experimentally prevented from grooming the antennules, Faustetai, 1984). Antennular flicking reduces the stag- extensive structural damage of the aesthetascs occurred nant boundary layers of seawater created by the dense (Bauer. 1977).Therefore,anythingthatenhancesthelevel tufts of aesthetascs (Snow, 1973; Gleeson et ai, 1993) ofmicrobialfoulingisdetrimentaltothestructuralinteg- which are the sensilla housing the dendritic processes of rity of the antennule and, presumably, to its functional hundreds ofolfactory receptorneurons (ORNs) (Griinert role as achemoreceptororgan. and Ache, 1988). This removal mechanism uses move- Althoughfoulingoftheantennulesoccurscontinually, mentsoftheantennulestosplayaparttheaesthetaschairs, feedingmayresultinparticularlyhighratesofaccumula- allowingwatertorushinanddisplacethewatercollected tionofdebris. Byprovidinganutrient-richsubstrate,this duringthepreviousflick.Flickingisanalogoustoaverte- debris facilitates microbial colonization. Results ofstud- brate sniff (Schmitt and Ache, 1979) because sniffing ies ofseveral crustacean species show that AGB can be flushes air from the upper nasal cavity, the location of elicitedinresponsetocompoundstypicallyfoundinfood theolfactoryepithelium. InP. argus, flickingisactivated (Snow, 1973; Zimmer-Faust et ai, 1984). In this paper, inadose-dependentmannerbyabroadrangeofchemical we examine which chemicals found in the food of P. stimuli detected by the antennules (Daniel and Derby, argus stimulate the release of AGB. Compounds found 1991). infood,includingaminoacids,nucleotides,organicacids The aesthetascs of P. argus contain membrane-bound and ammonium (Carrand Derby, 1986) were tested. Re- enzymes and transporters that serve to eliminate specific sults ofbehavioral assays revealed that only one amino chemical stimuli including nucleotides and amino acids acid, L-glutamate (L-Glu), evoked AGB with great fre- (Trapido-Rosenthal etal. 1988; Carr etal.. 1989). Ecto- quency. Even analoguesofL-Glu (D-glutamate, L-aspar- nucleotidases catalyze the dephosphorylation of adenine tate, N-methyl-D-aspartate) were not excitatory. On the nucleotides,creatinganodorantdifferentfromtheonethat basisoftheseresults,weproposethatchemosensoryneu- initiallyenteredthereceptorenvironment.Theendproduct rons that specifically detect L-Glu activate AGB through of dephosphorylation, adenosine, a molecule for which a recently described non-olfactory pathway (Schmidt et there is little receptorsensitivity, is internalized by a spe- ai, 1992; Schmidt and Ache. 1996). Furthermore, we cific uptake system (Trapido-Rosenthal et ai. 1987). In proposethatL-Gluevokes AGB because the high proba- additiontotheadenosineuptakesystem,anuptakesystem bility ofelectrostatic adherence to the antennularcuticle fortaurine has been identified (Gleeson etai, 1987) and makes it a sensitive indicatoroffouling by food-associ- uptake systems for other amino acids, including L-gluta- atedchemicals. mate, also exist (Trapido-Rosenthal et ai, 1988; Carr et ul., 1989). Prolonged stimulationofORNs limitsthetem- Materials and Methods poralandspatialresolutionof"patchy"olfactoryenviron- Sourceandmaintenance oflobsters bmyentthses(eAtbeimocaheetmialc.a,l19r8e9m)o.vaQluimcekcehlainmiisnamtsioansowfeloldoarsanbtys Spiny lobsters (55 to 70mm carapace length) were antennular flicking enhances receptorsensitivity. obtainedfromtheFloridaKeysRegionalMarineLabora- The least studied mechanism for facilitating odorant tory in Long Key. Florida, and maintained in separate removal and maintaining receptor accessibility is anten- 80-1 aquaria (one lobster/aquarium). Aquaria were lined nulargroomingbehavior(AGB). AlthoughAGB iscom- with crushed coral; filled with aerated, recirculating In- mon in many crustaceans, very little is known about stantOcean(specificgravity, 1.021-1.023);andequipped which stimuli activate it (Bauer, 1989). This behavior withgravel-bottomfiltersystems.Lobsterswerefedscal- consistsofanantennulardeflectiondownward,permitting loporshrimpdaily adlibitum and the uneaten food was tbhyetlhaetetrhailrdanmdaxmileldiipaeldsan(tpeaninrueldaarpfpielnadmaegntesstoonbeeitghrerasspiedde rtheemoavmebdienafttetrem1phe.raTthuereliwgahst:dmaarikntcayicnleedwbaestw1e2e:n122a5n-d of the mouth) and pulled repeatedly through the setal 27C. Red light (25W, ceramic-coated light bulbs) was combsofthe maxillipeds. The resulting action facilitates provided during the darkcycle. removal ofmaterial that has accumulated on orbetween ChemicalStimuli the aesthetascs (Snow, 1973; Bauer, 1989). Fouling is a recurring problem forcrustaceans because both the exo- Thefollowingcompounds wereusedasstimuli: adeno- skeletonandspecializedstructuressuchasgillsandanten- sine-5'-monophosphate (AMP), D- & L-alanine (D- & L- CHEMOSENSORY ACTIVATION OF GROOMING 109 Ala), L-arginine(L-Arg), L-asparagine(L-Asn), i.-aspartate attached by hook and loop fasteners to the rostrum. A (L-Asp), betaine (Bet), D- & L-glutamate (D- & L-Glu), bentglassrod(5-mmdiameter) wasgluedtotherostrum glycine (Gly). L-histidine (L-His), L-hydroxyproline (L- attachment with cyanoacrylate quick-bonding nontoxic Hyp), L-isoleucine (L-Ile). L-lactate (L-Lac), L-leucine (L- glue.Thisprovidedsupportforthetubingthrough which Leu), L-lysine (L-Lys), L-methionine (L-Met), ammonium the stimulus was introduced (1-mm inner diameter, chloride (NH4C1), N-methyl-D-aspartate (NMDA), L-phe- attachedtotherodwithcableties)andallowedtestsolu- nylalanine (L-Phe), L-proline (L-Pro), L-serine (L-Ser), L- tions to be injected at aconstant distance in the vicinity succinate (L-Suc), taurine (Tau), L-threonine (L-Thr) and oftheantennules. Aperistalticpumpwas usedtodeliver L-valine (L-Val). Stock solutions (lOmM. pH 8.1) ofall allsolutions.Todesensitizetheanimalstothemechanical the stimuli were prepared in artificial seawater (ASW) stimulus,tankwaterwaspumpedcontinuously,viaplastic (Cavanaugh, 1964). L-cysteine (L-Cys) was prepared on flexibletubing,fromthetankthroughthestimulus-intro- the day oftesting to prevent precipitation from freezing; ductiontubing.Eachtestsolution(5-mlina 10-mlplastic allotherswerestoredat -70Cuntilused.Withtheexcep- syringe) was injected into the tubing through a two-way tion ofD-Ala, D-Glu (a stereoisomerofGlu). NH4C1. and stopcockvalve.Theflowrateofthepumpwasmaintained NMDA (an agonist of a subclass of glutamate receptors at 10-ml min~'. In subsequent trials, stimuli were pre- (Schoepp, 1994)),thesecompoundswereidentifiedbyCarr sentedviaahandheld5-ml pipette.Thetipofthe pipette and Derby (1986) ascomponents ofprey extracts. On the was gently placed in the vicinity ofthe antennules. This ddialyutoefdtetsotienigt,hearpp5romprMiatoers0t.o5cmksMoluwtiitohnsAwSeWr.ethawedand omfetAhGodBafppreoamretdhetoloeblsictietra(cFoing.sis1t).enAtlllygtrrieaaltserwemraegnviitduedoe- taped, beginning0.25min beforeeach stimuluswaspre- Experimentaldesign sented and continuing forup to 2min afterward. The 26 compounds listed above were each assayed at 0.5mM. To ensure that the lobsters would not become Data analysis desensitized, we presented these chemicals in five sepa- The magnitudes of the AGB responses in all experi- rate trials (maximum of 10 chemicals pertrial including ments were determined from videotapes. Pre-stimulus ASW & L-Glu) so that no experiment lasted longerthan wipe rates were determined by counting the number of 4h. We subsequently tested 10 ofthese compounds (in wipesthatoccurredinthe0.25-min periodbefore stimu- three separate trials) at 5.0mM. In previous trials, these lus presentation. Post-stimulus wipe rates were deter- 10 chemicals had elicited either a highly significant re- mined by recording the number of wipes that occurred sponse (i.e., one that was significantly greater than the for 1 min after stimulus presentation. Wipe rates were response toward ASW) orthe response was greaterthan thereforedefinedasthepost-stimulusresponserateminus theresponsetowardASWforamajorityoflobsters. The the pre-stimulus response rate. The three wipe rates exception was NMDA, which was assayed at both con- (wipes-min ') counted for each stimulus per trial were centrations even though it failed to meet the criteria. Fi- averaged and reported as the mean wipe rate. nally,aseriesofconcentrationsofL-Glu(0.01,0.05,0.08, Inmostcases,datadidnotmeettheassumptionsneces- and 0.1 mM) and three othercompounds (AMP, Gly, D- saryforparametricstatisticaltests;therefore,nonparamet- Gluat0.5, 1.0, 5.0and 10.0mM) shown toelicit signifi- rictestswereused.Friedman'srepeatedmeasurestestson cant responses at 5.0mM were tested. Each ofthe four rankswasusedtocompareresponsestochemicalstimuli ccloumdpeodunAdSsWwaassaasscaoynetdrolinsatismeuplaursateantdria0l..5AlmlMtriLal-sGliun,- c(aSnitgmdaisftfaetr,enJcaensdewleSrceiefntoiufnidc,).pWaihrewriesestcaotmipstaircialsloynssigwneifrie- which preliminary experiments showed tobe very effec- performedusingtheStudent-Newman-Keuls(S-N-K)test tive in evoking AGB, as a response standard. adapted forranked data. Forthe concentration seriesex- periments, least-squares regression analyses were per- Presentation ofstimuli formedonlog-transformedconcentrationsofeachstimu- Experimentaltrialswereblindinthattheexperimenter lus vs. wipe rates standardized to the L-Glu (0.5 mM) did notknowtheorderin whichthechemicals were pre- response. sented. Each stimulus was administered to six lobsters, except where noted in Results, in triplicate tests. Two Results methods of stimulus presentation were employed: auto- Responses to compounds at0.5mM matedandhandheldpipette. Forthe firsttwotrialsusing stimuliat0.5mM,presentationofstimuliwasautomated Ofthe compoundspresentedat0.5mM, L-Gluwasby viaaheadsetapparatusasdescribedpreviously inDaniel farthemosteffectivecompoundatelicitingAGB.Intrials and Derby (1988). A 13-mm diameter acrylic rod was #l-#4,reportedinFigure 1,L-Gluproducedsignificantly 10 J. C. BARBATO AND P.C DANIEL - Z(J v 15 - C CHEMOSENSORY ACTIVATION OF GROOMING 11 higherwipe rates than all otherstimuli tested at0.5mM significant, the 50% maximal responses based on visual and ASW (Fig 1; Friedman repeated measures ANOVA; inspection were at least 10mM. trial #1. x' = 29.7, = 9, P = 0.0001; trial #2. r 34.6. = 9, P = 0.0001; trial #3, \2 = 24.4, n = 6, P Discussion = 0.0002; trial#4. x~ = 23.1, n = 6, P = 0.006; S-N-K AGB pairwise comparisons test for ranked data, P < 0.05). specificity to L-gliitamate: implicationsfor Two compounds, Gly and L-Met (trial #3), elicited re- sen.soiy-motorintegration sponses that were significantly greater than ASW (S-N- Our results show that, unlike other behaviors studied K pairwise comparisons testforranked data, P < 0.05). in P. argus (Fine-Levy et al.. 1988. 1989; Daniel and Neither the stereoisomer of L-Glu. D-Glu, nor the ana- Derby. 1988;Fine-Levyand Derby, 1991, 1992; Lynnet logue, L-Asp(sidechainhas oneless carbon), elicited re- al.. 1994), AGB is elicited almost exclusively by one sponsesgreaterthanthosetoward ASWin trial#3 (S-N- chemical, the L-enantiomer of glutamate (L-Glu). L-Glu IKnpaadidriwtiisone,coNmMpaDriAsodnisdtnesottfeolricritanskiegdnidfaitcaa.ntPre>sp0o.n0s5e)s. twhaasnawtelreeastAM1P00,tiGmleys, maonrdeD-efGfleuc,tivteheinneexlti-cbietsitngsAinGglBe (trial #5, \~ = 4.91, H = 3, P = 0.194). However, none stimuli. Furthermore, theD-enantiomerofL-Glu (D-Glu). of the compounds tested in this trial, including L-Glu, astructural analogueofL-Glu (L-Asp), andan agonistof were significantly different from ASW. This is probably a major class of glutamate receptors (NMDA). either because the small sample size used in this experiment failed to activate AGB (L-Asp, NMDA) or were only resultedinaverylow-powertest. However,allthree lob- weaklyeffectiveathighconcentrations(D-Glu).Wepro- ostrerNsMteDstAedarte0s.p5onmdMe.dmuch moretoL-Gluthan to ASW paosspeectihfaitceclliacsistaotfiocnhoefmoAsGenBsorreyquinreeusrosnesnsnoarryroiwnpluyttfurnoemd to L-Glu. Responses to compounds at5mM Accordingtoelectrophysiological studies.ORNsinP. mM argusarenarrowlytunedtospecificchemicalstimuliand ResponsestoL-Gluat0.5 weresignificantlyhigher can be classified by best-compound. "Best" cells have than responses totest stimuli when presented at 5.0mM been identified for AMP, ATP, Cys. Bet, Glu, NH4C1, (Fig. 2; Friedman'srepeatedmeasuresANOVA; trial#1, andTau(DerbyandAche, 1984;Carretal., 1986;Derby X2 = 43.1, n = 9. P = 0.0001; trial #2, x2 = 24.7, n = etal., 1991;Danieletal., 1994).Similartuningcharacter- 6, P = 0.0002; trial #3, x2 = 10.4. n = 6, P = 0.0055; isticshavebeenidentifiedforolfactoryandnon-olfactory S-N-K pairwise comparisons test for ranked data, P < chemosensitive neurons distributed on second antennae, 0.05). Six compounds, L-Asn, L-Cys, AMP. and Tau in antennules.maxillipeds,andlegsofHomarusamericanus trial #1, Gly and D-Glu in trial #2, evoked wipe rates (Johnsonetal., 1985;Tierneyetal.. 1988;Corottoetal., significantlygreaterthanthoseforASW(S-N-Kpairwise 1992; Voigt etal., 1997). Biochemical receptor-binding comparisons test for ranked data, P < 0.05). NMDA assaysofantennulesofP. argushaveidentified indepen- produced no significant response at 5.0mM (trial #3, S- dentolfactory receptorsites forAMP,Tau (Olsonetal., N-Kpairwisecomparisonstestforrankeddata,P>0.05). 1992; Olson and Derby, 1995; Sung et al., 1996), both stereoisomers of Ala (Michel et al.. 1993), and L-Glu Responses to concentration series (Burgess etal., 1994). Compounds that weakly evoke AGB may do so by The magnitude ofAGB towards L-Glu increased as a activatingL-Glu-bestneurons. Electrophysiological stud- linear function of the log of its concentration (Fig. 3. ies ofORNs showed that responses to next-best stimuli least-squares regression, F = 86.6, n = 30, P < 0.001. were generally 100-fold less than to the best compound r = 0.76, standardized wipes-min"' = 107.7 + (Daniel etal., 1994). Hence the amino acids Gly and D- (53.1 log[concentration]) and were at least 100times Glu, and the nucleotide, AMP, are possibly "next-best" moreeffectivethan anyoftheotherchemicalsacrossthe stimulantsthatweaklyactivateAGBviaL-Glu-bestcells. rangeofconcentrationstested. OnlytheAMPconcentra- However, the response spectra of AGB and of ORNs NMDA tion series yielded a significant regression (least-squares sensitivetoL-Gluarenotentirelyconsistent. and regression, F = 22.6, n = 26, P < 0.0001, r = 0.55, L-Cysserveaspartialagonistsandantagonistsforchemo- standardized wipes-min~' = 7.26 + (39.5 log[concen- receptors presumed to be ORNs sensitive to glutamate tration]). From the linear regression equations, the con- (Burgess and Derby. 1995). Since AGB was elicited by centrations needed to achieve 25% and 50% maximal L-GlubutnotNMDAorL-Cysevenat5mM,itispossible responses were 0.03 and 0.08mM, respectively, for L- that non-olfactory neurons mediate AGB. Glu.and3.0and 14mM,respectively,forAMP.Although Howmightsuchaspecificstimulusleadtoactivationof thelinearregressionequationsforGlyandD-Gluwerenot AGB? There appearto be two antennularchemosensory 112 J. C. BARBATO AND P.C. DANIEL 35 -i 30 - CHEMOSENSORY ACTIVATION OF GROOMING 13 fo 114 J C. BARBATO AND P.C. DANIEL ing lobsters. We thank the three anonymous reviewers Cavanaugh,G.M.1964. Formulaeandmethods,vol.5.MarineBio- for their critique of the manuscript. Research described logicalLaboratory.WoodsHole,MA. grrepereesoefntMsasptaertriaolffAurltfsi.llment ofrequirements for the de- Coroirteitcmoeiip,YtFo.rB,icoRel.l.lsVBouoilfgl.tt,he1a8tn3h:dir4Jd.5m4Aa-tx4iel6ml2ai..pe1d9s9o2f.theSpleocbtsrtearl.tHuonimnagroufscahtenmeroi-- Daniel,P.C.,andC.D.Derby.1988. Behavioralolfactorydiscrimi- Literature Cited nationofmixturesinthespiny lobster(Panulirusargus)basedon AAtnde(icemnlHraaso,simomtJpnau..,r,ruaBePscrn.oadariAmdn.Die.nrRVgie.Gssc,..aonaEf3unn3stdg8}hs:e.tBrr.2Neo7acWtm3e.u-.pr2te1o8Ar90c72.hp13eo.2t.:en2t1Si69ea81xl5-.2ipn6h3eoV.lrofolamtcotanogreey-sriaennctedhpetcoulrrorbcesentltel-sr DDaanniioiaeeodrllho:,,arbtaPiPhn.t.etuCCaa.m.nt,i,tixoeatJnnnu.nrdpuBeal.sCar..raFdPiDfihn.lgyiesmc,Dik.eoCrrlCe..bhsyDepB..omenh.1sDa9eveS9.1rei.nbn4sy9te,:hsMeia51sxn93pt:1diu-nr36yMe80.5l1s-o-u.Nb3ps.9ptr5eGre.istrsoaiwroandroidtns.bbe1ih9na9av4r-.y AteSmtae,in.J.,19S7.9.JacPoabisronf.o,rmaEt.ioKnarinnotfhsehylo,bsSt.er,OlHeosmzakor-uSszuatmse,riacnadnusL:. oNlofna-crteocriyprroeccaelptcorrosnse-uardoanpstatoifonthoefssppiinkyinlgobrsetesrp:onesveisdeonfceindfiovridtuwaol bioelh.a6vio2r7al7-d2e9v8e.lopment,pheromonesandmating.Mar.Behav.Phys- Derbtrya,nsCd.ucDt.i,onanpdathBw.aWys..ABcrhaei.nR1e9s8.4.643:Qua1l3i6t-y14c9od.ingofacomplex Atema,J.,P.F.Borroni,B.R.Johnson,R.Voigt,andL.Handrich. odorantinaninvertebrate.J.Neurophvsiol. 51:906-924. 1989. Adaptationandmixtureinteractionsinchemoreceptorcells: Derby,C'.D.,andJ.Atema.1982. Thefunctionofchemo-andmech- mechanismsfordiversityandcontrastenhancement.Pp.83-100in anoreceptors in the lobster(Homarusamericanus) feeding behav- PerceptionofComplexSmellsandTastes. D.G.Laing,W.S.Cain. iour../. EY/>. Biol. 98: 317-327. R.L. McBnde.andB.W.Ache.eds.AcademicPress.Sydney. DerbyC.D.,M.-N.Girardot,andP.C.Daniel.1991. Responsesof Barbato,J.C.,M.Kalina,andP.C.Daniel.1996. Olfactoryactiva- olfactoryreceptorcellsofspinylobsterstobinarymixtures.I.Inten- tionofanantennulargroomingbehaviorinthespinylobster,Panuli- sitymixtureinteractions.J.Neurophysiol. 66: 112-130. rusargus, istunednarrowlytoL-glutamate.Chem. Senses21: 577 Dunham, P.J. 1978. Sex pheromones in Crustacea. Biol. Rev. 53: (abstract). 555-583. Bauer,R.T.1977. Antifoulingadaptationsofmarineshrimp(Crusta- Fine-Levy,J.B.,andC.D.Derby.1991. Effectsofstimulusintensity cea: Decapoda:Caridea): functionalmorphologyandadaptivesig- andqualityondiscriminationofodorantmixturesbyspinylobsters nificanceofantennularpreeningbythethirdmaxillipeds.Mar.Biol. inanassociativelearningparadigm.Phvsiol.Behav.49: 1163-1168. 40: 261-277. Fine-Levy,J.B.,andC.D.Derby. 1992. Behavioraldiscrimination Bauer, R.T. 1989. Decapodcrustaceansgrooming: functional mor- ofbinarymixturesandtheircomponents:effectsofmixtureinterac- phology,adaptivevalue,andphylogenetic significance.Pp.49-73 tionsoncodingofstimulusintensityandquality.Chem.Senses17: inFunctionalMorphologyofFeedingandGroominginCrustacea, 307-323. B.E. Felgenhauer. L. Watling, and A.B. Thistle, eds. A.A. Bal- Fine-Levy, J.B., M.-N. Girardot, C.D. Derby, and P.C. Daniel. kema.Rotterdam. 1988. Differentialassociativeconditioningandolfactorydiscrimi- Burgess,M.,andC.Derby. 1995. L-Glutamate'sexcitatoryandin- nationinthespinylobster,Panulirusargus.Behav.NeuralBiol.49: hibitoryeffectsonolfactoryreceptorneuronsofspinylobstersmay 315-331. bemediatedbydissimilarreceptortypes.Chem. Senses20:673. Fine-Levy, J.B., P.C. Daniel, M.-N. Girardot, and C.D. Derby. Burgess,M.,K.Olson,C.Derby,andP.Daniel.1994. Relationship 1989. Behavioralresolutionofodorantmixturesbyspinylobsters: bbientawreyenmixitnhuirbeitiinotneroafctioodnosrafnotr-rgelcuetpatmoarte.bitnaduirnigne,anadndph5y'siAolMoPgicrael- Sdiefnfseeresnt1i4a:l5a0v3e-r5s2iv4e.conditioning of olfactory responses. Chem. ceptorsintheolfactoryorganofthespinylobster.Chein.Senses19: Gleeson,R.A. 1980. Pheromonecommunicationinthereproductive Carr4,48W(.abEst.raSc.t)1.978. Chemoreception in the shrimp, Palaemonetes b7:eh1a1v9io-r13o4f.thebluecrab(Callinectessapidus).Mar.Behav.Physiol. pugio:Theroleofaminoacidsandbetaineinelicitationofafeeding Gleeson,R.A.,H.G.Trapido-Rosenthal,andW.E.S.Carr. 1987. CarrrA2,em5ss9pWt-o.e2nrs7Ede3.abmiSny..Ce1hx9et8rm2ao.crtse.cCehCpeotmmiipoc.naliBnisFoticishmheuemls.a,tTiP.ohnvJs.oiHofalr.fae,e6d1eiAdn.:gE1lbse2eh7va-iv1ei3ro1rP..rePsps.. 2AHu5x3tta-au2brl6ien3e,iFrn.eTcFehrpeatnoBcrioonmlioo.dgeyalno:dftTAaa.uurGriiinonete-t:sie,Mneseditsth.iovPedlsceeanlnlusdmiMPnercetshhsea,nliNosbemswtse,rY.oRr.PkpJ... CCaarrrriOh,,lanfvvWaiWoco.l.trvoEeEr.im.yneSSn.r.m,t,eacRroae.ifpnntAdmeo.irxsCGat.lnuoeirDfeme.astloihDsnne:e,tresBrbipa.ymic.ptnWioy.or1ntl9sAao8.cbn6hsJc.t.eee,rC:oCahfhneAemdTcm.PhiM-ecE.smaceiloLncll.sa.yilMti1is2lmtv:siietxm9eutc8alue9dalr-.ltese1s1d09w1a8ib1n6te.d.h- GGlreuenmiMsneoosorrvintpag,,hhltoRUli.f.no,rgAtoi.ahmc,enadtWolhl.eBfca.hEdca.eWtrso.aSirc.gytnAeC.ocrarhirCgsertha.i,necm1soa.9fn8fd8tSa.hceienHls.isetUpGaslit.tnir1yna8Tg:srltoasr6btpu7siict-mtde7uuor5rl-eu.(RsPooasfnaeuctnlchtieerhsuaassels.aatnrh1dge9uts9ar)3se:c.- similaritiestoP2-likepurinoreceptorsofvertebrates.J.Comp.Phys- (olfactory)sensillaofthespinylobster,Panulirusargus.CellTissue iol.A. 158: 331-338. Res. 251:95-103. Carr,W.E.S.,H.G.Trapido-Rosenthal,andR.A.Gleeson. 1989. Hazlett,B.A. 1968. Stimuli involvedinthefeedingbehaviorofthe Stimulantsoffeeding behaviorin marineorganisms: receptorand hermit crab Clihanariiis vittatus (Decapoda. Paguridae). Crusta- perireceptoreventsprovideinsightintomechanismsofmixtureinter- ceaiia15:305-311. actions. Pp. 27-45 in Perception ofComplexSmellsandTastes, Johnson.B.R.,P.Borroni,andJ.Atema.1985. Mixtureeffectsin D.G.Laing,W.S.Cain.R.L.McBride,andB.W.Ache,eds.Aca- primary olfactory and gustatory receptor cells from the lobster. demicPress,Sydney. Chem.Senses10: 367-373. Carr, W.E.S., J.C. Netherton, R.A. Gleeson, and C.D. Derby. Lehninger,A.L.,D.L.Nelson,andM.M.Cox.1993. Principlesof 1996. Stimulationoffeedingbehaviorinfish:analysesoftissues Biochemistry. Worth.NewYork. ofdiversemarineorganisms.Biol. Bull. 190: 149-160. Lynn,W.H.,E.A.Meyer,C.E.Peppiatt,and C.D.Derby. 1994. CHEMOSENSORY ACTIVATION OF GROOMING 115 Perceptionofodormixturesbythespinylobster(Panulini.iargus}. Schmidt M., L. Van Ekeris, and B.W. Ache. 1992. Antennular Cliem.Senses19: 331-347. projectionstothemidbrainofthespinylobster.I.Sensoryinnerva- Mackie,A.M.,andP.T.Grant.1974. Interspeciesandintraspecies tionofthelateralandmedialantennularneuropils.J.Comp.Neurol. communicationbymarineinvertebrates.Pp. 105-141 inChemore- 318: 277-290. ception inMarineOrganisms. P.T.GrantandA.M. Mackie,eds. Schmitt, B.C., and B.W. Ache. 1979. Olfaction: responses of a MichcAehcloa,wdieWam.ki.cC.1P,9r9eH3s..s,G.LSotTnerrdaeoopnsi.edloe-cRtiovseendtetheaclt.ioEn.oTf.amCihnaoo,aciadnsdbyM.lobWsate-r SchodofeecpRapep,ceoDpd.toaDrr.es1ea9nn9hd4a.CnhcaeGndlnuebtlyasm:falGitcekPirrnegoc.teepSitconir-esCn.ocuPepp.2l0e15d2:R9e2-c0e14p4-t02or0isn6,.HaS.ndJ.bPoeork- olfactoryneurons./. Camp.Physio/.A. 171: 705-712. outka,ed.CRCPress,BocaRaton.FL Moore,P.A.,andJ.Atema. 1991. Spatialinformationinthethree- Snow, P.J. 1973. The antennularactivitiesofthehermitcrab. Pa- Olsob4Adnyi0M,m8oeP-dnK4os.1roi8laSof..nn,atacltcaoonfrmdiynperoCes.utcnreDdup.ctstouDrarenersdibotmyfeis.axnto1ufa9rq9etu5sha.e.tiJs.cpIiConnohdyimobprli.otpbilPsouthnmeyersoi.foPlaBt.inaouuAllr.ii1rnB7euu6ls:la.an5rd12g87u15-s:' Sungtag1h,un1erd5DuBo.sp:l-afYraat.1/ic,9aat-sloWk2raec6ylhn.tasohriraasglcatl(ne,BreiWonzef.adtitWicho.ten),.soapfJni.ndpyuE.tC\al.pot.biDsv.BteieoDrtl.ea.ruCbr5oiy8nm:.ep71.r94e95cB6e-i.p7ot6co5hrI.edpmer.nottiPefhiivncssaitoifloo.nr 540. ROolesroc5n,h',e-RmKA.i.,cMaPSal.n,adcHnh.daRr.Gta.acDtuiTenlrrnilaezapamiitandinoot.-nhReo1of9ss8pei-in4nn.dtyehpalTeolnbh,sdetaeennrst.dtroBuClrc.ftaauiDcrn.teoDRraeeynsrd.rbeyc5c.a8el3pc1:ti9of9r2i2c6.sa2itt-ie2osBn7if0ooo.fr TTriearpo(nifHedocyomh,-eaRmrAoo.usrseJe.nc,atemhpReat.rloi,rVcsoaHinf.gurtsGo,).m.,atnBWhideo.lm.JEe..dBuAiSlat.lle.Cmaaa1nr7.t4re:,n1n93au86ln84ad.r-3Rf7i.R2leAa.sm.penoGtnlseoeefstophrneo.pleo1rb9ts8it7ee.sr thecrustaceancuticle.Amer.Zoo/.24: 893-909. Biochemistryofanolfactorypurinergicsystem: dephosphorylation RoyenP1e,r1ro4vxD.a.itmiBan.lg1st9he8eg9.maenntteCennnmtuorltaaolrrnaperruboroxoriinmzsaa.ltiMosanergp.maettBneetrhnaosvf.oCfaPlmhloyistnioeorclt.nees1u4sr:aopnis1d0ui1sn.-- Trap4o19if9:d8e8ox.1-c1Ri7ot4saAt-emon1rt1myh8oa2nl.ua,ccliHed.otuGip.dt,easSk.eaWnbadychutpohtecakokile,faocMft.oarOdytetonoor,sgiaannne.dofWJ.t.heNEe.suprSi.oncyChaleromrb..- Roye,D.B. 1994. Antennularwithdrawalmotorneuronsinthelateral ster.Am. Zool. 28:48(abstract). antennular neuropil of Callinectes sapidus. J. Crustac. Biol. 14: Voigt,R.,andJ.Atema.1992. Tuningofchemoreceptorcellsofthe 484-496. secondantennaoftheAmericanlobster(Homarusamericanus)with Schembri,P.J.1981. FeedinginEbaliatuberosa(Pennant)(Crusta- acomparisonoffourofitschemoreceptororgans.J.Comp.Phvsiol. cea: Decapoda:Leucosiidae).J.Exp.Mar.Biol.Ecol.55: 1-10. A 171:673-683. Schmidt.M.,and B.W.Ache. 1992. Antennularprojectionstothe Voigt,R.,A.M.Weinstein,andJ.Atema. 1997. Spectraltuningof midbrainofthespinylobster.II.Sensoryinnervationoftheolfactory chemoreceptorcellsinthelateralantennulesoftheAmericanlobster. lobe.J. Comp. Nenrol. 318: 291-303. Homarusamericanus.Mar. Freshw. Behav. Phvsiol. 30:inpress. Schmidt,M.,andB.W.Ache.1996. Processingofantennularinput Zimmer-Faust.R.K.,W.C.Michel,J.E.Tyre,andJ.C.Case.1984. inthebrainofthespinylobster,Panulirusargus. I.Non-olfactory ChemicalinductionoffeedinginCaliforniaspinylobster,Panulirus chemosensoryandmechanosensorypathwayofthelateralandme- interruptus (Randall): responses to molecular weight fractions of dianantennularneuropils.J. Comp.Physiol.A 178:579-604. abalone.J. Chem. Ecol. 10:957-971.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.