ebook img

Chemometrics: Classification of spectra - University of Vaasa PDF

36 Pages·2010·0.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemometrics: Classification of spectra - University of Vaasa

Chemometrics: Classification of spectra Vladimir Bochko Jarmo Alander UniversityofVaasa November 1, 2010 VladimirBochko Chemometrics:Classification 1/36 Contents • Terminology • Introduction • Big picture • Support Vector Machine • Introduction • LinearSVMclassifier • NonlinearSVMclassifier • KNN classifier • Cross-validation • Performance evaluation VladimirBochko Chemometrics:Classification 2/36 Terminology Thetaskofpatternrecognitionistoclassifytheobjectsintoanumber ofclasses. • Objectsarecalledpatternsorsamples. • Measurementsofparticularobjectparametersarecalledfeaturesor componentsorvariables. • Theclassifiercomputesthedecisioncurvewhichdividesthefeature spaceintoregionscorrespondingtoclasses. • Theclassisagroupofobjectscharacterizedbysimilarfeatures. • Thedecisionmaynotbecorrect. Inthiscaseamisclassification occurs. • Thepatternsusedtodesigntheclassifierarecalledtraining(or calibration)patterns. • Thepatternsusedtotesttheclassifierarecalledtestpatterns. VladimirBochko Chemometrics:Classification 3/36 Introduction • Ifthetrainingdataisavailablethenwetellaboutsupervisedpatternrecognition. • Ifthetrainingdataisnotavailablethenwetellaboutunsupervisedpattern recognitionorclustering. • Weconsideronlysupervisedpatternrecognition.Inthiscasethetrainingset consistsofdataXandclasslabelsY. • WhenwetesttheclassifierusingthetestdataX,theclassifierpredictsclass lablesY. • Thus,classificationrequirestrainingorcalibrationandtest.SOLOGUI[3]has buttons:calibrationandtest/validation: VladimirBochko Chemometrics:Classification 4/36 Abbreviations • KNN-K-nearestneighborclassifier.TheKNNclassifierrequireslabels. • SVM-SupportVectorMachines.TheSVMclassifierrequireslabels. • PLS-PartialLeastSquares.Themapping(compression),regressionand classificationtechnique.PLSrequireslabels. • PCA-PrincipalComponentAnalyzis.Themapping(compression)technique. Labelsarenotneeded. • DA-DiscriminantAnalysis,e.g.PLSDA,SVMDA.DAmeansthatclassificationis used. • MCS-MultiplicativeScatterCorrection.Thepreprocessingtechnique. • SNV-StandardNormalVariatetransformation.Thepreprocessingtechnique. VladimirBochko Chemometrics:Classification 5/36 Big picture Classification/prediction Measured spectra Preprocessing MCS, SNV, smoothing derivatives PCA, PLS SVMDA: classifire design Classifier Training X Training Y Tested X Knn, SVM, PLS Model Training/validation Classification/prediction System evaluation Model Predicted Y VladimirBochko Chemometrics:Classification 6/36 Example Wehavegreen,yellow,orangeandredtomato. Fromthesalesmanviewpoint theorangeandredtomatoaresuitableforsale. Thereforetomatoisdivided intotwoclasses: green/yellowandorange/red. VladimirBochko Chemometrics:Classification 7/36 Measurement • ThetypicalmeasurementsystemisshowninFigure. • Important! WriteMEMOduringmeasurement. MEMOincludesaname ofthefile,physicalorchemicalparameterofobject,i.gcheesefatness, andclasslabels. Computer MEMO Light source Spectrometer N File name Parameters Class labels (cid:0)(cid:0)(cid:1)(cid:1)pL(cid:0)(cid:0)(cid:1)(cid:1)riogbh(cid:0)(cid:0)(cid:1)(cid:1)et(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)sensor probe 1 Measured object VladimirBochko Chemometrics:Classification 8/36 Spectral data Spectrameasuredbyaspectrometerareusuallyarrangedasfollows: • Thefirstrowiswavelength. • Thefirstcolumnisasamplenumber. • Themeasuredspectrumvaluesgivenintablecellscorrespondto wavelengthsgiveninnanometersandspectrumnumbers. • Somespectrumvaluescorruptedbynoisearenegative. Thebeginning andtheendofthespectracontainmostlynoise. VladimirBochko Chemometrics:Classification 9/36 Spectral data • Thespectralvaluesareobtainedatintervalsabout0.27nmintherange 195-1118nm. Thenumberofmeasurementpointsis3648thatis unnecessarilyhigh. • Theexampleshowshowdatamaybearrangedinthedatafileafter measurementswithspectrometer. a)Dataincludeswavelengthsand samplenumbers. b)Datawithoutwavelengthsandsamplenumbers. In thiscaseavectorofwavelengthsshouldbekeptinaseparatefile. a b Wavelength 1, 2, ... , 3648 Wavelegths Sample number Sample 1 Spectrum 1 numbers 2 Spectrum 2 Matrix where entries are spectrum values Data X Labels Y VladimirBochko Chemometrics:Classification 10/36

Description:
Nov 1, 2010 Chemometrics: Classification. 1/36 Chemometrics: Classification . In exercises we will use the approach based on cumulative variances.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.