ebook img

Chemical evolution of the Milky Way: the origin of phosphorus PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemical evolution of the Milky Way: the origin of phosphorus

Astronomy&Astrophysicsmanuscriptno.fosforo4 (cid:13)c ESO2012 January20,2012 Chemical evolution of the Milky Way: the origin of phosphorus (ResearchNote) G.Cescutti1 ⋆,F.Matteucci2,3,E.Caffau4,5,andP.Franc¸ois5,6 1 Laboratoire d’Astrophysique, Ecole Polytechnique Fe´de´rale de Lausanne (EPFL),Observatoire de Sauverny, CH-1290 Versoix, Switzerland 2 DipartimentodiFisica,SezionediAstronomia,Universita`diTrieste,viaG.B.Tiepolo11,I-34131,Trieste,Italy 3 I.N.A.F.OsservatorioAstronomicodiTrieste,viaG.B.Tiepolo11,I-34131,Trieste,Italy 2 4 Zentrumfu¨rAstronomiederUniversita¨tHeidelberg,Landessternwarte,Ko¨nigstuhl12,69117Heidelberg,Germany 1 5 GEPI,ObservatoiredeParis,CNRSUniversite´ParisDiderot,PlaceJulesJanssen,92190,Meudon,France 0 6 Universite´dePicardieJulesVerne,33RueSaintLeu,Amiens,France 2 Receivedxxxx/Acceptedxxxx n a ABSTRACT J 9 Context.Recently,forthefirsttimetheabundanceofPhasbeenmeasuredindiskstars.Thisprovidestheopportunityofcomparing 1 theobservedabundanceswithpredictionsfromtheoreticalmodels. Aims.WeaimatpredictingthechemicalevolutionofPintheMilkyWayandcompareourresultswiththeobservedPabundancesin ] diskstarsinordertoputconstraintsonthePnucleosynthesis. A Methods.Todothatweadopt thetwo-infallmodelofgalacticchemicalevolution,whichisagoodmodelfortheMilkyWay,and G computetheevolutionoftheabundancesofPandFe.Weadoptstellaryieldsfortheseelementsfromdifferentsources.Theelement PshouldhavebeenformedmainlyinTypeIIsupernovae.Finally,FeismainlyproducedbyTypeIasupernovae. h. Results.Ourresultsconfirmthattoreproducetheobservedtrendof[P/Fe]vs.[Fe/H]indiskstars,Pisformedmainlyinmassive p stars.However,noneoftheavailableyieldsforPcanreproducethesolarabundanceofthiselement.Inotherwords,toreproducethe - dataoneshouldassumethatmassivestarsproducemorePthanpredictedbyafactorof∼3. o Conclusions.WeconcludethatalltheavailableyieldsofPfrommassivestarsarelargelyunderestimatedandthatnucleosynthesis r calculationsshouldberevised.Wealsopredictthe[P/Fe]expectedinhalostars. t s a Keywords.Galaxy:abundances-Galaxy:evolution-Stars:Gamma-rayburst:general-Stars:supernovae:general [ 2 1. Introduction describetheobservationaldata.InSection4theresultsarecom- v 4 paredtothedataandfinally,inSection5,someconclusionsare 2 Recently,Caffauetal.(2011a)havemeasuredthePabundance drawn. inasampleof20coolstarsintheGalacticdisk.Theyfoundthat 8 3 the[P/Fe]ratiobehaveslikethe[S/Fe]ratio,namelyincreasing . towardslowermetallicitystars.ThiswasthefirsttimethatPwas 2. Thechemicalevolutionmodel 2 observedinGalacticstarsinspiteofthefactthatPisamongthe 1 TheroleplayedbySNeofdifferentTypeinthechemicalevolu- top20mostabundantelementsintheUniverse.Thereisonlyone 1 tionoftheGalaxyhasbeencomputedbyseveralauthorsinthe singlestableisotopeofP,31P,whichisthoughttobeformedby 1 past years (Matteucci & Greggio, 1986; Matteucci & Franc¸ois : neutroncaptureon29Siand30Siinmassivestars.Bymeansofa 1989;Yoshiietal.1996;Chiappinietal.1997,2001;Kobayashi v detailedmodelforthechemicalevolutionoftheMilkyWayone i etal. 2006; Boissier & Prantzos 1999; Franc¸ois et al . 2004 X cancomputethePevolutionandcompareittotheobservations. among others). Here we refer to the model of Chiappini et al. This can allow us to understand the origin of this element and r (1997), the so-called two-infall model for the evolution of the a impose constraints on its formation inside stars. In this paper, MilkyWay.Athoroughdescriptionofthismodelcanbefound weadoptagoodmodelforthechemicalevolutionontheGalaxy, in Chiappiniet al. (1997;2001) and Franc¸ois et al. (2004)and alreadytested ona largenumberofchemicalspecies(Franc¸ois we addressthe reader to these papersfor details. In this model etal.2004).Inparticular,themodeltakesintoaccountdetailed it is assumed that the stellar halo formed on a relatively short stellar nucleosynthesis and supernova progenitors (SNe Ia, II, timescale (1-2 Gyr) by means of a first infall episode,whereas Ib/c)aswellasthestellarlifetimes.ThestellaryieldsofPhave thedisk formedmuchmoreslowly,mainlyoutofextragalactic been computed by several authors such as Woosley & Weaver gas,thankstoasecondinfallepisode.Thetimescaleforthedisk (1995),Kobayashietal.(2006)asfunctionsoftheinitialstellar formationisassumedtoincreasewiththegalactocentricdistance metallicity. In this paper we like to compare the predictionsof (τ = 7 Gyr at the solar circle), thus producingan “inside-out” our chemicalevolution modelfor P, obtained by includingdif- scenarioforthedisk formation.TheGalactic diskis dividedin ferentstellaryields,withtherecentdata.InSection2webriefly several rings, 2Kpc wide, without exchange of matter between describethechemicalevolutionmodeladopted,inSection3we them. The model can follow in detail the evolution of several chemicalelementsincludingH,D,He,C,N,O,α-elements,Fe ⋆ emailto:gabriele.cescutti@epfl.ch and Fe-peak elements, s- and r-process elements. The star for- 1 Cescuttietal.:Theoriginofphosphorus(RN) mation rate (SFR) adopted for the Milky Way is a function of – Model 4: with metallicity dependent P and Fe yields from bothsurface gasdensityand totalsurfacemass density.Sucha massivestarsofWW95; SFR is proportionalto a powerk = 1.5ofthe surfacegasden- – Model 5: with P and Fe metallicity dependent yields from sityandtoapowerh = 0.5ofthetotalsurfacemassdensity.In massivestarsofK06; theMilkyWay modelwealsoassumeasurfacedensitythresh- – Model6:wheretheyieldsofPandFefrommassivestarsare oldbelowwhichtheSFRstops,accordingtoKennicutt(1989). fromK06andincludealsohypernovae(hypernovaearestars As a consequence of this, the star formation rate goes to zero with M > 20M andexplosionenergieslargerthannormal ⊙ every time that the gas density decreases below the threshold SNeII); (∼ 7M pc−2). The efficiency of SF is ν = 1Gyr−1 during the – Model7:theonlydifferencecomparedtomodel5isthatin ⊙ disk and 2Gyr−1 in the halo phase. This model reproduces the this model the P yields in massive stars are artificially in- majorityofthefeaturesofthesolarvicinityandthewholedisk. creasedbyafactorof∼3; – Model8:theonlydifferencecomparedtomodel6isthatin this model the P yields in massive stars are artificially in- 2.1.Nucleosynthesisandstellarevolutionprescriptions creasedbyafactorof∼2.75. We have adopted the yields for P and Fe originating in mas- sivestarsfromWoosley&Weaver(1995,hereafterWW95)and Inordertoobtainthe[P/Fe]ratios,wehavenormalizedour Kobayashi et al. (2006, hereafter K06) as functions of stellar modelresultsforPandFewiththeobservedabsolutesolarabun- metallicity. The yields for the same elements originating from dancesobtainedbyCaffauetal.(2011b).Inthisway,onecansee SNe Ia are from Iwamoto et al. (1999), their model W7. In at the same time whether the modelpredictionsfit the trend as particular, each SN Ia is assumed to eject the same mass, the wellasthesolarabundances.Thepredictedsolarabundancesare Chandrasekharmass(∼ 1.4M );ofthismass∼ 0.6M isinthe theabundancesthatthemodelpredictsfortheISM4.5Gyrago, ⊙ ⊙ form of Fe and ∼ 3.57·10−4 are in the form of P. It is there- thetimeofformationofthesolarsystem. foreclearthatSNeIaarenegligibleproducersofP.Ontheother In Table 1 we show a summaryof the nucleosynthesispre- hand,31PshouldbeproducedduringO-andNe-shellburnings scriptions used for P and Fe in the models and the difference inmassivestars,althoughalargefractionof31Pcanbedestroyed between the predicted solar abundancesand the observedones by(p,α)reactionstobecome28Si. byCaffau etal. (2011b).Note thatthe yieldsofP andFe from SNeIaarefromIwamotoetal.(1999)inallmodels. 3. Theobservationaldata Thesampleofobservedstarsisformedby20G-Fbrightdwarfs (3.3 ≤ J < 7),withstellar parametersin theranges:5765 ≤ mag T ≤6470 K,3.90≤logg<4.5,−0.91≤[Fe/H]≤0.28. 1.0 eff ThephosphorusabundancehasbeenderivedfromCRIRES spectra observed at VLT-Antu 8m telescope, in service mode duringESOperiod86.Thesettingwascenteredat1059.6 nmin 0.5 order54.FourPlinesofMult.1arevisibleindetectors2and3. TtiohseascpheicetvraeldrweseoreluitniotnhewraasngRe=5100-040000.0F,othrethseigAndaal-ptoti-vneoOispetricas- [P/Fe] 0.0 correction,computedonaxis,thetargetstaritselfwasused. −0.5 4. Resultsforphosphorous Wehaverunseveralmodelsincludingdifferentprescriptionsfor −1.0 the P and Fe yields from massive stars. In some of the models −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 [Fe/H] wemixedyieldsfromdifferentsourcesandthisisallowedbythe factthatyieldsofsomespecificelements,inparticularthoseofP Fig.1.ThepredictionsfromModel1(bluesolidline)andfrom andFe,arestilluncertain,becauseofthedifferentinputphysics Model3(greendashedline).ThePandFe abundancesin both adoptedbydifferentauthors.Asaconsequence,bymeansofour modelsarenormalizedwiththe absolutesolarvaluesofCaffau chemicalevolutionmodelswecanputconstraintsonthenucle- et al. (2011b). In Table 1 are shown the predicted ratios at the osynthesiscalculations. age of formation of the solar system. Data from Caffau et al. Themodelsare: (2011a):thecirclesindicatestarswithplanets. – Model 1: with the P yields from massive stars of K06 and theFeyieldsfrommassivestarsofWW95consideringonly the solar chemical composition. This choice is dictated by InFigure1areshowntheresultsofModels1and3.Asone the factthat these Fe yields better reproducethe [X/Fe] vs. can see, for Model1 the agreementwith the observedtrend in [Fe/H]relations(seeFranc¸oisetal.2004); theGalacticdiskisgood,althoughthecurveisshiftedtolower – Model 2: with the P yields from massive stars of K06 valuesthanobserved.Thisisduetothefactthatwhilethesolar and metallicity dependent Fe yields from massive stars of Feabundancepredictedbythismodelisingoodagreementwith WW95; theobservedone,thePsolarabundanceistoolow.Inparticular, – Model3:withthemetallicitydependentPyieldsfrommas- inordertoreproducethePsolarabundanceweneedtoincrease sivestarsofWW95andtheFeyieldsfrommassivestarsof artificiallytheyieldsofPfrommassivestarsbyafactorof∼3. WW95consideringonlythesolarchemicalcomposition; On the other hand, we note that the results of Model 3 are not 2 Cescuttietal.:Theoriginofphosphorus(RN) Table1.Nucleosynthesisprescriptionsforthevariousmodels. Model Pfrommassivestars Fefrommassivestars [P/Fe] model ⊙ 1 K06 WW95solarchem.comp. -0.41 2 K06 WW95met.dep. -0.42 3 WW95met.dep. WW95solarchemcomp. +0.06 4 WW95met.dep. WW95met.dep. +0.05 5 K06 K06 -0.40 6 K06+Hypern. K06+Hypern -0.37 7 3×K06 K06 0.00 8 2.75×K06+Hypern. K06+Hypern. 0.00 abletoreproducethetrendofthe[P/Fe]ratiointheGalacticdisk although the predicted solar value is almost acceptable (+0.06 dex,inTable1). 1.0 0.5 1.0 [P/Fe] 0.0 0.5 −0.5 [P/Fe] 0.0 −1.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 [Fe/H] −0.5 Fig.3.ThepredictionsfromModel5(bluesolidline)andfrom Model6(greendashedline).ThePandFe abundancesin both −1.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 modelsarenormalizedwiththe absolutesolarvaluesofCaffau [Fe/H] et al. (2011b). In Table 1 are shown the predicted ratios at the ageofformationofthesolarsystem.Thedataarethesameasin Fig.2.ThepredictionsfromModel2(bluesolidline)andfrom Figure1. Model4(greendashedline).ThePandFeabundancesinboth modelsarenormalizedwiththeabsolutesolarvaluesofCaffau et al. (2011b). In Table 1 are shown the predicted ratios at the ageofformationofthesolarsystem.Thedataarethesameasin Figure1. The agreement of Models 1,2,5 and 6 with the trend of the data and the disagreement with the observed solar abun- dances, suggests that the major producersof P in the Universe InFig.2areshownModels2and4:forModel2theagree- should be core-collapse supernovae and that the theoretical ment with the observed trend in the Galactic disk is good, yieldsfromthesesupernovaeareunderestimatedbyafactorof∼ whereasforModel4thetrendisnotreproduced,although,asfor 3.However,theresultsofModel6withyieldsfromhypernovae Model3, the predictedsolar value could be acceptable (+0.05, differsubstantiallyfromthoseobtainedwithnormalyieldsfrom Table 1). To obtain a good agreement with the observed solar SNeIIatlowmetallicities.Infact,themodelwithnormalSNII abundance of P for Model 2, we need again to increase artifi- yieldspredictsanoverabundanceofPrelativetoFeatlowmetal- ciallytheyieldsofPbyafactorof∼3. licity of ∼+0.5 dex, whereas the model with hypernova yields InFigure3weshowthepredictionsofModel5withmetal- predict a lower [P/Fe] ratio, namely an overabundance of ∼+ licity dependent yields from K06 for both P and Fe. Even for 0.2-0.3dex.Clearlythesepredictionsawaittobeprovenbyfu- theseyieldswepredictatoolowsolarratioof[P/Fe] ∼−0.40 turedatainlowmetallicityhalostars. ⊙ dex.Inotherwords,althoughthetrendof[P/Fe]intheGalactic On the other hand, the trend of abundances of [P/Fe] in disk is well reproduced,to have good agreementwith the data the Galactic disk as predictedby Models3 and4, adoptingthe thewholecurveshouldbeshiftedupwardsby0.4dex. metallicitydependentyieldsofPandFe frommassivestarsby InthesameFigure3wealsoshowthepredictionsofModel WW95, is at variance with observations even if we normalize 6withthemetallicitydependentyieldsfromK06forbothPand the modelresultsto theirpredictedsolarabundances.Actually, Fe,butforstarsmoremassivethan20M weadoptedtheyields thepredictionsofModel4areverysimilartothoseofTimmes ⊙ forhypernovae,instead ofthose for normalSNe II.The agree- &al.(1995):theseauthorsadopted,infact,thesameyieldsfrom ment with the observed solar ratio here is slightly better being massive stars for P and Fe as in Model4, and showed the pre- [P/Fe] ∼ −0.37dex,althoughtheproblemofthetoolowpre- dicted[P/Fe]vs.[Fe/H],butnodataforPwereavailableatthat ⊙ dictedsolarPabundanceremains. time. 3 Cescuttietal.:Theoriginofphosphorus(RN) From our numericalsimulations, we can also infer that the etal.(1999)wellreproducethedataiftheyieldsfrommas- theoreticalpredictionsfromdifferentauthorsforFearesimilar, sivestarsareincreasedbyafactorof∼3.Thissuggeststhat whereasforPtheyieldsbyK06andbyWW95aresignificantly theyieldsofPavailableintheliteratureareunderestimated. different. We should therefore conclude that the yields of P by Both the neutronrich isotopesof 29,30Si and 31P, whichde- K06 are better than those of WW95, since the formercan well rives from neutron capture on the two Si isotopes, are pro- reproduce the trend of [P/Fe] vs. [Fe/H] and the P solar abun- ducedintheoxygenandneonburningshellsinmassivestars dancebyincreasingthembyafactorof∼3. (WW95).Therefore,inorderto havealargerPproduction, For this reason and forthe sake of having a more homoge- theOandNeshell-burningsaswellastheneutroncapture neousset of yields, we only show in the nextfigure the results on the 29,30Si isotopes and the destruction of 31P by (p, α) obtainedbyincludingtheK06yieldseitherwithorwithouthy- reactionsshouldberevised. pernovae.Inparticular,Model7isbasedonnormalmassivestars – Wepredictalsothebehaviourof[P/Fe]inhalostarsandwe yieldswhereasModel8isbasedonhypernovaeyields.Inthese suggestthatit shouldshowa plateaubetween[Fe/H]=-1.0 models, shown in Fig. 4, we apply the necessary factor in the and -3.0 dex corresponding to [P/Fe] ∼ +0.5 dex if yields productionofPinmassivestarstoreproducetheobservedsolar (corrected)fromnormalSNeIIareadopted,andto∼+0.2dex abundanceofP.Infact,asonecanseeinFigure4,thepredicted ifhypernovayields(corrected)areadopted.Inordertodis- curvepassesexactlybyzeroandthisisbecauseourmodelcan tinguishbetweenthesetwocasesweawaitforobservations reproduce,atthesametime,thesolarabundanceofFeandthat ofthePabundanceinhalostars. ofP.Itisworthnotingthatadoptingthehypernovayieldswhich are larger for P than those for normal core-collapse SNe, the yields need to be increased by a factor of ∼ 2.75, instead of ∼ References 3. With the correctedyields and the observedsolar abundance, Boissier,S.&Prantzos,N.,1999,MNRAS,307,857 thepredicted[P/Fe]for[Fe/H]<-1.0dexisonaverage+0.2-0.3 Caffau,E.,Ludwig,H.-G.,Steffen,M.,Freytag,B.&Bonifacio,P.,2011b,SoPh, dex. 268,255 Caffau,E.,Bonifacio,P.,Faraggiana,R.&Steffen,M.2011a,A&A,532,98 Chiappini,C.,Matteucci,F.&Gratton,R.,1997,ApJ,477,765 Chiappini,C.,Matteucci,F.&Romano,D.,2001,ApJ,554,1044 Franc¸ois,P.,Matteucci,F.,Cayrel&al.,2004,A&A,421,613 Iwamoto,K.,Brachwitz,F.,Nomoto,K.&al.,1999,ApJS,125,439 Kennicutt,R.C.Jr,1989,ApJ,344,685 1.0 Kobayashi,C.,Umeda,H.,Nomoto,K,Tominaga,N.&Ohkubo,T.,2006,ApJ, 653,1145(K06) Matteucci,F.&Greggio,L.,1986,A&A,154,279 Matteucci,F.&Franc¸ois,P.,1989,MNRAS,239,885 0.5 Timmes,F.X.,Woosley,S.E.&Weaver,T.A.,1995,ApJS,98,617 Yoshii,Y.,Tsujimoto,T.&Nomoto,K.,1996,ApJ,462,266 [P/Fe] 0.0 Woosley,S.E.&Weaver,T.A.,1995,ApJS,101,181(WW95) −0.5 −1.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 [Fe/H] Fig.4.Thepredictionsfor[P/Fe]fromModel7(bluesolidline) andfromModel8(greendashedline).ThePandFeabundances inbothmodelsarenormalizedwiththeabsolutesolarvaluesof Caffauetal.(2011b).DataasinFigure1. 5. Conclusions Inthispaperwehavecomparedmodelpredictionsadoptingdif- ferentsetsofyieldswithrecentdataontheabundanceofPinthe Galacticdisk.Ourconclusionscanbesummarizedasfollows: – Theobservedfalloftheabundanceof[P/Fe]inGalacticdisk stars suggests that P is mainly produced by core-collapse SNe with a small contribution from SNe Ia. Otherwise, if SNe Ia were importantthe [P/Fe] ratio wouldremainfairly constant. – ThemetallicitydependentyieldsofPfrommassivestarsof K06 together with the P yieldsfrom SNe Ia from Iwamoto 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.