ebook img

Chemical Process Equipment Selection and Design PDF

802 Pages·2014·17.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemical Process Equipment Selection and Design

Chemical Process Equipment Selection and Design Third Edition James R. Couper W. Roy Penney James R. Fair Stanley M. Walas AMSTERDAM•BOSTON•HEIDELBERG•LONDON NEWYORK•OXFORD•PARIS•SANDIEGO SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO Butterworth-HeinemannisanimprintofElsevier Butterworth-HeinemannisanimprintofElsevier 225WymanStreet,Waltham,MA02451,USA TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK Firstedition1988 Secondedition2005 Revisedsecondedition2010 Thirdedition2012 Copyright©2012ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthePublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensing Agency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthan asmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshould bemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData Applicationsubmitted BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-12-396959-0 ForinformationonallButterworth-Heinemannpublications visitourwebsiteatwww.elsevierdirect.com Typesetby:diacriTech,Chennai,India PrintedintheUnitedStatesofAmerica 1213 10987654321 Preface to the Third Edition Thiseditionofthebookcontainsrevisedandupdatedinformation extensively updated and revised compared to the second and from both the second edition and the revised second edition, as revisedsecondeditionsofthebook. wellasnewmaterialasofearly2010.Theauthorsandcollabora- DrWayneJ.Genck,PresidentofGenckInternational,aren- torshaveincludedinformationessentialtothedesignandspecifi- owned international expert on crystallization has joined the con- cation of equipment needed for the ultimate purchasing of tributors, replacing John H. Wolf, Retired President of Swenson equipment.Thevastamountofliteraturehasbeenscreenedsothat ProcessEquipmentCompany. onlytime-testedpracticalmethodsthatareusefulinthedesignand Oldermethodsandobsoleteequipmentforthemostparthave specification of equipment are included. The authors and colla- beenremoved.Ifthereaderhasaninterestinoldermaterial,heor borators have used their judgment about what to include based shemightconsultpreviouseditionsofthisbook. upon their combined industrial and academic experience. The Thisbookisnotintendedasaclassroomtext,however,with emphasis is on design techniques and practice as well as what is some modifications and addition of examples and problems, it required to work with vendors in the selection and purchase of couldbeusedforteachingpurposes. equipment.Thismaterialwouldbeespeciallyhelpfultotheyoung engineer entering industry, thus bridging the gap between aca- JamesR.Couper demia and industry. Chapters 10, 13, 14, 15, and 16 have been W.RoyPenney ix Contents PREFACETOTHETHIRDEDITION ix 6.4. PipelineNetworks 88 6.5. OptimumPipeDiameter 92 PREFACETOTHESECONDEDITION x 6.6. Non-NewtonianLiquids 93 PREFACETOTHEFIRSTEDITION xi 6.7. Gases 99 6.8. Liquid-GasFlowinPipelines 103 CONTRIBUTORS xii 6.9. GranularandPackedBeds 106 6.10. Gas-SolidTransfer 110 CHAPTER0 RULESOFTHUMB:SUMMARY xiii 6.11. FluidizationofBedsofParticleswithGases 111 References 118 CHAPTER1 INTRODUCTION 1 1.1. ProcessDesign 1 CHAPTER7 FLUIDTRANSPORTEQUIPMENT 121 1.2. Equipment 1 7.1. Piping 121 1.3. CategoriesofEngineeringPractice 1 7.2. PumpTheory 123 1.4. SourcesofInformationforProcessDesign 2 7.3. PumpCharacteristics 126 1.5. Codes,Standards,andRecommendedPractices 2 7.4. CriteriaforSelectionofPumps 128 1.6. MaterialandEnergyBalances 3 7.5. EquipmentforGasTransport 130 1.7. EconomicBalance 4 7.6. TheoryandCalculationsofGasCompression 139 1.8. DesignSafetyFactors 6 7.7. EjectorandVacuumSystems 152 1.9. SafetyofPlantandEnvironment 7 References 159 1.10. SteamandPowerSupply 8 1.11. DesignBasis 10 1.12. LaboratoryandPilotPlantWork 12 CHAPTER8 HEATTRANSFERANDHEAT OtherSourcesofInformation 15 EXCHANGERS 161 8.1. ConductionofHeat 161 8.2. MeanTemperatureDifference 163 CHAPTER2 FLOWSHEETS 17 8.3. HeatTransferCoefficients 165 2.1. BlockFlowsheets 17 8.4. DataofHeatTransferCoefficients 171 2.2. ProcessFlowsheets 17 8.5. PressureDropinHeatExchangers 183 2.3. ProcessandInstrumentationDiagrams(P&ID) 19 8.6. TypesofHeatExchangers 184 2.4. UtilityFlowsheets 19 8.7. Shell-and-TubeHeatExchangers 187 2.5. DrawingofFlowsheets 19 8.8. Condensers 195 References 29 8.9. Reboilers 199 8.10. Evaporators 201 8.11. FiredHeaters 202 CHAPTER3 PROCESSCONTROL 31 8.12. InsulationofEquipment 211 3.1. TheFeedbackControlLoop 31 8.13. Refrigeration 214 3.2. ControlLoopPerformanceandTuningProcedures 33 References 220 3.3. SingleStreamControl 34 3.4. UnitOperationControl 37 CHAPTER9 DRYERSANDCOOLINGTOWERS 223 Bibliography 51 9.1. InteractionofAirandWater 223 9.2. RateofDrying 226 CHAPTER4 DRIVERSFORMOVINGEQUIPMENT 53 9.3. ClassificationandGeneralCharacteristics ofDryers 230 4.1. Motors 53 9.4. BatchDryers 234 4.2. SteamTurbinesandGasExpanders 54 9.5. ContinuousTrayandConveyorBeltDryers 236 4.3. CombustionGasTurbinesandEngines 57 9.6. RotaryCylindricalDryers 239 References 60 9.7. DrumDryersforSolutionsandSlurries 246 9.8. PneumaticConveyingDryers 247 CHAPTER5 TRANSFEROFSOLIDS 61 9.9. FlashandRingDryers 249 9.10. FluidizedBedDryers 253 5.1. SlurryTransport 61 9.11. SprayDryers 259 5.2. PneumaticConveying 63 9.12. CoolingTowers 266 5.3. MechanicalConveyorsandElevators 68 References 275 5.4. Chutes 76 5.5. SolidsFeeders 77 References 81 CHAPTER10 MIXINGANDAGITATION 277 10.1. ABasicStirredTankDesign 277 10.2. VesselFlowPatterns 279 CHAPTER6 FLOWOFFLUIDS 83 10.3. AgitatorPowerRequirements 281 6.1. PropertiesandUnits 83 10.4. ImpellerPumping 281 6.2. EnergyBalanceofaFlowingFluid 84 10.5. TankBlending 281 6.3. Liquids 86 10.6. HeatTransfer 287 v vi CONTENTS 10.7. VortexDepth 288 14.3. CalculationofStageRequirements 494 10.8. SolidSuspension 289 14.4. CountercurrentOperation 497 10.9. SolidsDissolving 294 14.5. LeachingofSolids 501 10.10. Gas-LiquidDispersions 295 14.6. NumericalCalculationofMulticomponent 10.11. Liquid-Liquid(L-L)Dispersions 298 Extraction 503 10.12. PipelineMixers 303 14.7. EquipmentforExtraction 507 10.13. CompartmentedColumns 307 14.8. Pilot-Testing 526 10.14. FastCompetitive/Consecutive(C/C)Reactions 315 References 527 10.15. Scale-Up 321 References 326 CHAPTER15 ADSORPTIONANDIONEXCHANGE 529 CHAPTER11 SOLID-LIQUIDSEPARATION 329 15.1. AdsorptionProcesses 529 15.2. Adsorbents 529 11.1. ProcessesandEquipment 329 15.3. AdsorptionBehaviorinPackedBeds 536 11.2. Liquid-ParticleCharacteristics 330 15.4. Regeneration 537 11.3. TheoryofFiltration 330 15.5. GasAdsorptionCycles 543 11.4. ResistancetoFiltration 337 15.6. AdsorptionDesignandOperatingPractices 544 11.5. ThickeningandClarifying 341 15.7. ParametricPumping 547 11.6. LaboratoryTestingandScale-Up 342 15.8. IonExchangeProcesses 548 11.7. IllustrationsofEquipment 343 15.9. ProductionScaleChromatography 554 11.8. ApplicationsandPerformanceofEquipment 355 GeneralReferences 558 References 359 CHAPTER16 CRYSTALLIZATIONFROMSOLUTIONS CHAPTER12 DISINTEGRATION,AGGLOMERATION, ANDMELTS 561 ANDSIZESEPARATIONOFPARTICULATESOLIDS 361 16.1. SomeGeneralCrystallizationConcepts 562 12.1. Screening 361 16.2. ImportanceoftheSolubilityCurveinCrystallizer 12.2. CommercialClassificationwithStreamsofAiror Design 563 Water 368 16.3. SolubilitiesandEquilibria 563 12.3. SizeReduction 368 16.4. CrystalSizeDistribution 566 12.4. EquipmentforSizeReduction 370 16.5. TheProcessofCrystallization 566 12.5. ParticleSizeEnlargement(Agglomeration) 378 16.6. TheIdealStirredTank 574 References 396 16.7. KindsofCrystallizers 577 Bibliography 397 16.8. MeltCrystallizationandPurification 584 References 589 CHAPTER13 DISTILLATIONANDGAS ABSORPTION 399 CHAPTER17 CHEMICALREACTORS 591 13.0. Introduction 399 13.1. Vapor-LiquidEquilibria 400 17.1. DesignBasisandSpaceVelocity 591 13.2. Single-StageFlashCalculations 402 17.2. RateEquationsandOperatingModes 591 13.3. EvaporationorSimpleDistillation 406 17.3. MaterialandEnergyBalancesofReactions 596 13.4. BinaryDistillation 407 17.4. NonidealFlowPatterns 597 13.5. BatchDistillation 419 17.5. SelectionofCatalysts 602 17.6. TypesandExamplesofReactors 608 13.6. MulticomponentSeparation:General Considerations 421 17.7. HeatTransferinReactors 623 17.8. ClassesofReactionProcessesandTheirEquipment 630 13.7. EstimationofRefluxandNumberofTrays 17.9. BiochemicalReactorsandProcesses 642 (Fenske-Underwood-GillilandMethod (1932,1948,1940)) 423 References 652 13.8. AbsorptionFactorShortcutMethodofEdmister (1947–1949) 426 CHAPTER18 PROCESSVESSELS 655 13.9. SeparationsinPackedTowers 427 13.10. BasisforComputerEvaluationofMulticomponent 18.1. Drums 655 Separations 433 18.2. FractionatorRefluxDrums 656 13.11. SpecialKindsofDistillationProcesses 439 18.3. Liquid-LiquidSeparators 657 13.12. TrayTowers 454 18.4. Gas-LiquidSeparators 657 13.13. PackedTowers 460 18.5. StorageTanks 664 13.14. EfficiencesofTraysandPackings 464 18.6. MechanicalDesignofProcessVessels 667 13.15. EnergyConsiderations 476 18.7. BinsandHoppers 669 References 485 References 675 CHAPTER14 EXTRACTIONANDLEACHING 487 CHAPTER19 MEMBRANESEPARATIONS 677 14.1. Introduction 487 19.1. MembraneProcesses 677 14.2. EquilibriumRelations 488 19.2. Liquid-PhaseSeparations 683 CONTENTS vii 19.3. GasPermeation 684 CHAPTER21 COSTSOFINDIVIDUAL 19.4. MembraneMaterialsandApplications 684 EQUIPMENT 731 19.5. MembraneCellsandEquipmentConfigurations 686 19.6. IndustrialApplications 687 19.7. SubqualityNaturalGas 687 19.8. TheEnhancementofSeparation 690 APPENDIXA UNITS,NOTATION,ANDGENERAL 19.9. PermeabilityUnits 693 DATA 743 19.10. DerivationsandCalculationsforSingle-StageMembrane Separations 697 19.11. RepresentationofMultistageMembraneCalculations foraBinarySystem 703 19.12. PotentialLarge-ScaleCommercialization 706 APPENDIXB EQUIPMENTSPECIFICATION References 707 FORMS 753 CHAPTER20 GAS-SOLIDSEPARATIONS 709 20.1. Gas-SolidSeparations 709 APPENDIXC QUESTIONNAIRESOFEQUIPMENT 20.2. FoamSeparationandFrothFlotation 717 SUPPLIERS 799 20.3. SublimationandFreezeDrying 719 20.4. SeparationsbyThermalDiffusion 720 20.5. ElectrochemicalSyntheses 722 References 729 INDEX 819 Chapter 0 RULES OF THUMB: SUMMARY Although experienced engineers know where to find information 11. Efficienciesofreciprocatingcompressors:65–70%atcompres- and how to make accurate computations, they also keep a mini- sionratioof1.5,75–80%at2.0,and80–85%at3–6. mumbodyofinformationreadilyavailable,madelargelyofshort- 12. Efficiencies of large centrifugal compressors, 6000–100,000 cuts and rules of thumb. This compilation is such a body of ACFMatsuction,are76–78%. information from the material in this book and is, in a sense, a 13. Rotarycompressorshaveefficienciesof70–78%,exceptliquid- digestofthebook. linertypewhichhave50%. Rules of thumb, also known as heuristics, are statements of 14. Axialflowcompressorefficienciesareintherangeof81–83%. known facts. The word heuristics is derived from Greek, to dis- coverortoinvent,sotheserulesareknownordiscoveredthrough CONVEYORSFORPARTICULATESOLIDS useandpracticebutmaynotbeabletobetheoreticallyproven.In practice,theyworkandaremostsafelyappliedbyengineerswho 1. Screwconveyorsareusedtotransportevenstickyandabrasive are familiar with the topics. Such rules are of value for approxi- solidsupinclinesof20°orso.Theyarelimitedtodistancesof mate design and preliminary cost estimation, and should provide 150ftorsobecauseofshafttorquestrength.A12in.diacon- eventheinexperiencedengineerwithperspectiveandwherebythe veyor can handle 1000–3000 cuft/hr, at speeds ranging from reasonableness of detailed and computer-aided design can be 40to60rpm. appraisedquickly,especiallyonshortnotice,suchasaconference. 2. Beltconveyorsareforhighcapacityandlongdistances(amileor Everydayactivitiesarefrequentlygovernedbyrulesofthumb. more,butonlyseveralhundredfeetinaplant),upinclinesof30° Theyserveuswhenwewishtotakeacourseofactionbutwemay maximum.A24in.widebeltcancarry3000cuft/hrataspeedof notbeinapositiontofindthebestcourseofaction. 100ft/min,butspeedsupto600ft/minaresuitedforsomemate- Much more can be stated in adequate fashion about some rials.Thenumberofturnsislimitedandthemaximuminclineis topics than others, which accounts, in part, for the spottiness of 30degrees.Powerconsumptionisrelativelylow. the present coverage. Also, the spottiness is due to the ignorance 3. Bucket elevators are used for vertical transport of sticky and and oversights on the part of the authors. Therefore, every engi- abrasivematerials.Withbuckets20×20in.capacitycanreach neerundoubtedlywillsupplementormodifythismaterial(Walas, 1000cuft/hr at a speedof 100ft/min, but speedsto 300ft/min 1988). areused. 4. Drag-typeconveyors(Redler)aresuitedforshortdistancesinany directionandarecompletelyenclosed.Unitsrangeinsizefrom COMPRESSORSANDVACUUMPUMPS 3in.squareto19in.squareandmaytravelfrom30ft/min(fly 1. Fans are used to raise the pressure about 3% (12 in. water), ash)to250ft/min(grains).Powerrequirementsarehigh. blowers raise to less than 40 psig, and compressors to higher 5. Pneumatic conveyors are for high capacity, short distance pressures, although the blower range commonly is included (400ft)transportsimultaneouslyfromseveralsourcestoseveral inthecompressorrange. destinations. Either vacuum or low pressure (6–12 psig) is 2. Vacuum pumps: reciprocating piston type decrease the pres- employed with a range of air velocities from 35 to 120 ft/sec sure to 1 Torr; rotary piston down to 0.001 Torr, two-lobe depending on the material and pressure. Air requirements are rotarydownto0.0001Torr;steamjetejectors,onestagedown from1to7cuft/cuftofsolidtransferred. to 100 Torr, three stage down to 1 Torr, five stage down to 0.05Torr. COOLINGTOWERS 3. A three-stage ejector needs 100 lb steam/lb air to maintain a pressureof1Torr. 1. Water in contact with air under adiabatic conditions even- 4. In-leakageofairtoevacuatedequipmentdependsontheabso- tuallycoolstothewetbulbtemperature. lutepressure,Torr,andthevolumeoftheequipment,Vcuft, 2. Incommercialunits,90%ofsaturationoftheairisfeasible. accordingtow=kV2/3lb/hr,withk=0.2whenPismorethan 3. Relative cooling tower size is sensitive to the difference 90 Torr, 0.08 between 3 and 20 Torr, and 0.025 at less than betweentheexitandwetbulbtemperatures: 1Torr. ΔT(°F) 5 15 25 5. Theoreticaladiabatichorsepower ðTHPÞ=½ðSCFMÞT1=8130a(cid:1) Relativevolume 2.4 1.0 0.55 ½ðP =P Þa−1(cid:1), where T is inlet temperature in °F + 460 and 2 1 1 a=(k−1)/k,k=C /C. 4. Towerfillisofahighlyopenstructuresoastominimizepressure p v 6. OutlettemperatureT =T ðP =P Þa: drop,whichisinstandardpracticeamaximumof2in.ofwater. 2 1 2 1 7. Tocompress air from 100°F, k=1.4, compression ratio =3, 5. Watercirculationrateis1–4gpm/sqftandairratesare1300– theoretical power required = 62 HP/million cuft/day, outlet 1800lb/(hr)(sqft)or300–400ft/min. temperature306°F. 6. Chimney-assisted natural draft towers are of hyperboloidal 8. Exit temperature should not exceed 350–400°F; for diatomic shapes because they have greater strength for a given thick- gases (C /C = 1.4) this corresponds to a compression ratio ness; a tower 250 ft high has concrete walls 5–6 in. thick. p v ofabout4. Theenlargedcrosssectionatthetopaidsindispersionofexit 9. Compressionratioshouldbeaboutthesameineachstageofa humidairintotheatmosphere. multistageunit,ratio=(P /P )1/n,withnstages. 7. Countercurrentinduceddrafttowersarethemostcommonin n 1 10. Efficiencies of fans vary from 60–80% and efficiencies of process industries. They are able to cool water within 2°F of blowersareintherangeof70–85%. thewetbulb. xiii xiv RULESOFTHUMB: SUMMARY 8. Evaporationlossesare1%ofthecirculationforevery10°Fof 6. Hammermillsbeatthematerialuntilitissmallenoughtopass cooling range. Windage or drift losses of mechanical draft through the screen at the bottom of the casing. Reduction towersare0.1–0.3%.Blowdownof2.5–3.0%ofthecirculation ratiosof40arefeasible.Largeunitsoperateat900rpm,smal- isnecessarytopreventexcessivesaltbuildup. leronesupto16,000rpm.Forfibrousmaterialsthescreenis 9. Towers that circulate cooling water to several process units providedwithcuttingedges. andarevulnerabletoprocessintrusionshouldnotusefilmfill 7. Rod mills are capable of taking feed as large as 50 mm and duetotheriskoffoulingandfillfailure(Huchler,2009). reducing it to 300 mesh, but normally the product range is 10. Sites with nearby obstructions or where there is the risk that 8–65 mesh. Rods are 25–150 mm dia. Ratio of rod length to the tower plume or combustion exhaust may be entrained mill diameter is about 1.5. About 45% of the mill volume is should use a couterflow configuration, and may need special occupiedbyrods.Rotationisat50–65%ofcritical. airintakedesigns(Huchler,2009). 8. Ballmillsarebettersuitedthanrodmillstofinegrinding.The 11. If the facility, like a power plant, has very high heat loads chargeisofequalweightsof1.5,2,and3in.ballsforthefinest requiring high recirculating water rates and large cooling grinding. Volume occupied by the balls is 50% of the mill loads, it may require the use of natural-draft towers with volume. Rotation speed is 70–80% of critical. Ball mills have hyperbolicconcreteshells(Huchler,2009). alengthtodiameterratiointherange1–1.5.Tubemillshave 12. Theuseofvariable-frequencyfandrivesincreasecapitalcosts a ratio of 4–5 and are capable of very fine grinding. Pebble and provide operating flexibility for towers of two or more mills have ceramic grinding elements, used when contamina- cells(Huchler,2009). tionwithmetalistobeavoided. 9. Roller mills employ cylindrical or tapered surfaces that roll along flatter surfaces and crush nipped particles. Products of CRYSTALLIZATIONFROMSOLUTION 20–200mesharemade. 10. Fluidenergymillsareusedtoproducefineorultrafine(submi- 1. Thefeedtoacrystallizershouldbeslightlyunsaturated. cron)particles. 2. Completerecoveryofdissolvedsolidsisobtainablebyevapora- tion,butonlytotheeutecticcompositionbychilling.Recovery bymeltcrystallizationalsoislimitedbytheeutecticcomposition. DISTILLATIONANDGASABSORPTION 3. Growth rates and ultimate sizes of crystals are controlled by 1. Distillationusuallyisthemosteconomicalmethodofseparat- limitingtheextentofsupersaturationatanytime. ing liquids, superior to extraction, adsorption, crystallization, 4. Crystalgrowthratesarehigherathighertemperatures. orothers. 5. TheratioS=C/C ofprevailingconcentrationtosaturation concentrationiskespattneartherangeof1.02–1.05. 2. Foridealmixtures,relativevolatilityistheratioofvaporpres- suresα =P /P . 6. Incrystallizationbychilling,thetemperatureofthesolutionis 12 2 1 kept at most 1–2°F below the saturation temperature at the 3. Foratwo-component,idealsystem,theMcCabe-Thielemethod offersagoodapproximationofthenumberofequilibriumstages. prevailingconcentration. 4. Toweroperatingpressureisdeterminedmostoftenbythetem- 7. Growth rates of crystals under satisfactory conditions are in the range of 0.1–0.8 mm/hr. The growth rates are approxi- perature of the available condensing medium, 100–120°F if coolingwater;orbythemaximumallowablereboilertempera- matelythesameinalldirections. ture,150psigsteam,366°F. 8. Growthratesareinfluencedgreatlybythepresenceofimpuri- 5. Sequencingofcolumnsforseparatingmulticomponentmixtures: tiesandofcertainspecificadditivesthatvaryfromcasetocase. (a) perform the easiest separation first, that is, the one least 9. Batchcrystallizerstendtohaveabroadercrystalsizedistribu- demanding of trays and reflux, and leave the most difficult to tionthancontinuouscrystallizers. thelast;(b)whenneitherrelativevolatilitynorfeedconcentra- 10. Tonarrowthecrystalsizedistribution,coolslowlythroughthe tionvarywidely,removethecomponentsonebyoneasoverhead initialcrystallizationtemperatureorseedattheinitialcrystal- products;(c)whentheadjacentorderedcomponentsinthefeed lizationtemperature. varywidelyinrelativevolatility,sequencethesplitsintheorder ofdecreasingvolatility;(d)whentheconcentrationsinthefeed DISINTEGRATION varywidelybuttherelativevolatilitiesdonot,removethecom- ponentsintheorderofdecreasingconcentrationinthefeed. 1. Percentagesofmaterialgreaterthan50%ofthemaximumsize 6. Flashing may be more economical than conventional distilla- are about 50% from rolls, 15% from tumbling mills, and 5% tionbutislimitedbythephysicalpropertiesofthemixture. fromclosedcircuitballmills. 7. Economically optimum reflux ratio is about 1.25 times the 2. Closedcircuitgrindingemploysexternalsizeclassificationand minimumrefluxratioR . m returnofoversizeforregrinding.Therulesofpneumaticcon- 8. Theeconomicallyoptimumnumberoftraysisnearlytwicethe veying are applied to design of air classifiers. Closed circuit minimumvalueN . m ismostcommonwithballandrollermills. 9. The minimum number of trays is found with the Fenske- 3. Jawandgyratorycrushersareusedforcoarsegrinding. Underwoodequation 4. Jaw crushers take lumps of several feet in diameter down to 4 in. Stroke rates are 100–300/min. The average feed is sub- N =logf½ðx=ð1−xÞ(cid:1) =½x=ð1−xÞ(cid:1) g=logα: jected to 8–10 strokes before it becomes small enough to m ovhd btms escape.Gyratorycrushersaresuitedforslabbyfeedsandmake 10. Minimumrefluxforbinaryorpseudobinarymixturesisgivenby amoreroundedproduct. thefollowingwhenseparationisessentiallycompleteðx ≃1Þand D 5. Roll crushers are made either smooth or with teeth. A 24 in. D/Fistheratioofoverheadproductandfeedrates: toothed roll can accept lumps 14 in. dia. Smooth rolls effect reductionratiosuptoabout4.Speedsare50–900rpm.Capa- R D=F =1=ðα−1Þ,when feed is at the bubblepoint, m cityisabout25%ofthemaximumcorrespondingtoacontin- uousribbonofmaterialpassingthroughtherolls. ðRm+1ÞD=F =α=ðα−1Þ,when feed is at the dewpoint: RULESOFTHUMB: SUMMARY XV 11. Asafetyfactorof10%ofthenumberoftrayscalculatedbythe 2. Forunder100HP,electricmotorsareusedalmostexclusively. bestmeansisadvisable. Theyaremadeforupto20,000HP. 12. Refluxpumpsaremadeatleast25%oversize. 3. Induction motors are most popular. Synchronous motors are 13. Forreasonsofaccessibility,trayspacingsaremade20–30in. made for speeds as low as 150 rpm and are thus suited for 14. PFea=kupeffffiρffiifficffiffiiiennctyheorfantrgaey1s.0i–s1.a2t (vfta/sluece)s pofffilffibffiffit=ffiffihfficffieffiuffiffiffifffitvffiffi:aTpohrisfraacntgoer emxaadmepslmeafollrerlotwhansp5e0edHrPec.iAprovcaartieintygocfomenpcrleosssuorress,ibsuatvaarileabnloet, s v of F establishes the diameter of the tower. Roughly, linear fromweather-prooftoexplosion-proof. s velocities are 2 ft/sec at moderate pressures and 6 ft/sec in 4. Steam turbinesare competitive above 100HP. Theyare speed vacuum. controllable. They are used in applications where speeds and 15. The optimum value of the Kremser-Brown absorption factor demandsarerelativelyconstant.Frequentlytheyareemployed A=K(V/L)isintherange1.25–2.0. assparesincaseofpowerfailure. 16. Pressure drop per tray is of the order of 3 in. of water or 5. Combustion engines and turbines are restricted to mobile and 0.1psi. remotelocations. 17. Trayefficienciesfordistillationoflighthydrocarbonsandaqu- 6. Gasexpandersforpowerrecoverymaybejustifiedatcapacities eous solutions are 60–90%; for gas absorption and stripping, of several hundred HP; otherwise any needed pressure reduc- 10–20%. tioninprocessiseffectedwiththrottlingvalves. 18. Sievetrayshaveholes0.25–0.50in.dia,holeareabeing10%of 7. Axial turbines are used for power recovery where flow rates, theactivecrosssection. inlettemperaturesorpressuredropsarehigh. 19. Valvetrayshaveholes1.5in.diaeachprovidedwithaliftable 8. Turboexpanders are used to recover power in applications cap,12–14caps/sqftofactivecrosssection.Valvetraysusually whereinlettemperaturesarelessthan1000°F. arecheaperthansievetrays. 20. Bubblecap trays are used only when a liquid level must be DRYINGOFSOLIDS maintained at low turndown ratio; they can be designed for lowerpressuredropthaneithersieveorvalvetrays. 1. Dryingtimesrangefromafewsecondsinspraydryersto1hr 21. Weir heights are 2 in., weir lengths about 75% of tray dia- orlessinrotarydryersanduptoseveralhoursorevenseveral meter,liquidrateamaximumofabout8gpm/in.ofweir;mul- daysintunnelshelforbeltdryers. tipassarrangementsareusedathighliquidrates. 2. Continuoustrayandbeltdryersforgranularmaterialofnatural 22. Packingsof random and structuredcharacter aresuited espe- size or pelleted to 3–15 mm have drying times in the range of cially to towers under 3 ft dia and where low pressure drop 10–200min. isdesirable.Withproperinitialdistributionandperiodicredis- 3. Rotary cylindrical dryers operate with superficial air velocities tribution, volumetric efficiencies can be made greater than of 5–10 ft/sec, sometimes up to 35 ft/sec when the material is thoseoftraytowers.Packedinternalsareusedasreplacements coarse. Residence times are 5–90 min. Holdup of solid is for achieving greater throughput or separation in existing 7–8%. An 85% free cross section is taken for design purposes. towershells. Incountercurrentflow,theexitgasis10–20°Cabovethesolid; 23. For gas rates of 500 cfm, use 1 in. packing; for gas rates of in parallel flow, the temperature of the exit solid is 100°C. 2000cfmormore,use2in. Rotation speeds of about 4 rpm are used, but the product of 24. Theratioofdiametersoftowerandpackingshouldbeatleast rpmanddiameterinfeetistypicallybetween15and25. 15. 4. Drumdryersforpastesandslurriesoperatewithcontacttimes 25. Becauseofdeformability,plasticpackingislimitedtoa10–15ft of 3–12 sec, produce flakes 1–3 mm thick with evaporation depthunsupported,metalto20–25ft. ratesof 15–30kg/m2hr.Diameters are1.5–5.0ft;therotation 26. Liquid redistributors are needed every 5–10 tower diameters rate is 2–10 rpm. The greatest evaporative capacity is of the with pall rings but at least every 20 ft. The number of liquid orderof3000lb/hrincommercialunits. streamsshouldbe3–5/sqftintowerslargerthan3ftdia(some 5. Pneumatic conveying dryers normally take particles 1–3 mm expertssay9–12/sqft),andmorenumerousinsmallertowers. diabutupto10mmwhenthemoistureismostlyonthesurface. 27. Height equivalent to a theoretical plate (HETP) for vapor- Air velocities are 10–30 m/sec. Single pass residence times are liquid contacting is 1.3–1.8 ft for 1 in. pall rings, 2.5–3.0 ft 0.5–3.0secbutwithnormalrecyclingtheaverageresidencetime for2in.pallrings. is brought up to 60 sec. Units in use range from 0.2 m dia by 28. Packed towers should operate near 70% of the flooding rate 1mhighto0.3mdiaby38mlong.Airrequirementisseveral givenbythecorrelationofSherwood,Lobo,etal. SCFM/lbofdryproduct/hr. 29. Reflux drums usually are horizontal, with a liquid holdup of 6. Fluidizedbeddryersworkbestonparticlesofafewtenthsofa 5min half full. A takeoff pot for asecond liquidphase, such mmdia,butupto4mmdiahavebeenprocessed.Gasvelocities aswaterinhydrocarbonsystems,issizedforalinearvelocity of twice the minimum fluidization velocity are a safe prescrip- ofthatphaseof0.5ft/sec,minimumdiameterof16in. tion. In continuous operation, drying times of 1–2 min are 30. Fortowersabout3ftdia,add4ftatthetopforvapordisen- enough, but batch drying of some pharmaceutical products gagement and 6 ft at the bottom for liquid level and reboiler employsdryingtimesof2–3hr. return. 7. Spray dryers are used for heat sensitive materials. Surface 31. Limit the tower height to about 175 ft max because of wind moisture is removed in about 5 sec, and most drying is com- load and foundation considerations. An additional criterion pletedinlessthan60sec.Parallelflowofairandstockismost isthatL/Dbelessthan30. common. Atomizing nozzles have openings 0.012–0.15 in. and operate at pressures of 300–4000 psi. Atomizing spray wheels rotate at speeds to 20,000 rpm with peripheral speeds of DRIVERSANDPOWERRECOVERYEQUIPMENT 250–600 ft/sec. With nozzles, the length to diameter ratio of 1. Efficiency is greater for larger machines. Motors are 85–95%; the dryer is 4–5; with spray wheels, the ratio is 0.5–1.0. For steam turbines are 42–78%; gas engines and turbines are the final design, the experts say, pilot tests in a unit of 2 m 28–38%. diashouldbemade.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.