ebook img

Chemical Constituents and Biological Activities of Essential Oils of Hydnora africana Thumb Used PDF

14 Pages·2017·1.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemical Constituents and Biological Activities of Essential Oils of Hydnora africana Thumb Used

applied sciences Article Chemical Constituents and Biological Activities of Essential Oils of Hydnora africana Thumb Used to Treat Associated Infections and Diseases in South Africa OlubunmiAbosedeWintolaandAnthonyJideAfolayan* MedicinalPlantsandEconomicDevelopment(MPED)ResearchCentre,DepartmentofBotany, UniversityofFortHare,Alice5700,SouthAfrica;[email protected] * Correspondence:[email protected];Tel.:+27-822-022-167;Fax:+27-866-282-295 AcademicEditor:HidenoriOtsuka Received:21September2016;Accepted:1December2016;Published:27April2017 Abstract: Hydnoraafricana(HA)ThumbisamemberofthegenusHydnora. Therootsareusedinthe treatmentofinfectiousdiseasesinSouthAfricafolkmedicine. Thoughtherootextractsareusedto treatvarioushumandiseasesincludinginflamedthroat,thereisadearthofscientificdataonthe biologicalactivitiesofessentialoilisolatedfromthisplantintheliterature. Therefore,thepresent studywasconductedtodeterminethechemicalcomponentsandcertainbiologicalactivitiesofthe essential oil using standard bioassay methods. The plant essential oil exhibited a moderate free radicalscavengingactivitythatwasdependentontheradicalspecies. Similarly,theessentialoilwas activeagainstthegrowthofallthirteenopportunisticbacteriaapartfromSalmonellatyphimurium, PseudomonasaeruginosaandProteusvulgaris. TheessentialoilwasalsoactiveagainstAspergillusniger amongalltheninefungiselected. Inaddition,thespeciesistypifiedbysubstantialamountsofclasses ofcompoundsincluding;carboxylicacids(30.68%),terpenes(10.70%),alkylaldehydes(4.86%)and esters(0.82%),identifiedasantioxidantandantimicrobialagents. TheessentialoilofH.africanacould besaidtohavepharmacologicalproperties,andtheseagentsintheessentialoilofH.africanacould justifythefolkloreusageofthisplantinthetreatmentofinfectionsandrelateddiseases. Keywords: Hydnoraafricana;chemicalcomposition;biologicalactivities;infections;GC-MS 1. Introduction MedicinalplantshavecontributedimmenselytohealthcareinAfrica. Theseplantsareeasily accessibleandcheapsourcesoftherapeuticagents[1]. Essentialoilsfrommedicinalplantscontain certain constituents that play a pharmacological role in the prevention and treatment of chronic diseasessuchascancer,cardiovasculardisease,diarrhoeadiseasesandinfections[2]. Infectionistheinvasionofthebodytissuesbydisease-causingagentslikebacteria,virusand fungi. Thehosttissue’sreactiontotheseorganismsaswellasthetoxinsproducedbytheorganisms is attributed to inflammation in patients with HIV or AIDS, cancer, solid organ transplantation, immunedeficiencies,chronicinflammatorygastrointestinal,liver,respiratory,urinarytractandother infections [3]. The bacteria associated with common infections like wounds, gastrointestinal and urinarytractinfectionsincludeKlebsiellapneumonia,StreptococcuspyogenesandSerratiamercescens[4,5]. Essential oils are known to soothe infections by acting as antimicrobial agents, or by reducing and neutralising reactive oxygen species (ROS) generated during the pathophysiology of disease infections[6]. Medicinalplantsplayimportantrolesasasourceofantimicrobialandantioxidant. Oneofthese plantsisthegenusHydnoraafricana(HA)Thumb(Hydronaceae(Piperales))(Figure1A,B).Theplantis Appl.Sci.2017,7,443;doi:10.3390/app7050443 www.mdpi.com/journal/applsci Appl. Sci. 2016, 6, 439  2 of 14  Medicinal plants play important roles as a source of antimicrobial and antioxidant. One of these  plants is the genus Hydnora africana (HA) Thumb (Hydronaceae (Piperales)) (Figure 1A,B). The plant  is also known as Jackal food, Ubnklunga (Xhosa) or Umavumbuka (Zulu) [7]. It comprises 15 species  in South Africa. This plant, similar to about ten species of parasitic flowering plant, lives a greater  part of its life cycle underground and is unable to create chlorophyll or perform photosynthesis. In  traditional medicine, the root of Hydnora species, tuber, fruits, leaves and fruit pulp (such as potato)  is used for the treatment of infectious diseases such as dysentery, diarrhoea, amenorrhoea, bladder  and kidney complaints. Other ailments include swollen glands and inflamed throat [7]. Although  progress has been made in validating the chemical components and biological activities of the root  parts of the plant, the chemical composition, antioxidant and antimicrobial properties of HA  essential oil remain obscure.   Therefore, this study aimed at identifying the chemical constituents of H. africana essential oil  using gas chromatography interfaced with mass spectrometry (GC‐MS). We also aimed to assess its  antioxidant, antibacterial and antifungal potential, and to relate our findings to its possible use in  folk medicine.  Appl.Sci.20127., M7,a4t4e3rials and Methods  2of14 2.1. Plant Collection and Preparation  alsoknownasTJhaec kroaoltfso oofd H,U. Abfnrikcalnuan agsa s(hXohwons ain) oFrigUurme a1Bv uwmerbeu ckoalle(cZteudl uin) [D7e].ceImtbceorm 2p01r3is eats t1h5e speciesin SouthAfriNcats.eTlahmiasnpzli aanreta, lsoicmatiiloanr into Nakboonukotbtee Mnusnpiecicpiaelsityo,f Epaastrearns iCtiacpfle oPwroveirnicneg, Spoluathn tA,flriivcae.s Tahigs rlieeas terpartof at the latitude and longitude as described by Masika and Afolayan [8]. The samples were collected  itslifecycleundergroundandisunabletocreatechlorophyllorperformphotosynthesis. Intraditional and the specimen of the voucher (Win 2014/1) was kept in the Giffen’s herbarium, University of Fort  medicine,therootofHydnoraspecies,tuber,fruits,leavesandfruitpulp(suchaspotato)isusedfor Hare, Alice, South Africa. The plant materials were washed using tap water and then stored in the  thetreatmreenfrtigoefraitnorf eact t4i°oCu usndtili site wasase stimsue cfohr aesssednytisael noitle erxytr,adctiiaornr. hoea,amenorrhoea,bladderandkidney complaints. Otherailmentsincludeswollenglandsandinflamedthroat[7]. Althoughprogresshas 2.2. Extraction of the Essential Oil  beenmadeinvalidatingthechemicalcomponentsandbiologicalactivitiesoftherootpartsoftheplant, The essential oil was isolated from H. Africana roots by hydro‐distillation following the  thechemicalcomposition,antioxidantandantimicrobialpropertiesofHAessentialoilremainobscure. procedure from European Pharmacopoeia [9]. Here, 250 g of the dry roots were subjected to  Therefore,thisstudyaimedatidentifyingthechemicalconstituentsofH.africanaessentialoil hydro‐distillation for 3 h in an all‐glass Clevenger (model and manufacturer name). Through the  usinggasscuhprpolmy oaf thoegatr atop thhey hienatteinrgf amcaendtlew (5it0h °Cm), athses esspseencttiarlo omil ewtarsy e(xGtraCct-eMd Sw)i.thW 4 elitarelss oofa wimateerd int o3 assessits antioxidanht u,natnil tniob amcotreer eisaslenatniadl oailn wtaifsu cnomgainlgp ooutt.e Tnhtei aavl,eraangde pteorcreentlaagtee yoieuldr wfiansd 0.i3n%g.s Atpopriotpsrpiaotes 1s0i%bl eusein DMSO vehicles in between 80 were utilized to dissolve the essential oil for more in vitro bioassay  folkmedicine. activities.    (A)  (B) Figure 1. Hydnora africana plant parts; Source http://www.botany.org/Parasitic_Plants/. (A) The  Figure1. Hydnoraafricanaplantparts; Sourcehttp://www.botany.org/Parasitic_Plants/. (A)The flower of Hydnora africana; (B) The root of Hydnora africana used.  flowerofHydnoraafricana;(B)TherootofHydnoraafricanaused. 2.3. Chemicals and Reagents Used  2. MaterialsanThde Mcehtehmoicdasls  used  consist  of  1,1‐diphenyl‐2‐picrylhydrazyl  (DPPH),  2,2′‐azino‐bis  (3‐ethylbenzthiazoline‐6‐sulphonic  acid)  (ABTS),  butylated  hydroxyl  toluene  (BHT),  vanillin,  2.1. PlantCollectionandPreparation TherootsofH.AfricanaasshowninFigure1BwerecollectedinDecember2013attheNtselamanzi arealocationinNkonkobeMunicipality,EasternCapeProvince,SouthAfrica. Thisliesatthelatitude andlongitudeasdescribedbyMasikaandAfolayan[8]. Thesampleswerecollectedandthespecimen of the voucher (Win 2014/1) was kept in the Giffen’s herbarium, University of Fort Hare, Alice, SouthAfrica. Theplantmaterialswerewashedusingtapwaterandthenstoredintherefrigeratorat4 ◦Cuntilitwastimeforessentialoilextraction. 2.2. ExtractionoftheEssentialOil TheessentialoilwasisolatedfromH.Africanarootsbyhydro-distillationfollowingtheprocedure fromEuropeanPharmacopoeia[9]. Here,250gofthedryrootsweresubjectedtohydro-distillation for 3 h in an all-glass Clevenger (model and manufacturer name). Through the supply of heat to theheatingmantle(50◦C),theessentialoilwasextractedwith4litresofwaterin3huntilnomore essentialoilwascomingout. Theaveragepercentageyieldwas0.3%. Appropriate10%DMSOvehicles inbetween80wereutilizedtodissolvetheessentialoilformoreinvitrobioassayactivities. 2.3. ChemicalsandReagentsUsed The chemicals used consist of 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2(cid:48)-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), butylated hydroxyl toluene (BHT), vanillin, potassium persulphate, rutin, sodium nitroprusside (Na [Fe(CN) NO]2H O), glacial acetic acid 2 5 2 (CH COOH),sulfanilicacid,gallicacid,tannicacid,ferricchloride(FeCl ),aluminumchloride(AlCl ), 3 2 3 potassium ferricyanide [K Fe(CN) ], trichloroacetic acid (TCA), Folin-Ciocalteu reagent, sodium 3 6 carbonate(Na CO ),hydrochloricacid(HCL),sodiumdihydrogenphosphate(NaH PO ),disodium 2 3 2 4 Appl.Sci.2017,7,443 3of14 hydrogenphosphate(Na HPO ),Mueller-Hintonagar(MHA),dimethylsulfoxide(DMSO),ascorbic 2 4 acid, ciprofloxacin and amoxicillin, 2-thiobarbituric acid (TBA), potassium acetate (CH CO K), 3 2 Mueller-Hinton dextrose broth (MDB), diclofenac sodium and sodium chloride (NaCl), These chemicals were bought from Merck and Sigma-Aldrich, Gauteng, South Africa. Every chemical utilisedinthisstudywasofanalyticalgrade. 2.4. AntioxidantAssay TheantioxidativecapacitiesoftheessentialoilofH.africanawereassessedintermsofDPPH, nitricoxide,hydrogenperoxideandABTSinhibitoryassays. 2.4.1. 1,1-diphenyl-2-picrylhydrazylDPPHRadicalScavengingActivityAssay ThemethodofLiyana-PathirananandShahidi[10]wasemployedtodetermineDPPHfreeradical scavengingactivity. Asolutionof0.135mM2,2-diphenyl-1-picrylhydrazylradical(DPPH)inmethanol wasbrieflyprepared. Briefly,1.0mLofthissolutionwasmixedwith1.0mLoftheHAoilandstandard drugs(BHTandgallicacid)(0.025to0.5mg/mL).Thereactionmixturewasthenvortexedandputin thedarkatroomtemperatureforaperiodof30min. Theabsorbanceofthemixturewasmeasured usingaspectrophotometerat517nm. Alltestsandanalysiswererunintriplicates. Theplantextract’s scavengingabilitywasthencalculatedusingthefollowingequation: DPPHScavengingactivity(%)=[(Abscontrol−Abssample)/(Abscontrol)]×100 whereAbscontrolistheabsorbanceofDPPH+methanolandAbssampleistheabsorbanceofDPPH radical+sample(sampleorstandard). 2.4.2. 2,2(cid:48)-Aazino-bis(3-ethylbenzthiazoline-6-sulfonicacid)(ABTS)RadicalScavengingAssay The method described by Oyedemi et al. [11] was adopted for the determination of ABTS scavenging activity. The stock solution of 7 mM ABTS solution and 2.4 mM potassium persulfate solutionwasprepared. Theworkingsolutionwaspreparedbymixingthetwostocksolutionsinequal proportionsandthenkeepingitinthedarkroomfor12h. Thesolutionwasthendilutedbymixing 1mLABTS+solutionwith60mLofmethanoltogetanabsorbanceof0.708±0.001unitsat734nm withtheuseofthespectrophotometer. Theplant’sessentialoil(1mL)andthecontrolswereallowed toreactwith1mLoftheABTS+solutionandtheabsorbancewastakenat734nmafter7minusinga spectrophotometer. TheABTS+scavengingcapacityoftheessentialoilwasthencomparedwiththat ofthestandards. Thepercentageinhibitionwasthencalculatedasfollows: Inhibition%=[(Ablank−Asample)/Ablank]×100 (1) whereAblankistheabsorbanceofABTSradical+methanolusedascontrolandtheAsampleisthe absorbanceofABTSradical+sampleextract/standard. All the tests were carried out in triplicate. The activity was expressed as 50% inhibitory concentration(IC ). ThelowertheIC value,thehighertheantioxidantactivity. 50 50 2.4.3. NitricOxideScavengingActivityAssay Thenitricoxideradicalscavengingactivitywasdeterminedbythemodifiedmethoddescribed byOyedemietal.[11]. Avolumeof2mLof10mMofsodiumnitroprussidepreparedin0.5mM phosphatebuffersaline(pH7.4)mixedwith0.5mLofplantextractsandstandards, separately, to makedifferentconcentrationsfrom0.025to0.5mg/mL.Themixturewasincubatedat25◦Cfora periodof150minafterwhich0.5mLofincubatedsolutionwasmixedwith0.5mLofGriessreagent (1.0mLofsulfanilicacidreagent(0.33%preparedin20%glacialacetic)acidatroomtemperaturefor 5minwith1mLofnaphthylenediaminedichloride(0.1%w/v). Afterincubatingthemixturewasfor Appl.Sci.2017,7,443 4of14 30minandtakingabsorbanceat540nm,theamountofnitricoxideradicalsinhibitedbytheessential oilwascalculatedbytheuseoftheequationbelow: NOradicalscavengingactivity(%)=[(Abscontrol−Abssample)/(Abscontrol)]×100 whereAbscontrolistheabsorbanceofNOradical+methanolandtheAbssampleistheabsorbance ofNOradical+extractorstandard. 2.4.4. HydrogenPeroxide(H O )ScavengingActivityAssay 2 2 TheH O inhibitionactivitiesoftheextractswereassessedbythemethodofOyedemietal.[11]. 2 2 A solution of hydrogen peroxide (4 mM) was prepared in phosphate buffer (0.1 M; pH 7.4) and incubated for 10 min after which 1 mL of the essential oil (0.025 to 0.5 mg/mL) was added to a 0.6 mL of hydrogen peroxide solution (4 mM). After 10 min of incubation, the absorbance of the reactingmixturewasmeasuredspectrophotometricallyat230nm,againstablanksolutioncontaining phosphatebuffersolutionwithouthydrogenperoxide. BHTandGallicacid(0.025to0.5mg/mL)were usedaspositivecontrol. Belowistheformulausedtocalculatepercentagescavengingofhydrogen peroxideofsamples: H O inhibitioncapacity(%)=[1−(Absorbanceofsample/Absorbanceofblank)]×100 (2) 2 2 2.5. AntimicrobialActivity 2.5.1. MicroorganismsandMedia The bacteria and fungi employed in this study were selected mainly on the basis of their significance as opportunistic pathogens of humans with diarrheal diseases. The bacterial strains includeShigellaflexneriKZN,Proteusvulgaris,KlebsiellapneumoniaATCC4352,Staphylococcusaureus, Enterococcus faecalis ATCC 29212, Streptococcus pyogenes, Pseudomonas aeruginosa ATCC 19582 and SerratiamercescensATCC9986. ThefungistrainsoftheAmericanTypeCultureCollection(ATCC) includeTriphophytonrubrumATCC28188,TrichophytontonsuransATCC28942,Trichophytonmucoides ATCC201382,MicrosporumcanisATCC36299,MicrosporumgypseumATCC24102,Aspergillusniger ATCC16888,AspergillusfumigatusATTC204305,PenicilliumchrysogenumATCC10106andPenicillium aurantiogriesum ATCC 16025. The bacteria test organisms were obtained from the Department of BiochemistryandMicrobiology,UniversityofFortHare,SouthAfricaandfungitestorganismswere purchasedfromDaviesDiagnostics(Pty)Ltd.,Gauteng,SouthAfrica,respectively. TheMueller–Hintondextroseagar(MHA),Mueller-Hintondextrosebroth(MHB),potatodextrose agar(PDA)andSabourauddextrosebroth(SDB)werepreparedaccordingtotheinstructionfromthe manufacturer. Thenutrientagarwassuspendedindemineralizedwater,heatedandstirreduntilit completelydissolvedandthensterilisedbyautoclavingat121◦Cfor15min. Thefungiandbacteria were maintained at 4 ◦C on MHA and PDA. Scraped cell mass in 0.85% salt solution was diluted andadjustedto0.5McFarlandstandardsandauthenticatedbyspectrophotometricreadingat580nm assays[12]topreparetheinoculumsfortheassays. Finally,thecellsuspensionswerediluted1:100innutrientbrothtopresentanestimatedinoculum of104CFU·mL−1incomparisonwithMcFarlandstandardforuseintheassays[12]. 2.5.2. AntibacterialandAntifungalSusceptibilityTest TheagarwelldiffusiontechniqueasdescribedbyPrabuseenivasanetal.[2]wasmodifiedand usedtotestfortheantibacterialandantifungalactivity. Briefly,100µLof0.5McFarlandsolutionsof bacterialorfungalstrainculturesin0.85%steriledistilledwater(SDW)wasplacedoverthesurfaceof anagarplateandspreadwithasterileinoculationloop. Ineachagarplate,threewellswerecutwitha cooled,flamedcorkborerof5mmdiameter,whileasterileneedlewasusedtoremovetheagarplugs. A50µLoftheamoxicillin(0.0125mg/mL)ornystatin(0.03mg/mL)wereaddedtothefirstwellfor Appl.Sci.2017,7,443 5of14 antibacterialandantifungalsusceptibilitytestrespectivelytoserveasapositivecontrol. Inthesecond well,50µLofthecorrespondingextractsolventwereaddedwhileinthethird,50µLoftheacetone extract/aqueousextract/essentialoil(50mg/mL)wereadded. Theessentialoilhadbeenprepared bydissolvingin10%DMSOwithTween80(0.5%v/vforeasydiffusion)andsterilisedbyfiltration througha0.45µmmembranefilter[2]. Preliminarystudiesconfirmedthatthecarriervehicledidnot inhibitthegrowthofbacteria. Eachtestwasdoneintriplicate. Thecultureplateswereincubatedat 37◦C,andtheresultswereexaminedafter24hand72hforantibacterialandantifungalsusceptibility test,respectively. Theclearzonearoundeachofthewellswasmeasuredinmm,showingtheplant fractions’activityagainstthetestedorganisms. 2.5.3. MinimumInhibitoryConcentration(MIC)Assay Thebrothmicrodilutionmethodusing96wellmicrotiterplateswasusedtoverifytheminimum inhibitory concentration (MIC) of the plant extracts which indicated antibacterial or antifungal activity [12]. After adding 120 µL of SDW into every well of the first (A) and the last (H) rows andintoeverywellofthelastcolumn,120µLofNutrientbroth(NB)wasputinallthewellsofthe secondrow(B)afterwhicha150µLofNBwasputinthewellsleftinthefirstcolumnand100µLin theremainingwellsfromthesecondcolumntowardstheright. Therewasthentheadditionoffifty microlitersoftheessentialoil(20mg/mL)intothethirdwellofthefirstcolumnaswellastheaddition of50µLofthepositive(amoxicillinornystatin)andnegativecontrol(SDW)independentlyintothe wellsleftinthefirstcolumn. Aserialdilutionwascarriedoutintwofolds. Thecontentsinallthe wellsofthefirstcolumn(beginningfromthethirdrow)weremixedand100µLwastransferredinto thesecondwellofthesamerow. Thisprocesswasreplicateduptothe11thwellafterwhichthe100 µLwasdiscarded. Consequently,thedilutionofthefractionsoftheplantandthecontrolinthewells broughtaboutarangeofconcentrationfrom5,2.5,1.25,0.625,0.313,0.156,0.078,0.039,0.019,0.0098 and0.005mg/mL. Subsequently,therewastheinoculationof20µLof0.5McFarlandbacterialorfungalsuspensions intothewellsapartfromtheoneswhichhadSDW.Thetestorganism’sgrowthwasmeasuredthrough thedeterminationoftheabsorbanceat620nmwithanautomaticELISAmicroplatereader(Synergy Mx,BioTek®,Winooski,VT,USA)priorto,andfollowingincubation. Theplateswereincubatedat 37◦Cfor24hand72hforbacteriaandfungi,respectively. TheMIC50wasdefinedandrecordedas theconcentrationofthetestantibacterialandantifungalagentthatrevealed50%inhibitionofbacteria andfungigrowth,respectively. 2.6. ChemicalCompositionEvaluation 2.6.1. GasChromatography-MassSpectrometry(GC-MS) GC-MS analyses were performed on Agilent 5977A MSD and 7890B GC System, Chemetrix (Pty)Ltd.,Midrand,SouthAfrica;AgilentTechnologies,Deutschland,GermanywithaZebron-5MS column (ZB-5MS 30 m × 0.25 mm × 0.25 um) (5%-phenylmethylpolysiloxane). The column and temperatureconditionsemployedincludeGCgradeheliumataflowrateof2mL/minandsplitless 1mLinjectionwasalsoemployed. Theinjector, sourceandoventemperaturesweresetat280 ◦C, 280 ◦C and 70 ◦C, respectively. The ramp settings were; 15 ◦C/min to 120 ◦C, then 10 ◦C/min to 180◦C,then20◦C/minto270◦Candheldfor3min. 2.6.2. IdentificationofComponents TheidentificationofthechemicalcomponentsoftheessentialoilwasinfluencedbytheirGC retention times, percentage composition (area %) and retention indices. The interpretation and identification of their mass spectra were confirmed by mass spectral incorporated library. The identificationwasfurtherconfirmedbysearchusingtheNationalInstituteofStandardsandTechnology (NIST) database (NIST/EPA/NIH mass spectral library 2014) with those of published data [13]. Appl.Sci.2017,7,443 6of14 EmpiricalsearcheswereconductedusingthePubChemProject(https://pubchem.ncbi.nlm.nih.gov/) andDrugBank(www.drugbank.ca/)toidentifytheknownpharmacologicalpropertiesassociated withthesecompounds. 2.6.3. StatisticalAnalysis AllexperimentswerecarriedoutintriplicatesandtheresultswereexpressedasMean ± SD. Whereappropriate,thedataweresubjectedtoone-wayanalysisofvariance(ANOVA)employingthe Appl. Sci. 2016, 6, 439  6 of 14  Minitabprogram(version12forwindows). p<0.05wereconsideredsignificant. 2.6.3. Statistical Analysis  3. ResultsandDiscussion All experiments were carried out in triplicates and the results were expressed as Mean ± SD.  Where appropriate, the data were subjected to one‐way analysis of variance (ANOVA) employing  3.1. AntioxidantActivities the Minitab program (version 12 for windows). p < 0.05 were considered significant.  Inthisstudy,theDPPH,ABTS,nitricoxideandhydrogenperoxidescavengingactivitieshavebeen 3. Results and Discussion  usedasinvitromodelstoevaluatetheantioxidantcapacityoftheessentialoilofHydnoraafricana,in comparis3o.1n. Awntiitohxitdhanet sAtactnivditaiersd sBHTandGallicacid. Figure2illustratestheDPPHradicalscavenging activity of thIne tehsiss estnutdiya,l toheil DoPfPHHy, AdnBoTrSa, naiftrriicc aonxaidce oamndp hayrderdogweni tpherBoxHidTe sacnadvenGgainllgi cacaticviidti.es Whaeveo bserved weakDPbPeeHn iunshedib aisto irny vaitcrtoi vmitoideeslso ftot heveaelusasteen tthiae laonitliooxfidHanytd cnaopraaciatyfr iocfa nthae, cesosmenptiaalr eodil wof itHhydtnhoerar eference africana, in comparison with the standards BHT and Gallic acid. Figure 2 illustrates the DPPH radical  compoundsused. Previousstudieshaveindicatedthatessentialoilsfromdifferentsourcespossess scavenging activity of the essential oil of Hydnora africana compared with BHT and Gallic acid. We  varyingcapacitiestoscavengeDPPHradicals,probablyduetothedifferencesintheircomposition. observed weak DPPH inhibitory activities of the essential oil of Hydnora africana, compared with the  Factorslikestereo-selectivityoftheradicalsorthesolubilityoftheoilinthedifferenttestingsystems reference compounds used. Previous studies have indicated that essential oils from different sources  havebeepnorsesepsos rvteadryitnoga cffaepcatcitthiees ctaop saccaivteynogfe eDssPePnHt iaraldoicilaslsi,n pqroubeanbclyh idnuged tiof ftehree ndtifrfaerdeinccaelss i[n1 4th].eiOr urresult wassimicloamrptoostihtioant.o FfaNctoergs uliekee sttaerle.o[‐1s5e]lewctihvoitya olsf othfeo ruanddicawls eoar kthDe PsoPluHbirliatyd iocf atlhes coailv ienn tghein dgiffaecrteinvti tyusing testing systems have been reported to affect the capacity of essential oils in quenching different  theessentialoilofP.brazzeana(RSA=14%for1g/L,SC50=1.5mg/mLandSC50=3.23mg/mL). radicals [14]. Our result was similar to that of Negueet al. [15] who also found weak DPPH radical  Incontrast,Ndoyeetal.[16]showedthattheessentialoilofAlliumsativumwasamoreeffectiveDPPH scavenging activity using the essential oil of P. brazzeana (RSA = 14% for 1 g/L, SC50 = 1.5 mg/mL and  radicalscavenger(SC50=7.67mg/mL).Itwasobservedthatincreasingtheconcentrationoftheoil SC50 = 3.23 mg/mL). In contrast, Ndoye et al. [16] showed that the essential oil of Allium sativum was  or standaa rmdosrew eaffsecntiovet DacPcPoHm rpadaincaile sdcabvyenagnery (SsCig50n i=fi 7c.6a7n mt ign/mcrLe)a. sIte wsaisn otbhseerivreDd PthPaHt inrcaredaiscinagl sthcea venging activitiesc.oIntcaepntpraetaiorns tohfa tthteh oeill oowr estsatncdoanrdcse nwtraas tnioont sactceosmtepdan(0ie.0d2 b5ym agny/ msigLn)ifwicaansts uinfcfirecaiesenst ,inin theaeicrh  case,to DPPH radical scavenging activities. It appears that the lowest concentrations tested (0.025 mg/mL)  producethemaximumantioxidantcapacityofthestandards. Itispossible,therefore,thatmuchhigher was sufficient, in each case, to produce the maximum antioxidant capacity of the standards. It is  dosesoftheoilthanthosetestedinthisstudymayproducehigherDPPHradicalscavengingactivities. possible, therefore, that much higher doses of the oil than those tested in this study may produce  TheIC50hvigahleur eDsPcPoHu lrdadnicoalt sbceavdenegteinrgm aicntievditipesr. eTchisee IlCy50f ovarlubeost hcoustlda nndota rbde sdeatsertmhienyedw perreecisleelsys feorr thanthe lowestcobontche sntatrnadtairodns ates sttheedy (w0e.0re2 5lesmsegr /thmanL t)h.eS ilomwielastr lcyo,nIcCentraftoiornt hteesteesds (e0n.0t2i5a lmogi/lmwLa).s Sgimreilaatrelyr, thanthe 50 highestcIoCn50c feonr ttrhaet eiossnentteisatl eodil (w0a.5s gmrega/temr tLha)na nthde hcoiguhledstn coontcbeentprarteiocnis teelsytedde (t0e.5r mmgin/medL.) aTnhde croeuslud lntsoto bserved be precisely determined. The results observed in this study indicated that the Hydnora africana  in this study indicated that the Hydnora africana essential oil hasa low effectiveness in donating a essential oil hasa low effectiveness in donating a hydrogen proton to the lone pair electron for the  hydrogenprotontothelonepairelectronfortheradical. radical.    Figure2F.iDguPrPe H2. DraPdPiHc arladsiccaavl secnagveinngginagc taicvtiivtyityo offt thhee eesssseenntitaila olilo oilf Hof. aHfr.icaafnrai.c Baanra g.rBapahrsg wraitphh dsiffwerietnht different letters within the same concentration are significantly different (p < 0.05).  letterswithinthesameconcentrationaresignificantlydifferent(p<0.05). Appl.Sci.2017,7,443 7of14 TheABTSradicalscavengingactivityofH.africanaessentialoilisillustratedinFigure3.TheABTS Appl. Sci. 2016, 6, 439  7 of 14  radicalscavengingactivityoftheessentialoilwasalsosignificantlylower(p>0.05)whencompared The ABTS radical scavenging activity of H. africana essential oil is illustrated in Figure 3. The  tothoseofBHTandGallicacidatalltheconcentrationsinvestigated(Figure3). The%inhibitionof ABTS radical scavenging activity of the essential oil was also significantly lower (p > 0.05) when  ABTSbytheessentialoilwasfoundtobeconcentration-dependent. TheIC valuefortheABTS compared to those of BHT and Gallic acid at all the concentrations investigated (Fi5g0ure 3). The %  radicalscavinehnibgiitniogn aofc tAivBTitSy boyf ththe eesessensetinalt ioaill woails wfouansd0 .t5o 5bem cogn/cmenLtr,atwiohni‐ ldeetpheondseenot.f Tthhee ICst5a0 nvadluaer dfosr couldnot bedetermitnhee dApBTreS criasdeilcyala sscathveenygiwnge raectlivoiwty eorf ththaen etshseentlioalw oeils twcaos n0c.5e5n tmrag/tmioLn, twehsitlee dth.oTshe iosf rethseu lthereis standards could not be determined precisely as they were lower than the lowest concentration tested.  similartotheworkbyMamadalievaaetal.[17]whofoundthatthreeUzbekScutellariaspeciesalso This result here is similar to the work by Mamadalievaa et al. [17] who found that three Uzbek  exhibitedweakABTSradicalscavengingactivity. Scutellaria species also exhibited weak ABTS radical scavenging activity.    Figure3.AFBigTuSrer 3a. dAiBcTaSl sracdaivcaeln sgcaivnegngaicntgi vacittiyviotyf otfh tehee esssseennttiiaall ooili olfo Hf.H af.riacafrniac.Banara g.rBapahrsg wraithp hdisffwereitnht different letters within the same concentration are significantly different (p < 0.05).  letterswithinthesameconcentrationaresignificantlydifferent(p<0.05). The nitric oxide radical scavenging activities of the essential oil and the reference compounds  Thenaitrrei pcroesxeindteedr iand Fiicgaulres 4c.a Avte anllg tihneg coanccteinvtirtaiteiosnos ftetshteed,e tshsee enssteiantliaol iolial nprdodtuhceedr eaf seirgennificceanctolym  pounds higher (p < 0.05) nitric oxide radical scavenging activity, when compared with both BHT and Gallic  arepresentedinFigure4. Atalltheconcentrationstested,theessentialoilproducedasignificantly acid. However, the capacities of all the tested compounds to scavenge nitric oxide were largely  higher(p<co0n.0ce5n)trnaititornic‐doepxeidndeernat.d Nicitarilc socxaidvee, ning iitnseglfa, ccatniv ailttye,r wcehll esntruccotumrep aanrde dfunwctiitohn bboy tmhoBdHifyTinga ndGallic acid. Howdeifvfeerre,ntt hsiegncaallpinagc iptaiethswoayfsa. lIlts thtoexictietys tuesduaclloym repsuolutsn wdhsento its ccoamvbeinnegse wnitihtr tihce osxuipdeeroxwideer e largely concentrataionino-nd teo pfoernmd peenrot.xyNniittrritiec, woxhiicdhe i,s ian vietrsye sltfr,ocnag noxaidltaenrt [c1e8l]l. Tshtreu acbtiluitrye oaf nthde efsusenncttiaiol onil boyf Hm. odifying africana to effectively scavenge nitric oxide radicals in this study suggests it could be useful against  differentsignallingpathways. Itstoxicityusuallyresultswhenitcombineswiththesuperoxideanion oxidative conditions involving this radical.  toformperoxynitrite,whichisaverystrongoxidant[18]. TheabilityoftheessentialoilofH.africana toeffectivelyscavengenitricoxideradicalsinthisstudysuggestsitcouldbeusefulagainstoxidative conditionsAipnpvl. Socli.v 20in16g, 6,t 4h39is  radical. 8 of 14    Figure4. NFiigtruirce o4.x Niditericr aodxiidcea rlasdcicaavl escnagvienngginagc taicvtiivtiyty ooff tthhee eesssesnetniatli oaill oofi lHo. fafHric.anaafr. iBcaarn gar.apBhasr wgirtha phswith differentledttifefresrewnt iltehttienrst whiethsianm thee scaomnec ceonntcreanttiroatnioan raeres sigignniiffiiccaanntltyl ydidffeifrfeenrt e(pn <t (0p.05<). 0.05). The scavenging activities of the essential oil and the standards against hydrogen peroxide are  depicted in Figure 5. For both the oil and the standards, the amount of hydrogen peroxide remaining  in the reaction mixtures, decreased as their concentrations were increased. There was no significant  difference observed between the oil and BHT at nearly all the concentrations (p < 0.05) except at 0.05  mg/mL where BHT showed a significantly higher activity than the oil (p > 0.05). At all the  concentrations tested (0.025 to 0.5 mg/mL), the essential oil showed lesser hydrogen peroxide  antioxidant activity as compared to the standards (BHT and gallic acid), only able to reduce  hydrogen peroxide by less than 20%, while gallic acid had the highest activity, reducing the H2O2 by  over 80%.    Figure 5. Hydrogen peroxide scavenging activity of the essential oil of H. africana. Lines with  different letters within the same concentration are significantly different (p < 0.05).  3.2. Antimicrobial Analysis  The essential oil was tested against thirteen opportunistic bacteria. The results showed that the  plant was active against the growth of all organisms except Salmonella typhimurium, Pseudomonas Appl. Sci. 2016, 6, 439  8 of 14    Figure 4. Nitric oxide radical scavenging activity of the essential oil of H. africana. Bar graphs with  different letters within the same concentration are significantly different (p < 0.05).  Appl.Sci.2017,7,443 8of14 The scavenging activities of the essential oil and the standards against hydrogen peroxide are  depicTthede isnc aFvigeunrgei n5g. Faocrt ibvoitthie sthoe fotilh aeneds sthene tsitaalnodialradnsd, ththe eamstoaunndta ordf shyadgraoingestn hpyedrorxoigdeen repmeraoinxiidnge  ainre thdee preiactcetidonin mFiixgtuurrees5, .deFcorerabsoedth atsh teheoiirl caonndcetnhterasttiaonnds awrderse, tihnecreaamseodu.n Tthoefreh ywdarso gneon sipgenriofixciadnet  rdeimffearienninceg oinbstehrevreeda cbteiotwnemenix tthuer eosi,l daencdr eBaHseTd aats ntehaerilryc aolnl cthene tcroanticoennstrwateiroenisn (cpr e<a 0s.e0d5.) Tehxceerpetw aat s0.n0o5  smiggn/mifiLca nwthdeirfefe rBeHncTe oshbosewrveded  ab estiwgneiefincatnhtelyo ilhaignhderB HacTtiavtitnye athrlayna ltlhteh eoiclo n(pc e>n tr0a.0ti5o)n. sA(tp  a<ll0 .t0h5e)  ecxocnecpetnatrta0t.i0o5nsm gte/smteLd w(0h.0e2re5 BtHo T0.s5h omwge/dmaL)s,i gtnhiefi ceasnstelnythiailg hoeilr aschtoivwiteydt hleasnsethr ehoyild(rpog>e0n. 0p5)e.rAoxtiadlel  tahneticooxnidcaenntt raatcitoivnistyte satse dco(0m.0p2a5retdo 0t.o5 mthge/ smtaLn)d,athrdese s(sBeHntTia lanodil sghaolwlice daclieds)s,e ronhlyyd raobglee ntop erreodxuidcee  ahnytdiorxoigdeann ptearcotixviidtye absyc loemssp tahraend 2t0o%th, ewshtailned gaarldlisc (aBcHidT haandd tghael lhicigahceidst) ,aocntilvyitayb, lreetdourceidnug cteheh yHd2rOo2g beny  poevreorx 8id0%eb. ylessthan20%,whilegallicacidhadthehighestactivity,reducingtheH O byover80%. 2 2   Figure5.HydrogenperoxidescavengingactivityoftheessentialoilofH.africana.Lineswithdifferent Figure 5. Hydrogen peroxide scavenging activity of the essential oil of H. africana. Lines with  letterswithinthesameconcentrationaresignificantlydifferent(p<0.05). different letters within the same concentration are significantly different (p < 0.05).  3.2. AntimicrobialAnalysis 3.2. Antimicrobial Analysis  The essential oil was tested against thirteen opportunistic bacteria. The results showed that The essential oil was tested against thirteen opportunistic bacteria. The results showed that the  theplantwasactiveagainstthegrowthofallorganismsexceptSalmonellatyphimurium,Pseudomonas plant was active against the growth of all organisms except Salmonella typhimurium, Pseudomonas  aeruginosa and Proteus vulgaris. The essential oil of H. africana showed activity against growth of somepathogenicbacteriathatcauseinfectionsassociatedwithdiarrhoealdiseases(Tables1and2). Theantibacterialactivitycouldalsobeattributedtothepresenceofsomechemicalconstituentsin the essential oil fraction of H. africana. For example, Terpinen-4-ol, both in aqueous solutions and vapour form, acts as an antimicrobial agent against bacteria of Legionella genus [19]. β-cymene possesses antibacterial and antifungal activities [20]. Napthalene has antibacterial and antifungal properties against various human pathogens [21]. Diphenyl ether possesses bactericidal activity againstgram-positiveandgramnegativebacteria[22]. (−)-Spathulenol,anoxygenatedsesquiterpene, hasantifungal,antibacterial,antiviralandcytotoxicactivities[23].Thezonesofinhibitionvariedfrom 10to25mm(Table1). TheHAessentialoilshowedasignificantgrowthinhibitoryeffectagainsttheten organisms(p<0.05)havingIC valuesrangingfrom5to0.005mg/mL(Table2). ThelowestMICwas 50 observedwithEnterococcusfaecalis(p<0.05)(Table2). Oftheselectedandtestedninefungalisolates, theplantspeciesinhibitedonlythegrowthofAspergillusnigerwhoseMICactivitywassignificantly similartothecontroldrug(p<0.05)(Tables3and4). Appl.Sci.2017,7,443 9of14 Table 1. Inhibition zone diameters caused by the essential oil (50 mg/mL) in the tested opportunisticbacteria. Organism EssentialOil PositiveControl(Amoxicillin) Salmonellatyphimurium− NA 36±1.1a Enterococcusfaecalis− 17±0.2a 34±1.2b Escherichiacoli− 15±1.3a 35±0.2b Pseudomonasaeruginosa− NA NA Bacilluscereus+ 10±1.6a 32±1.2b Shigellasonnei− 15±0.3a 35±2.2b Streptococcuspyogens+ 22±0.2a 35±2.1b Bacillussubtilis+ 22±0.2a 40±0.2b Shigellaflexneri− 19±0.2a 40±1.1b Klebpneumoniae− 23±2.1a 33±2.2b Staphylococcusaureus+ 25±3.1a 37±0.2b Proteusvulgaris− NA 38±1.1a Serretiamercenscens− 25±3.1a 35±2.2b Thebacteriaaredenotedthusly: St(Salmonellatyphimurium),Ef(Enterococcusfaecalis),Ec(Escherichiacoli), Pa(Pseudomonasaeruginosa), Bc(Bacilluscereus), Ss(Shigellasonnei), Sp(Streptococcuspyogens), Bs(Bacillus subtilis),Sf(Shigellaflexneri),Kp(Klebpneumoniae),Sa(Staphylococcusaureus),Pv(Proteusvulgaris)andSm (Serratiamarcescens). Dataexpressedasmeans±SD;n=3;valuesalongarowwithdifferentsubscriptsare significantlydifferent(p≤0.05). Table2.Minimuminhibitoryconcentrations(MIC)oftheH.africanaessentialoilsagainstthetested opportunisticbacteria. InhibitionZoneDiameter(mm) Solvent St Ef Ec Pa Bc Ss Sp Bs Sf Kp Sa Pv Sm Essential NA 2.5a >5a NA >5a >5a 0.02a 0.02a 0.02a 2.5a 0.02a NA 0.02a oil Positive 0.01 0.01b 0.01b NA 0.01b 0.01b <0.01b 0.01b 0.01b <0.01b 0.01b 0.01b 0.01b control Thebacteriaaredenotedthusly:St(Salmonellatyphimurium),Ef(Enterococcusfaecalis),Ec(Escherichiacoli),Pa (Pseudomonasaeruginosa),Bc(Bacilluscereus),Ss(Shigellasonnei),Sp(Streptococcuspyogens),Bs(Bacillussubtilis), Sf(Shigellaflexneri),Kp(Klebpneumoniae),Sa(Staphylococcusaureus),Pv(Proteusvulgaris)andSm(Serratia marcescens).Dataexpressedasmeans±SD;n=3;valueswiththedifferentsuperscriptinthesamecolumnare significantlydifferent(p≤0.05).NAindicatesnotactive. Table 3. Inhibition zone diameters caused by the essential oil (50 mg/mL) in the tested opportunisticfungi. Organism EssentialOil PositiveControl(Nystatin) Aspergillusfumigates NA 30±1.1 Aspergillusniger 20±1.2a 20±1.2a Microsporiumgypsum NA 25±0.2 Triphophytonrubrum NA 25±0.2 Triphophytontonsurans NA 30±1.2 Triphophytonmucoides NA 25±2.2 Penicilliumaurantrognereum NA 30±2.1 Penicilliumchrysogenum NA 25±0.2 Microsporumcanis NA 35±1.1 Thefungiaredenotedthusly: Af(Aspergillusfumigatus),An(Aspergillusniger),Mg(Microsporiumgypsum), Tr(Triphophytonrubrum),Tt(Triphophytontonsurans),Tm(Triphophytonmucoides),Pa(Penicilliumaurantrognereum), Pc(Penicilliumchrysogenum)andMc(Microsporumcanis).Dataexpressedasmeans±SD;n=3;valuesalonga rowwithdifferentsubscriptsaresignificantlydifferent(p≤0.05).NAindicatesnotactive. Appl.Sci.2017,7,443 10of14 Table4.Minimuminhibitoryconcentrations(MIC)oftheH.africanaessentialoilsagainstthetested opportunisticfungi. InhibitionZoneDiameter(mm) Solvent Af An Mg Tr Tt Tm Pa Pc Mc Essentialoil NA 2.5a NA NA NA NA NA NA NA Positivecontrol 0.01 2.5a 0.02 2.5 <0.01 0.02 0.01 0.02 0.01 Thefungiaredenotedthusby:Af(Aspergillusfumigatus),An(Aspergillusniger),Mg(Microsporiumgypsum), Tr(Triphophytonrubrum),Tt(Triphophytontonsurans),Tm(Triphophytonmucoides),Pa(Penicilliumaurantrognereum), Pc(Penicilliumchrysogenum)andMc(Microsporumcanis).Dataexpressedasmeans±SD;n=3;valuesalonga rowwithdifferentsubscriptsaresignificantlydifferent(p≤0.05).NAindicatesnotactive. Althoughcompoundsintheoilareknowntohaveantimicrobialactivityindependently,they couldbeactingindependentlyorincombinationtopotentiatetheplants’potentials[24]. Therefore, itiscrucialtoisolateandelucidatethebioactivecompoundsanddeterminetheirpharmacological properties. Thisshouldfacilitatetheidentificationofnovelantimicrobialagents. GC-MS analysis of the essential oil fraction revealed fraction revealed the presence of 67compoundsindifferentchemicalclassesincludingterpenoids,aldehydes,ketones,fattyacidesters andcarboxylicacids(Table5). Thedetailsofcertaincompoundscould,however,notbeconfirmedin theNISTdatabase. Amongidentifiedcompounds,carboxylicacids,dominatedbyn-Hexadecanoic acid and cis-9-hexadecanoic acid, constituted the largest group of compounds (30.68% of total oil composition). Thehighercontentofcarboxylicacidsintheessentialoil,comparedtoothergroups ofcompounds, isanunusualfinding, asmostotheressentialoilsreportedlycontainterpenesand otherhydrocarbons. Theresultsofthisstudy,however,bearasimilaritytothoseobservedforthe compositionofessentialoilsfromTetrapleuratetrapteraUdouriohandEtkudoh,[25],whoalsoreported ahighcontentofcarboxylicacidsintheoil. Terpenoids identified in the oil made up 10.70% of the total oil composition. They included Beta-Myrcene, o-limonene, Terpien-4-ol, pulegone, Beta-bisabolene, (−)-spathulenol, cis-lanceol, alloaromadendrene,Longifolene,Phenanthrene,7-ethenyl-1,2,3,4,4a,4b,5,6,7,8,8a,9-dodecahydro-1, 1,4b,7-tetramethyl-, [4aS-(4a.alpha.,4b.beta., 7.alpha.,8a.alpha.)]- and Bicyclo [2.2.1] heptan-2-one, 1,7,7-trimethyl-,(1S)-Bicyclo. Aldehydes(4.86%);Ketones(2.85%)andfattyacidesters(1.82%)were also among compounds whose identity was confirmed from the library. The low percentage of terpenoidsandrelativelyhighcontentofcarboxylicacidsintheoilsextractedfromHydnoraafricana maysuggestthattheoilmaynotbeconsideredasatrueessentialoil[25]. Thismaybethereasonfor theweakantioxidanteffectsshownbytheoilagainstDPPH,ABTSandnitricoxide. However,the potentialapplicationsoftheoilinthecosmeticindustries,duetothepresenceofsometerpenoidsmay beveryuseful.

Description:
Keywords: Hydnora africana; chemical composition; biological activities; infections; GC-MS. 1. immune deficiencies, chronic inflammatory gastrointestinal, liver, respiratory, urinary tract and other the chemical composition, antioxidant and antimicrobial properties of HA essential oil remain obsc
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.