ebook img

Chemistry in Microelectronics PDF

381 Pages·2013·7.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemistry in Microelectronics

Chemistry in Microelectronics Chemistry in Microelectronics Edited by Yannick Le Tiec Series Editor Robert Baptist Firstpublished2013inGreatBritainandtheUnitedStatesbyISTELtdandJohnWiley&Sons,Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentionedaddress: ISTELtd JohnWiley&Sons,Inc. 27-37StGeorge’sRoad 111RiverStreet LondonSW194EU Hoboken,NJ07030 UK USA www.iste.co.uk www.wiley.com ©ISTELtd2013 TherightsofYannickLeTiectobeidentifiedastheauthorofthisworkhavebeenassertedbyhimin accordancewiththeCopyright,DesignsandPatentsAct1988. LibraryofCongressControlNumber: 2012955113 BritishLibraryCataloguing-in-PublicationData ACIPrecordforthisbookisavailablefromtheBritishLibrary ISBN:978-1-84821-436-1 PrintedandboundinGreatBritainbyCPIGroup(UK)Ltd.,Croydon,SurreyCR04YY Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Chapter1.Chemistryin the“FrontEndoftheLine”(FEOL): Deposits,GateStacks,EpitaxyandContacts . . . . . . . . . . . . . . . . . . . 1 FrançoisMARTIN,Jean-MichelHARTMANN,VéroniqueCARRONand YannickLETIEC 1.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.Arrangementofthegate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1.Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2.Siliconnitridingprocesses . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3.TheintroductionoftheHighK/metalgatestacks. . . . . . . . . . . 6 1.2.4.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.Chemistryofcrystallinematerials . . . . . . . . . . . . . . . . . . . . . . 19 1.3.1.Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2.Afewbasicideasaboutepitaxy . . . . . . . . . . . . . . . . . . . . . 20 1.3.3.Surfacepreparationpriortoepitaxy. . . . . . . . . . . . . . . . . . . 24 1.3.4.Low-temperatureSiandSiGegrowth:thecomparison ofthreeprecursors(silane,disilaneanddichlorosilane). . . . . . . . . . . 30 1.3.5.Integrationandconclusion . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4.Contactareasbetweenthegateandthe“source”and“drain” . . . . . . 38 1.4.1.Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.4.2.IntroductiontotheconventionalNiSiprocessfor sub-90nmnodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.4.3.ImplicationsfortheSALICIDEprocessoftherecent technologyevolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.4.4.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 vi ChemistryinMicroelectronics 1.5.Generalconclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1.6.ListofAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.7.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Chapter2.ChemistryinInterconnects. . . . . . . . . . . . . . . . . . . . . . . 81 VincentJOUSSEAUME,Paul-HenriHAUMESSER,CarolePERNEL,Jeffery BUTTERBAUGH,SylvainMAÎTREJEANandDidierLOUIS 2.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.2.Interconnects:generalitiesandbackground. . . . . . . . . . . . . . . . . 83 2.2.1.Whatconditionsarerequiredforaninterconnect? . . . . . . . . . . 83 2.2.2.Themaintechnologicaladvancements . . . . . . . . . . . . . . . . . 90 2.2.3.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.3.Dielectricdeposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.3.1.Dielectricgeneralities . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.3.2Interlinedielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.3.3.Barrierdielectrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.3.4.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 2.4.Depositionandpropertiesofmetallayersfor interconnectstructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 2.4.1.Themanufactureofinterconnectstructures . . . . . . . . . . . . . . 123 2.4.2.Thechemistryofmaterialsandfunctionalproperties. . . . . . . . . 126 2.4.3.Thechemistryofinterfaces. . . . . . . . . . . . . . . . . . . . . . . . 129 2.4.4.Thechemistryofmetaldepositionprocesses . . . . . . . . . . . . . 130 2.4.5.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 2.5.Cleaningprocessforcopperinterconnects . . . . . . . . . . . . . . . . . 144 2.5.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 2.5.2.Impactofcorrosioninmicroelectronics . . . . . . . . . . . . . . . . 146 2.5.3.Electrochemicaldiagnostictools. . . . . . . . . . . . . . . . . . . . . 151 2.5.4.Equipmentforcleaningcopperinterconnections . . . . . . . . . . . 156 2.6.Generalconclusionsandperspectives . . . . . . . . . . . . . . . . . . . . 161 2.7.ListofAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2.8.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Chapter3.TheChemistryofWetSurfacePreparation: Cleaning,EtchingandDrying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 YannickLETIECandMartinKNOTTER 3.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 3.2.Cleaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 3.2.1.Ammoniumhydrogenperoxidemixture(APM). . . . . . . . . . . . 188 3.2.2.Hydrochloricacidhydrogenperoxidemixture(HPM). . . . . . . . 194 3.2.3.Sulfuricacidhydrogenperoxidemixture(SPM) . . . . . . . . . . . 198 TableofContents vii 3.3.Wetetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 3.3.1.Hydrofluoricacid(HF) . . . . . . . . . . . . . . . . . . . . . . . . . . 202 3.3.2.BufferedoxideetchantorBOE(HF/NH F) . . . . . . . . . . . . . . 209 4 3.4.Rinsinganddrying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 3.4.1.Ultrapurewater(UPW) . . . . . . . . . . . . . . . . . . . . . . . . . . 214 3.4.2.Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 3.5.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 3.6.ListofAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 3.7.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Chapter4.TheUseandManagementofChemical FluidsinMicroelectronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 ChristianeGOTTSCHALK,KevinMCLAUGHLIN,JulieCREN,CatherinePEYNEand PatrickVALENTI 4.1.Ultrapurewater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 4.1.1.ParametersofUPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 4.1.2.UPWsystemunitoperations . . . . . . . . . . . . . . . . . . . . . . . 237 4.1.3.Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 4.1.4.Futuretrends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 4.2.Gasesforsemiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 4.2.1.Maingasesusedinthesemiconductorfabricationprocess . . . . . 252 4.2.2.Gasqualityrequirementsforsemiconductorfabrication. . . . . . . 257 4.2.3.Implementationofgasesusedinthemanufacturingof semiconductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 4.2.4.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 4.3.Dissolvedgases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 4.3.1.DI-O3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 4.3.2.DI-CO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 4.3.3.DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 4.4.High-puritychemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 4.4.1.Techniquesofpurificationforhigh-puritychemicals. . . . . . . . . 285 4.4.2.Handlingsystemsforhigh-puritychemicals. . . . . . . . . . . . . . 287 4.5.Wastemanagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 4.5.1.Emissionguidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 4.5.2.Liquidwastetreatment–maintechnologies. . . . . . . . . . . . . . 293 4.5.3.Gasabatementsystems . . . . . . . . . . . . . . . . . . . . . . . . . . 298 4.5.4.Recyclingandreusing . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 4.6.ListofAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 4.7.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 viii ChemistryinMicroelectronics Chapter5.SurfaceFunctionalizationforMicro-and Nanosystems:ApplicationtoBiosensors. . . . . . . . . . . . . . . . . . . . . . 309 AntoineHOANG,GillesMARCHAND,GuillaumeNONGLATON, IsabelleTEXIER-NOGUESandFrancoiseVINET 5.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 5.2.Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 5.2.1.Metaloxidesandsemiconductors . . . . . . . . . . . . . . . . . . . . 311 5.2.2.Carbonnanotubesandsiliconnanowires. . . . . . . . . . . . . . . . 313 5.2.3.Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 5.2.4.Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 5.2.5.PaperandTissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 5.3.Functionalizationprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 5.3.1.Activationandcleaningtreatments . . . . . . . . . . . . . . . . . . . 317 5.3.2.Silanizationprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 5.3.3.Sol-gelandpolymerdepositiontechniques. . . . . . . . . . . . . . . 324 5.3.4.Localizationprocesses. . . . . . . . . . . . . . . . . . . . . . . . . . . 325 5.4.Moleculeandmacromoleculeimmobilization . . . . . . . . . . . . . . . 332 5.4.1.Adsorptionandcovalentgrafting . . . . . . . . . . . . . . . . . . . . 332 5.4.2.Chemicalfunctionsforcovalentgrafting. . . . . . . . . . . . . . . . 334 5.4.3.Applicationsandexamples . . . . . . . . . . . . . . . . . . . . . . . . 337 5.4.4.Thechemicaltoolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 5.4.5.Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 5.5.Analytescapture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 5.5.1.Exampleofinvitroapplication. . . . . . . . . . . . . . . . . . . . . . 340 5.5.2.Exampleofinvivoapplication. . . . . . . . . . . . . . . . . . . . . . 342 5.5.3.Detectionofanalytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 5.6.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 5.7.ListofAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 5.8.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 ListofAuthors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Preface Over the last few decades, the size of transistors has been drastically shrunk although functionality of their circuits has increased. The physics models have been widely investigated and corrected to take into account physicalphenomenahappeningforverysmallfeatures.Thechemistriesused for surface preparation have long been considered as black boxes. Materials consumption has seriously been impacting on transistor performance pushing the engineering teams to develop new alternative chemical mixtures andsequences.Atthesametimeoverrecentyears,themetrologymadehuge progress, allowing a better characterization and understanding of the phenomena. This book isdivided into five chapters to analyze therole ofchemistry in the fabrication of advanced transistors: the chemicals and sequences used in processing, from cleaning to etching, the role and impact of the purity of the sources and materials used in “front end of the line (FEOL)” which correspond to the “heart” and performance of individual transistors, moving further to the “back end of the line” (BEOL) which is related to the interconnection of all the transistors designed earlier during the FEOL processing steps. Finally, the need of specific functionalization also requires key knowledge in surface treatments and chemical management, allowing applications like biosensors to develop new nanosystems. A new era is widelyopeningwiththeconvergenceofelectronicsandbiology. Chapter 1 allows the reader to enter the fascinating world of the FEOL, which can be considered as the place where the heart of the transistor is manufactured. Many domains are pretty important to properly optimize the transistor performance: from doping level and profile to capacitance and x ChemistryinMicroelectronics junction consideration, optimized integration of new materials in terms of nature, properties and thicknesses. In this chapter, the focus is on three key modules: the gate stack definition, the crystalline materials involved in source–drain areas and the contacts definition. These key elements will give atransistoritsfinalperformanceeitherbeingonthe“highperformance”side or being on the “low power” side. The gate stack optimization is mandatory and material choice is very impacting in this area: a careful choice of the best precursors for the deposited materials is necessary. Material science is alsomuchinvolvednotonlyinthegateareabutalsointhetwomainpartsof the transistor that are source and drain areas. Optimized undoped (or more recently in situ doped) monocrystalline materials have to be deposited on theseareasandafewstepslater,specificcontactshavethentoberealized. Chapter2bringsthereadertothenextstep,whichistheunderstandingof the interconnection between transistors themselves, which is called the BEOL. This chapter covers the aspects of optimizing the material properties so that a given transistor will be able to switch as quickly as requested, even if the signal needs to move through many metal layers of interconnection. Today,inmostadvancedtechnologies,thereareupto13metallevels,which allow connection between a few billions of transistors on “first – ground – floor or level 0”. The chip can be assimilated to a building (like a tower) with an ever smaller surface as a base and ever higher height adding new floors, up to 13 today. Engineering teams have then to design all the interconnectionsinsidesucha towerbuilding whichcould be seen as putting in place the right stairs, elevators, rooms, etc., so that carriers (electrons or holes)canmoveasfastaspossiblefromonepointtootherofthatbuilding. Chapter3coversthe main aspectsofthesurfacepreparationthatareused in the current industry and research laboratories. Since 1970, wet cleaning is a key driver when advanced technologies request new answers: alternate materials have been introduced to address the following nodes. Over the last 10 years, the specification list given to the cleaning experts is getting new criteriaand,today,therearekeyfocusesconcerningmaterialconsumptionor loss, as well as selectivity between materials during chemical exposure. Basic chemistries are revisited to address new competing materials because the “standard” semiconductor silicon surface/substrate is now challenged by germanium, silicon-germanium, and III–V compounds, among others. The main chemical reaction is still about oxidation and reduction or acidic and basic, then there comes the solution of multiple equation systems. This is nothing new to chemical science; only the theoretical approach of the basic Preface xi knowledge used for years has to be carefully applied to address the future challenges in transistor technology. In successive sections, the chapter describes the cleaning, the etching and the final rinsing-drying sequence: mechanisms, chemical reactions, impact of concentration and temperature arereported. Chapter 4 describes the use and management of chemical fluids in microelectronics. The production of semiconductor devices is extremely sensitivetowardany presenceoftraces oforganicormetalliccontamination. Undesired impurities must be kept at very low levels. Hence, it is important forallproductionsteps,startingalreadywiththeresourcingofchemicals,for example ultrapure water, gases and liquid chemicals. As device line widths continue to shrink, the requirement for ever higher water purities in semiconductor applications is expected to increase. Techniques to clean these chemicals, control them to the desired concentration and, finally, the treatment of waste water and gas abatement are covered. The chapter also presents unique problems for liquid and gas production as well as quality analysis with the outlook of reducing the overall consumption. Chapter 5 provides information regarding the surface functionalization for micro- and nanosystems, which are natural extensions of microelectronics and are now found in many convergent applications. Different materials are being investigated, from metal oxides, semiconductors, carbon nanotubes; silicon nanowires, metals or polymers. The functionalization processes are described: activation, cleaning, plasma treatments, chemical vapor deposition, sol-gel and polymer deposition techniques. Localization processes are also discussed: spotting, photolithography, scanning beam lithography, microcontact printing, etc. Mechanisms are explained, chemical reactions and related applications are detailed. This final chapter is a fascinating one to complete the book with, describingsomeinteractionsbetweenchemistryandmicroelectronics. After this technical outline, let me finally express my thanks for the commitment and considerable work of each coauthor who spent many hours carefully describing their expertise and picking up the most relevant references to his domain. The reader will find many relevant references at the end of each chapter (around 700 references in total throughout the book) including the most recent ones. I also would like to thank the editor for

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.