molecules Article Chemical Composition, Antibacterial and Antifungal Activities of Crude Dittrichia viscosa (L.) Greuter Leaf Extracts WafaRhimi 1,2,IssamBenSalem2,*,DavideImmediato3,MouldiSaidi2,AbdennacerBoulila4 andClaudiaCafarchia3 1 FacultédesSciencesdeBizerte,UniversitédeCarthage,7021Zarzouna,Tunisia;[email protected] 2 LaboratoryofBiotechnologyandNuclearTechnolog,NationalCentreofNuclearScienceand Technology(CNSTN),SidiThabetTechnopark,2020Ariana,Tunisia;offi[email protected] 3 DipartimentodiMedicinaVeterinaria,UniversitàdegliStudidiBari,70010Valenzano,Italy; [email protected](D.V.);[email protected](C.C.) 4 LaboratoryofNaturalSubstancesLR10INRAP02,NationalInstituteofResearchandPhysico-chemical Analyses,BiotechpoleofSidiThabet,2020Ariana,Tunisia;[email protected] * Correspondence:[email protected];Tel.:+216-71-537-410 AcademicEditors:HideyukiIto,TsutomuHatanoandTakashiYoshida Received:12May2017;Accepted:3June2017;Published:30June2017 Abstract: The small amount of data regarding the antifungal activity of Dittrichia viscosa (L.) Greuter against dermatophytes, Malassezia spp. and Aspergillus spp., associated with the few comparativestudiesontheantimicrobialactivityofmethanolic,ethanolic,andbutanolicextracts underpinsthestudyhereinpresented. Thetotalcondensedtannin(TCT),phenol(TPC),flavonoid (TFC),andcaffeoylquinicacid(CQC)contentofmethanol, butanol, andethanol(80%and100%) extractsofD.viscosawereassessedandtheirbactericidalandfungicidalactivitieswereevaluated. The antibacterial, anti-Candida and anti-Malassezia activities were evaluated by using the disk diffusionmethod,whereastheanti-Microsporumcanisandanti-Aspergillusfumigatusactivitieswere assessed by studying the toxicity effect of the extracts on vegetative growth, sporulation and germination. ThemethanolicextractcontainedthehighestTPCandCQCcontent. Itcontainsseveral phytochemicals mainly caffeoylquinic acid derivatives as determined by liquid chromatography withphotodiodearrayandelectrosprayionisationmassspectrometricdetection(LC/PDA/ESI-MS) analysis. AllextractsshowedanexcellentinhibitoryeffectagainstbacteriaandCandidaspp.,whereas methanolicextractexhibitedthehighestantifungalactivitiesagainstMalasseziaspp.,M.canisand A.fumigatusstrains. Theresultsclearlyshowedthatallextracts,inparticularthemethanolicextract, mightbeexcellentantimicrobialdrugsfortreatinginfectionsthatarelifethreatening(i.e.,Malassezia) orinfectionsthatrequiremandatorytreatments(i.e.,M.canisorA.fumigatus). Keywords: Dittrichiaviscosa;antifungalactivities;Candidaspp.;Malasseziaspp.;Microsporumcanis; Aspergillusfumigates 1. Introduction Thegrowingworldwideconcernaboutthealarmingincreaseintherateofhumanandanimal infections caused by antibiotic-resistant microorganisms have spurred the interest of the scientific communityindevelopingalternativemethodsfortheircontrol[1].Manykindsofnaturalextractsfrom medicinalplantscontainingphenolicandflavonoidcompoundshaveexcellentbiologicalproperties and are used as alternative therapies. Among the large variety of Mediterranean folkloric herbs, DittrichiaviscosabelongingtotheAsteraceaefamily,hasproventobeasourceofnaturalproducts formingthebasisforalternativemedicineandnaturaltherapies[2–4]. Dittrichiaviscosawasstudied Molecules2017,22,942;doi:10.3390/molecules22070942 www.mdpi.com/journal/molecules Molecules2017,22,942 2of13 against antibiotic-resistant microorganisms, antibacterial activity and anti-fungal activity against Candida albicans and Fusarium species [5,6]. To the best of our knowledge, reports on antifungal activityofD.viscosaagainstdermatophytes,Malasseziaspp. andAspergillusspp. arescantorlimited to Microsporum canis. In particular, dermatophytes are a group of fungi which have the ability to invadethekeratinizedtissues(skin,hair,nails)causingcutaneousinfectionsinhumansandanimals commonlyknownasdermatophytosis[7]. Theyaredistributedworldwideandsomeofthemare considered zoonotic, being transmitted from animals to humans [8]. The treatment of infections is mandatory due to the contagious and the zoonotic nature and usually requires long antifungal therapywithazoles[9]. Inaddition,thesetreatmentsarenotusuallyperformedinfoodproducing animalssincetheyaremoreexpensive,andtreatedanimalsneedlongwithholdingbeforeusingin foodprocessingindustry[10]. ThefungalgenusMalasseziaispartofthenormalskinmicrobiota. Theseyeastscausehumanand animalskindisordersinimmune-competenthostsandsystemicinfectionsinimmune-compromised patientswhichusuallyrequireprolongedtreatmentwithand/orhighdosesofantifungalagents[11,12]. Inaddition,recentstudiesclearlyshowthatthesamespecieswithinthegenusofMalasseziafurfur andMalasseziapachydermatisarecharacterizedbyhighminimalinhibitoryconcentration(MIC)values againstallazoledrugscommonlyemployedinthetreatmentoftheinfections. Finally,Aspergillusspeciesarefoundworldwideinhumansandinalmostalldomesticanimals andbirdsaswellasinmanywildspecies,causingawiderangeofdiseasesfromlocalizedinfections tofataldisseminateddiseases,aswellasallergicresponsestoinhaledconidia[13]. Someprevalent forms of animal aspergillosis are invasive fatal infections and are difficult to treat. In addition, the environmentaldiffusionofA.fumigatusstrainspresentingazoleresistantphenomenaisworldwide reported[13]. Thus,thisstudyaimedto:(i)quantifythephenolicandflavonoidscontentofD.viscosaleafextract withdifferentsolvents;(ii)evaluatetheiractivitiesagainstgrampositiveandnegativebacteria,and againstCandidaspp. (i.e.,Candidaalbicans,Candidakrusei,Candidaprapsilos);and(iii)toassesstheir activitiesagainstMalasseziaspp. (MalasseziapachydermatisandMalasseziafurfur),Aspergillusfumigatus andMicrosporumcanis. 2. ResultsandDiscussion 2.1. PhytochemicalScreening Thetotalcondensedtannin(CTC),phenol(TPC),flavonoid(TFC),andcaffeoylquinicacid(CQC) content of different D. viscosa extracts are reported in Table 1. They are expressed as mg catechin equivalent(CE),mggallicacidequivalent,mgquercetinequivalent(QE)andmgofchlorogenicacid equivalent(ChlAE)pergdryextract,respectively. The CTC amounts varied from 7.05 ± 1.6 to 27.15 ± 2.21 mg CE/g, being the highest in the methanolic extract (Table 1). The TPC ranged from 75.34 ± 1.30 to 123.39 ± 1.22 mg GAE/g, the highestcontentretrievedinmethanolicand80%ethanolicextracts(Table1). TheCQCamountsofD.viscosaextractsrangedfrom57.11±0.98to87.61±1.06mgChlAE/g (Table1)andthehighestamountofCQCwasregisteredinmethanolicextract. TheTFCvariedfrom 30.86 ± 1.28 to 58.03 ± 1.85 mg QE/g and the highest content was registered in butanolic extract (Table1). ThemethanolicextractcontainsthehighestCTC,TPCandCQCvalueswhilethebutanolic extractcontainedthehighestamountofTFC. TheresultsofthisstudyclearlyindicatethatphenolicandflavonoidscontentofD.viscosacrude extractsvaryaccordingtothesolventextractionprocedure. Inparticular,thisstudyreportsforthe firsttimethepresenceofcondensedtanninsinthisplantspecies. Indeed,nopreviousstudieshave evaluated CTC in D. viscosa leaves, but results herein indicate that the amount within methanolic extractsareinthesamerangeasthoseofsomeAsteraceaespeciessuchasArtemisiagenus[14]. Onthe contrary, the TPC values of Tunisian D. viscosa extracts were in same range or slightly lower than Molecules 2017, 22, 942 3 of 13 the solvent, and it was highest when the solvent polarity increased. Similar results were reported by Negi and Jayaprakasha when studying methanol extracts of Punica granatum peel [16]. However, a high value of TFC in our extracts was detected in butanolic extract, suggesting that the flavonoid Molecules2017,22,942 3of13 composition of D. viscosa might comprise of substances with a high solubility in butanol, like luteolin derivatives [17,18]. thosereportedfromTurkishorMoroccansamples[4,15],thussuggestingthatTPCvaluesofD.viscosa doesTnoabtlvea 1r.y Caocncdoerndsiendg tlayntnoinpsl,a tnottaol rpigoliynp.hAenccoolsr,d tointagll yfl,atvhoenoTiPdCs, aanmdo cuanfftesoydleqpueinnidc aocnidt hcoenpteonlta roift yof thesodlivffeenretn,ta Dnd. viitscwosaa slehafi gehxtersatctws. henthesolventpolarityincreased. Similarresultswerereported byNegiandJayaprakashawhenstudyingmethanolextractsofPunicagranatumpeel[16]. However, Polyphenols and Flavonoids Content Ethanolic Ethanolic 80% Butanolic Methanolic ahighvalueofTFCinourextractswasdetectedinbutanolicextract,suggestingthattheflavonoid CTC(mgCAE/g extract) 14.29 ± 1.30 a 7.05 ± 1.6 b 16.86 ± 1.62 c 27.15 ± 2.21 d compositioTnPCof (mD.gvGiAscEos/ga emxtirgahctt)c omprise1o1f7.s5u8b ±s 1ta.2n9c ae sw12it3h.3a9 ±h i1g.2h2 sbo lu7b5il.3it4y ±i n1.3b0u ct an1o2l3,.l0i7k e± l1u.6t9e ob lin derivativesT[F1C7, 1(m8]g.QE/g extract) 57.79 ± 1.76 a 49.23 ± 1.039 b 58.03 ± 1.85 a 30.86 ± 50 c CQC (mgCGAE/g extract) 71.85 ± 0.35 a 73.13 ± 1.06 a 57.11 ± 0.98 b 87.61 ± 1.06 c Table1V.aCluoensd feonllsoewdetda nbnyi nthse, tsoatmalep loetlyteprh aelnonogls ,thtoet raolwfla avroen nooitd ssi,gannifdiccaanftfleyo ydliqffueirnenict a(pc i<d 0c.o0n5)t.e ntof differentD.viscosaleafextracts. 2.2. Phenolic Profile of D. viscosa Extracts PolyphenolsandFlavonoidsContent Ethanolic Ethanolic80% Butanolic Methanolic The HPLC-PDA/ESI-MS analysis allowed us to tentatively identify 18 phenolic compounds in CTC(mgCAE/gextract) 14.29±1.30a 7.05±1.6b 16.86±1.62c 27.15±2.21d the methaTnPoCli(cm DgG. vAiEsc/goseax terxatcrt)act (Figure1 117).. 5T8h±e 1p.2h9eanoli1c2 3fr.3a9c±tio1n.2 2ofb me7t5h.a34no±li1c. 3D0.c visc1o2s3a.0 e7x±tr1a.c6t9 wb as dominatedT FbCy (cmagffQeEo/yglqexutrinacitc) acid deriva5t7iv.7e9s± su1c.7h6 aas ch4l9o.2r3o±ge1n.0ic39 abcid, 5d8i.c0a3f±fe1o.y85lqauinic3 0a.c8i6d± is5o0mcers, and caffCeoQyCl (gmlugcCoGsAe Ea/sg ietx strhaoctw) n in Tabl7e1 .28.5 O±t0h.e35r ahyhy7d3.r1o3x±yc1i.0n6naamic5 7a.1c1id±s 0li.9k8eb coum87a.6r1ic± a1c.i0d6 cand caffeic acid deVriavluaetsivfoellso wweedreby atlhseos admeteelcettteedra. longtherowarenotsignificantlydifferent(p<0.05). Some flavonoid compounds were also detected. They were represented exclusively by quercetin 2d.2e.riPvhaetnivoelisc P(er.ogfi.,l eqoufeDrc.evtiisnco-Osa-hEexxtroascitdse, quercetin glucuronide, quercetin dimethyl ether isomers), and the flavonol catechin glucoside. The identification of phenolic compounds by HPLC-PDA-ESI- TheHPLC-PDA/ESI-MSanalysisallowedustotentativelyidentify18phenoliccompoundsin MS as shown in Table 2 confirmed our photochemical screening findings about the richness of themethanolicD.viscosaextract(Figure1). ThephenolicfractionofmethanolicD.viscosaextractwas D. viscosa extract in caffeoylquinic acid derivatives, and in agreement with previous reports from dominatedbycaffeoylquinicacidderivativessuchaschlorogenicacid,dicaffeoylquinicacidisomers, Israel, Turkey and Tunisia [4,15,19]. From these results, it emerges that D. viscosa might be advised andcaffeoylglucoseasitshowninTable2. Otherhyhydroxycinnamicacidslikecoumaricacidand as potential source of bioactive components especially caffeoylquinic acid derivatives. caffeicacidderivativeswerealsodetected. FFiigguurree 11.. CChheemmiiccaall cchhaarraacctteerriizzaattiioonn ooff mmeetthhaannoolliicc eexxttrraacctt ooff DD.. vviissccoossaa lleeaavveess bbyy HHPPLLCC--PPDDAA--EESSII--SS.. TThheep peeaakkssa arreen nuummbbeerreedda anndda assssigignnmmeenntstsa arereg giviveenni ninT Tabablele2 .2. Someflavonoidcompoundswerealsodetected. Theywererepresentedexclusivelybyquercetin derivatives(e.g.,quercetin-O-hexoside,quercetinglucuronide,quercetindimethyletherisomers),and theflavonolcatechinglucoside. TheidentificationofphenoliccompoundsbyHPLC-PDA-ESI-MS asshowninTable2confirmedourphotochemicalscreeningfindingsabouttherichnessofD.viscosa Molecules2017,22,942 4of13 extractincaffeoylquinicacidderivatives,andinagreementwithpreviousreportsfromIsrael,Turkey andTunisia[4,15,19]. Fromtheseresults,itemergesthatD.viscosamightbeadvisedaspotentialsource ofbioactivecomponentsespeciallycaffeoylquinicacidderivatives. Table2.Retentiontime(RT),wavelengthsofmaximumabsorption(λmax),massspectraldata,relative occurrence,andtentativeidentificationofphenoliccompoundsinmethanolicextractofD.viscosaleaves. Compound RT(min) λmax [M−H]− FragmentIons ProposedStructure Occurrence 341(100), 1 4.856 292sh–322 377 Caffeicacidhexoside ++ 179,119 191(100), 2 5.346 292sh–322 341 3-Caffeoylquinicacid ++ 137,128 3 11.876 292sh–322 353 191(100),161 Chlorogenicacid +++ 191, 4-Caffeoylquinicacid 4 13.856 292sh–322 353 + 161(100) isomer 5 17.222 293–310 467 163(100) Coumaricacidderivative + 267(100), 6 22.365 - 429 Feruloylcaffeolglycerol + 173,161 301(100), 7 27.982 360,262 463 Quercetinhexoside + 331,255 8 28.007 293sh–321 463 301(100) Hydroxyluteolinhexoside + 9 30.452 293sh–354 477 301(100) Quercetinglucuronide + 10 30.714 294sh–354 477 301(100),161 Quercetinglucuronide + 191(100), 11 32.888 292sh–322 353 5-Caffeoylquinicacid + 179,161 191(100), Dicaffeoylquinicacid 12 33.463 292sh–322 353 ++++ 179(32) isomer 191(78), Caffeoylquinicacid 13 37.98 292–322 353 179(100), +++ isomer 161(80) 14 44.561 290,320 339 135(100) Caffeoylglucose +++ 314(100), 299(80), Quercetin-dimethylether 15 47.234 253–349 329 285(70), +++ isomer 271(53), 243(50) 314(100), 299(85) Quercetin-dimethylether 16 47.395 253–349 329 +++ 271(75), isomer 241(40) 314(100), Quercetin-dimethylether 17 49.315 253–349 329 299(85), + isomer 285,243 289(40), 18 55.566 278 493 165(100), Catechinglucoside +++ 139(80) +:lowinabundance;++:moderateinabundance;+++:highinabundance);++++:veryhighinabundance. 2.3. Antibacterial,Anti-CandidaandAntifungalActivityofD.viscosaExtracts Table3showstheinhibitoryeffectsofD.viscosaextractsagainstGrampositive(i.e.,Staphylococcus aureus,Enterococcusfeacium,Streptococcusagalactiae)andGramnegativebacteria(i.e.,Escherichiacoli andSalmonellatyphimurium)withtheinhibitionhalorangingfrom9.5to34.5mm. Nostatistically significantdifferenceswererecordedbetweendifferentextracts. Thehighestantimicrobialactivity wasobservedagainstEnterococcusfeacium(G+)andStreptococcusagalactiae(G+)withinhibitionzones of34.5±0.7mmand29±1.41mm,respectively. Molecules2017,22,942 5of13 Table3. Antibacterialpropertiesofextractsunderstudy,expressedasdiameterofinhibitionhalo (inmm)versusseveralstrains. Concentration Bacterialspps. Ethanol Ethanol80% Butanol Methanol (mg/mL) 50 12±1.41a 11.5±0.70a 12.5±0.70a 12±0.70a Eshershiacoli 10 11±1.41a 10±0.0a 10.5±0.0a 10±0.0a 50 10.5±0.70a 9.5±0.70a 10.5±0.70a 10±0.0a SalSalmonellatyphimurium 10 9.5±0.70a 0±0.0b 9.5±0.70a 9.5±0.0a 50 34±1.41a 28.5±0.0b 34.5±0.70a 34.5±0.7a Enterococcusfeacium 10 30±0.0a 25±0.0b 28±0.0c 29±0.0d 50 28±1.41a 28±1.41a 29±1.41a 29±1.41a Streptococcusagalactiae 10 18.5±0.70a 17±0.0a 21.5±1.41b 18±1.14a 50 25±0.0a 25±0.0a 22.5±0.70b 20±0.0c Staphylococusaureus 10 13.5±0.70a 10±0.0b 13±1.41a 11±0.0c Valuesfollowedbythesamesuperscriptalongtherowarenotsignificantlydifferent(p<0.05). Theresultsofanti-Candidaandanti-MalasseziaactivitiesarereportedinTable4. Thediameter halorangedfrom7to14.5mmaccordingtoextractconcentration. Nosignificantdifferenceswere recordedamongtheactivityofdifferentextractsagainstCandidaspecies. Table4.Anti-CandidaandAnti-Malasseziapropertiesofextractsunderstudy,expressedasdiameterof inhibitionhalo(inmm)versusseveralstrains. Concentration CandidaandMalasseziaspp. Ethanol Ethanol80% Butanol Methanol (mg/mL) 50 10.25±0.58a 9.66±1.52a 8.75±1.73a 10.75±0.95a CandidaprapsilosisATCC22019 10 8.66±1.73a 8.5±1.73a 8.66±1.73a 10±0.95a 50 10±1.41a 10.5±0.57a 10±1a 10±0.0a CandidakruseiATCC6258 10 9.5±0.7a 10±0.0a 9±0.82a 10±0.0a 50 13.5±0.70a 13.5±0.70a 14.5±0.70a 14.5±0.70a CandidaalbicansATCC10231 10 12±0.0a 11.5±0.70a 13±0.00a 12±1.41a 50 10.5±0.57a 11±0.00a 10.25±0.5a 10±2.0a CandidaalbicansCD1358 10 10.25±0.5a 10±0.57a 9.5±0.57a 9.5±2.0a 50 10.25±0.5a 11.0±0b 10±0.0a 10±0.81a CandidaalbicansCD1378 10 10±0.5a 10.33±0.0a 10±0.5a 10±0.0a 50 10.66±0a 10.33±1.89a 10.75±0.5a 11±0.81a Candidaalbicans CD140 10 10±0.5a 8.25±1.89a 10.33±0.57a 9.66±0.57a 50 9.5±1.91a 10.5±0.57a 10.75±0.5a 11±0.81a CandidaalbicansCD1408 10 7±1.15a 10±0.57a 6.66±0.57a 9.66±0.57a 50 10±0.0a 10±0.0a 10.33±0.57a 11±00a MalasseziapachydermatisCBS1879 10 9.33±1.15a 9.33±0.57a 9.66±1.52a 9.33±0.57a 50 10.33±0.57a 10.66±0.57a 9.33±1.15a 10.66±0.57a MalasseziapachydermatisCD112 10 7.66±0.57a 7.66±0.57a 7±0.0a 10.33±0.57b 50 10.33±1.55a 10.33±0.57a 9.66±0.57a 9.66±0.57a MalasseziapachydermatisCD90 10 0±0.0a 7.66±0.57b 7.33±0.57b 9.33±0.57c 50 10.66±1.54a 10.33±1.52a 8.33±0.57a 9.66±1.15a MalasseziafurfurCBS1978 10 0±0.0a 7±0.0b 0±0.0a 8±1.0b 50 9.33±0.57a 9.66±1.52a 8.33±1.52a 9±1.73a MalasseziafurfurCD1006 10 0±0.0a 0±0.0a 0±0.0a 8±1.0b 50 8±1.0a 9±0.0a 0±0.0b 9±1.0a MalasseziafurfurCD1029 10 0±0.0 0±0.0 0±0.0 0±0.0 Regardingthebiologicalactivity,theresultshereinarenotonlyconfirmedexistingdataabout the antibacterial activities of crude extracts of D. viscosa, but are extended our knowledge on the Molecules2017,22,942 6of13 antifungalactivitiesagainstdifferentCandidaspp. (i.e.,C.parapsilosisandC.krusei),Malasseziaand A.fumigatusstrains. All the extracts investigated exhibited antibacterial and anti-Candida activities which are independentoftheextractionsolvent,butdependentontheextractconcentrations,suggestingthat bothflavonoidandphenoliccompoundsmightactasantibacterialandanti-Candidadrugs[20]. Itis wellknown,thatluteolinderivatives,isorhamnetinandinparticular3(cid:48)-di-O-methylquercetinand 3-O-methyquercetin from Jordanian D. viscosa have an excellent inhibitory efects against B. cereus, S. typhimurium and S. aureus. Phenolic compounds such as hydroxycinnamic acids derivatives (caffeoylquinic acid and chlorogenic acid) or p-coumaric acid are also potent inhibitors of E. coli, K. pneumoniae, B. cereus and C. albicans [20,21]. Both phenolic and flavonoid compounds provoke damage in bacterial or yeast cell walls and cytoplasmic membranes [21,22]. Interestingly, the gram-positivebacteriatestedweresignificantlymoresensitivetoD.viscosaextractsthangram-negative bacteria,mostlikelyduetothepresenceofalipopolysaccharide(LPS)membraneinGram-negative bacteria,beingmoreresistanttotheforeignagents[23]. TheabsenceoftheseLPSinmembranecellof Candidaspp. makesthemvulnerableagainstforeignagents. Theanti-Malasseziainhibitionzonerangedfrom0to11mm.Amongtheyeastpopulationstestedin thisstudy,Malasseziaspeciespresentasusceptibilityprofilevaryingaccordingtothespeciesandstrain (Table4). Inparticular,allextractsshowedgoodbroad-spectrumactionagainstM.pachydermatisfrom dogotitis/dermatitiswhereasthelowesteffectivenessagainstMalasseziafurfurisolatedfromhuman bloodstreaminfections. Theseresultsarenotsurprisingsincesimilartrendswereobservedwhenthe susceptibilityofM.pachydermatisandM.furfurtoazoleswascomparedduetothevariabilityofthe cellwallchemicalcompositionofMalasseziayeasts[24]. Theanti-Malasseziaactivityofourextractsnot onlyvariedaccordingtoMalasseziaspecies,butalsotothesolventusedforextractionwithmethanol extractmostactiveagainstM.furfur(Table4). Indeed,theextractspreparedwiththehighpolarity solvents (methanol) were more effective against Malassezia species including M. furfur than those usinglowpolaritysolvents. SimilartrendshavebeenobservedusingchloroformicextractofLawsonia inermisleavesoraqueousextractsofAlliumcepaandAlliumsativumagainstMalasseziafurfur[25]. The anti-MalasseziaactivitiesofD.viscosaextractsmaybeexplainedbythehighTFCandCQCcontent identifiedinmethanolextractsthusconfirmingpreviousresultswithI.paraguariensisextracts[26]. ToxicityassaysandtheeffectonfungalgerminationofextractsagainstM.canisandA.fumigatus arereportedinTables5and6,respectively. Thegerminationandsporulationwereexpressedasmean values(±standarddeviation)ofLog10ofcolonyformingunits(CFU)/mLandvegetativegrowthas meanvalue(±standarddeviation)ofcolonydiameters(Ø)ofthreeindependentexperiments. All D.viscosaextractswereabletocompletelyinhibitthegerminationofM.canisatconcentrationhigher than1mg/mL.ThegerminationofA.fumigatuswascompletelyinhibitedatconcentrationshigher than 10 mg/mL. D. viscosa extracts affect both M. canis vegetative growth and sporulation, being non-toxicforM.canisCD1279andM.canisCD1447onlywhenethanolicand80%ethanolicofD. viscosaextractswereusedat1mg/mL(Table5). AllD.viscosaextractsaretoxictoA.fumigatus,except forthestrainsCD1435andCD1441. Inparticular,allD.viscosaextractsataconcentrationof1mg/mL arenon-toxicforCD1435,withtheexceptionof80%ethanolicextractwhichisnottoxicfortheA. fumigatusCD1441atthisconcentration. Molecules2017,22,942 7of13 Table5.EffectsofD.viscosaextractsonconidiagermination,vegetativegrowthandsporulationofM.canis.Degreeoftoxicity(Tvalue)wasalsoreported. Ethanol Ethanol80% Butanol Methanol [C] Germination Sporulation Germination Sporulation Germination Sporulation Germination Sporulation mg/mL Growth T Growth T Growth T Growth T Strains (Log10 (Øcm) (Log10 Value (Log10 (Øcm) (Log10 Value (Log10 (Øcm) (Log10 Value (Log10 (Øcm) (Log10 Value CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1279 5 0 2.4±0.3 3.54±0.1 14.71 0 2.55±0.1 4.06±0.1 23.08 0 2.5±0.1 3.47±0.1 14.54 0 1.8±0.1 2.97±0.1 9.31 1 3.72±0.1 3.65±0.4 4.79±0.1 77.78 3.87±0.1 3.85±0.1 4.77±0.1 76.91 3.56±0.2 3.5±0.1 4.58±0.1 53.55 3.49±0.1 2.55±0.1 4.43±0.1 38.45 Control 4.30±0.1 5.45±0.1 4.91±0.1 100 4.30±0.2 5.45±0.1 4.91±0.1 100 4.30±0.2 5.45±0.1 4.91±0.1 100 4.3±0.2 5.45±0.1 4.91±0.1 100 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1243 5 0 2.1±0.14 3.13±0.1 10.62 0 2.25±0.1 3.41±0.04 13.85 0 1.85±0.1 3.06±0.1 9.52 0 1.85±0.1 2.86±0.1 8.61 1 3.73±0.1 2.55±0.1 4.22±0.2 48.97 3.81±0.1 2.85±0.1 4.22±0.02 45.41 3.24±0.1 2.85±0.1 3.79±0.1 25.71 3.24±0.1 2.35±0.1 3.43±0.1 15.11 C 4.18±0.1 5.55±0.1 4.51±0.1 100 4.18±0.1 5.55±0.1 4.51±0.1 100 4.18±0.1 5.55±0.1 4.51±0.1 100 4.18±0.1 5.55±0.1 4.51±0.1 100 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 5 0 2.5±0.1 3.36±0.2 16.58 0 2.85±0.1 3.55±0.2 21.12 0 2.45±0.1 3.81±0.1 14.77 0 1.65±0.1 2.81±0.1 9.16 1447 1 3.85±0.1 3.45±0.1 4.43±0.1 66.31 3.88±0.3 3.8±0.1 4.26±0.1 17.19 2.52±0.1 3±0.1 4.29±0.1 50.23 2.29±0.3 2.65±0.1 4.26±0.1 46.31 C 4.46±0.1 4.15±1 4.61±0.1 100 4.46±0.1 4.15±0.1 4.61±0.2 100 4.46±0.1 4.15±0.1 4.61±0.1 100 4.46±0.1 4.15±0.1 4.61±0.1 100 *Tvalue=verytoxic(0≤T≤30);toxic(31≤T≤45);moderatelytoxic(46≤T≤60);non-toxic(T>60);[C]:Concentration(mg/mL);C:ControlConcentration(mg/mL);C:Control. Table6.EffectsofD.viscosaextractsonconidiagermination,vegetativegrowthandsporulationofA.fumigatus.Degreeoftoxicity(Tvalue)wasalsoreported. Ethanol Ethanol80% Butanol Methanol [C] Germination Sporulation Germination Sporulation Germination Sporulation Germination Sporulation mg/mL Growth T Growth T Growth T Growth T Strains (Log10 (Øcm) (Log10 Value (Log10 (Øcm) (Log10 Value (Log10 (Øcm) (Log10 Value (Log10 (Øcm) (Log10 Value CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) CFU/mL) 50 0 1.25±0.1 5.09±0.2 2.88 0 1.55±0.1 6.25±0.2 4.71 0 1.35±0.1 5.12±0.2 3.11 0 1.15±0.1 4.08±0.3 2.59 CD 10 3.66±0.1 2.35±0.1 6.45±0.2 7.13 3.51±0.1 2.85±0.1 6.81±0.1 13.62 3.47±0.3 3.35±0.2 6.18±0.1 8.56 3.46±0.3 1.95±0.1 5.08±0.6 4.75 1435 5 4.06±0.1 5.9±0.1 6.72±0.2 19.33 4.20±0.1 6.25±0.1 7.23±0.0 29.86 4.03±0.3 5.7±0.14 6.51±0.1 16.44 4.143±0.1 5.35±0.1 6.18±0.3 14.45 1 5.21±0.2 7.85±0.1 7.75±0.1 73.53 5.03±0.1 8.15±0.1 7.79±0.1 78.41 4.97±0.1 8.15±0.1 7.74±0.1 73.71 4.7±0.1 8.25±0.1 7.66±0.1 64.9 C 5.24±0.1 8.9±1.0 7.91±0.1 100 5.24±0.1 8.9±1.0 7.91±0.6 100 5.24±0.1 8.95±1.0 7.91±0.1 100 5.24±0.1 8.95±1.1 7.91±0.1 100 50 0 1.2±0.0 5.35±0.2 2.86 0 1.65±0.1 5.23±0.2 3.85 0 1.2±0 5.13±0.3 2.81 0 1.1±0 4.67±0.1 2.54 CD 10 3.55±0.1 3.4±0.3 6.59±0.1 9.93 3.68±0.1 3.4±0.0 6.56±0.1 9.8 3.19±0.1 3.3±0.5 6.17±0.2 8.33 2.67±0.1 2.95±0.1 5.64±0.1 8.25 1441 5 4.07±0.2 5.25±0.1 6.96±0.1 17.2 4.34±0.1 5.4±0.3 7.04±0.10 18.78 3.95±0.1 4.55±0.2 6.84±0.1 14.34 3.8±0.1 4.4±0.2 6.72±0.1 13.1 1 4.99±0.1 7.55±0.2 7.73±0.5 47.5 5.06±0.1 7.95±0.1 7.9±0.1 63.81 4.83±0.1 7.4±0.1 7.57±0.1 38.74 4.66±0.1 7.8±0.1 7.47±0.1 34.82 C 5.35±0.1 8.8±0.1 8.15±0.1 100 5.53±0.1 8.8±0.1 8.15±0.1 100 5.35±0.1 8.84±0.1 8.15±0.1 100 5.35±0.1 8.8±0.1 8.15±0.1 100 50 0 1.25±0.1 5.06±0.1 2.84 0 1.6±0 5.19±1.1 3.83 0 0 0 0 0 1.2±0.0 0.00 0 10 4.3±0.1 3.05±0.2 5.76±0.5 7.2 4.58±0.1 3.8±0.1 6.5±0.2 9.72 2.67±0.1 2.95±0.1 5.85±0.1 6.94 4.3±0.1 2.55±0.2 5.61±0.1 5.97 CD 5 5.08±0.1 5.55±0.2 6.69±0.1 14.37 5.19±0.1 6.6±0.1 7.78±0.1 23.54 3.96±0.1 3.95±0.1 6.84±0.1 12.23 4.68±0.1 3.6±0.1 6.18±0.2 8.84 1438 1 5.45±0.1 7.65±0.2 7.89±0.1 49.38 5.76±0.1 8.0±0.3 7.78±0.01 41.49 4.12±0.1 7.62±0.1 7.78±0.1 40.84 5.3±0 7.55±0.2 7.69±0.1 40.73 C 5.92±0.1 8.95±1.0 8.31±0.2 100 5.92±0.1 8.95±1.0 8.31±0.2 100 5.92±0.1 8.95±1.0 8.31±0.2 100 5.92±0.1 8.95±1.0 8.31±0.2 100 Molecules2017,22,942 8of13 ThepresentstudyshowsthatallD.viscosaextractssignificantlydecreasethevegetativegrowth, germination,conidiaproductionofbothM.canisandA.fumigatus,thusconfirmingpreviousresults against dermatophytes or other fungal species (i.e., Cladosporium cucumerinum, Botrytis cinerea, Pseudoperonospora cubensis, Phytophthora infestans, Erysiphe graminis and Puccinia helianthi [5,22]. However,allextractsevincedaconcentration-dependentinhibitoryactivity,whichvariesaccordingly tofungalgenus. Infact,theA.fumigatusstrainsseemstobelesssusceptiblethanM.canisaspreviously reportedusingacetoneextractsofArctotisarctotoides[22]. Additionallythehighestantifungalactivity was observed with methanol extracts in both fungal species, thus suggesting the efficacy of both TPCandCQAcontentasantifungaldrugs[21,27]. Themechanismofactionofphenoliccompounds againstfungiwaspreviouslyexplainedbyseveralstudiesandmightbeduetothemembranelipid perturbation. SungandLee(2010)[28]demonstratedthatphenolicacidsmightcausedisruptionof iontransport,whereasTeodoroetal. (2015)[20]indicatedthatthehydroxylgroupandcarboxylic acidgroupsofpheonliccompoundsplaysanimportantroleindestabilizingthefungalcytoplasmic membrane. EvenifthelowtoxicityvaluesofD.viscosamethanolicextractinonestrainofA.fumigatus needtobeconfirmed,thehereinobtainedresults,suggestedthatconcentrationshigherthan1mg/mL should be employed in controlling A. fumigatus strains. The antifungal activity against Malassezia yeasts,M.canisandA.fumigatusisofinterestsincethecontroloftheseinfectionsisthesubjectofdebate inthescientificcommunity. Inparticular,Malasseziayeastinfectionsinanimals,mainlydogs,maybe unresponsivetoantifungaltherapyandtheanimalsusuallyhaverecurrencesthusrequiringmultiple drug regimens [24]. The treatment of M. canis infections in animals is mandatory because of the zoophilicnatureofthisfungus,butitisnotalwayspossibleinanimalsusedforfoodproduction[29]. Finally,thehighazolesresistancephenomenaregisteredinAspergillusspp. strainsalsosuggests theusefulnessofstudiesonnewantifungaldrugs[30]. Allthesefindingspromotetheemploymentof drugsofplantorigin. 3. MaterialsandMethods 3.1. ChemicalandReagents Vanillin(C H O ),catechin(C H O ),Folin-Ciocalteureagent,sodiumcarbonate(Na CO ), 3 8 3 15 14 6 2 3 gallicacid(C H O ),aluminumchloride(AlCl ),potassiumacetate(C H KO ),rutin(C H O ), 7 6 5 3 2 3 2 27 30 16 quercetin(C H O ),sodiummolybdatedihydrate(Na MoO ),dipotassiumhydrogenphosphate 15 10 7 2 4 (K HPO ),potassiumdihydrogenphosphate(KH PO ),chlorogenicacid(C H O )werepurchased 2 4 2 4 16 18 9 fromSigma-Aldrich®(Steinheim,Germany). SolventsofanalyticalandHPLCgradewerepurchased fromCarloErbaReactif-CDS(ValdeReuil,France). 3.2. PlantMaterial TheleavesoftheplantswerecollectedinJune2015fromuncultivatedlandinSidiThabet,located intheNorthEastofTunisia(latitude36◦55(cid:48)45”N,longitude10◦06(cid:48)02.10”E,altitude30m). 3.3. PreparationofExtracts Dried and ground leaves (10 g) were macerated in four different solvents (ethanol (80% and 100%),methanolandbutanol)(10:100w/v)for48hwithshakingatroomtemperature. Theextracts werefilteredwithWhatmanNo. 1filterpaperandthefiltrateevaporatedtodrynessusingarotary evaporator. In order to test the antimicrobial activities, the samples were solubilized in dimethyl sulfoxide(DMSO)toobtainconcentrationsof1,5,10and50mg/mL. Molecules2017,22,942 9of13 3.4. PhytochemicalScreening 3.4.1. CondensedTanninsContent(CTC) The CTC was determined as previously described [31]. In particular, 0.5 mL of extract was condensedusing3mLofvanillinat4%inmethanoland1.5mLofconcentratedhydrochloricacid (HCl). Themixturewaskeptinthedarkfor15minat20 ◦CandtheCTCweremeasuredusinga Jenway6300spectrophotometer(Cole-Parmer,Staffordshire,UK)atabsorbanceof500nm. TheCTC wascalculatedfromcalibrationcurveusingcatechin(CAE)asastandardandresultswereexpressed asmilligramsofcatechinequivalentpergramm(g)ofdryextract(mgCAE/g). 3.4.2. TotalPhenolContent(TPC) TheTPCwasdeterminedusingtheFolin-Ciocalteumethod[32]. Briefly,0.5mLofeachdissolved extract was mixed with 2.5 mL of Folin-Ciocalteu reagent in each test tube. After 4 min, 2 mL of saturatedsodiumcarbonate(Na CO )solution(7.5%)wasaddedtothemixture.Thereactionmixtures 2 3 wereincubatedfor2h. Methanolwasusedastheblank. Allassayswereconductedintriplicateand theresultswereaveraged. TheTPCwascalculatedfromacalibrationcurveusinggallicacid(GAE)as thestandardandtheresultswereexpressedasmilligramsofgallicacidequivalentpergramofextract (mgGAE/g). 3.4.3. TotalFlavonoidContent(TFC) The TFC was quantified using the aluminum chloride colorimetric assay with slight modifications[33]. Inbrief,0.5mLofeachsolutionextractwasmixedwith1.5mLmethanol,0.1mL of10%aluminumchloride,0.1mLof1mol/Lpotassiumacetatesolutionand2.8mLdistilledwater. Themixturewasallowedtostandfor15min,andabsorbancewasmeasuredat415nm. Allassays wereconductedintriplicateandtheresultswereaveraged. TheTFCwascalculatedfromacalibration curveusingquercetin(QE)asthestandard,andtheresultwasexpressedasmgofquercetinequivalent pergramdryextract(mgQE/g). 3.4.4. CaffeoylquinicAcid(CQC)Content The CQC content of extracts was quantified using the molybdate colorimetric method [34]. Sodium molybdate (16.5 g), dipotassium hydrogen (8.0 g) phosphate, and potassium dihydrogen phosphate (7.9 g) were dissolved in 1 liter of deionized water to prepare the molybdate reagent. ForeachI.viscosaextractsolution0.3mLwasmixedwith2.7mLofmolybdatereagent. Themixture wasincubatedatroomtemperaturefor10min. Absorbancewasmeasuredat370nm. Allassayswere conductedintriplicateandtheresultswereaveraged. TheCQCwascalculatedfromacalibration curve using chlorogenic acid (ChlA) as the standard and the result was expressed as mg of ChlA equivalentpergdryextract(mgChlA/g). 3.5. CharacterizationofPhenolicCcompoundsbyHPLC-PDA-ESI-MS The phenolic compounds present in methonolic extract were tentatively identified using the chromatographicseparationmethodaspreviouslyreported[4]. ChromatographicseparationwasperformedonanAlliancee2695HPLCsystem(Waters,Bedford, MA,USA)equippedwithaRP-xTerraMScolumn(150×4.6mmi.d.,3.5µmparticlesize),photodiode arraydetector(PDA)andinterfacedwithatriplequadruplemassspectrometer(MSD3100,Waters) fittedwithanESIionsource.Thesample(20µL)waselutedthroughthecolumnwithagradientmobile phaseconsistingofA(0.1%formicacid)andB(acetonitrileacidifiedwithformicacid0.1%)withaflow rateof0.5mL/min. Thefollowingmultisteplinearsolventgradientwasused: 0–40min: 14–26%B; 40–60min: 15%B;60–75: 0%B;75–80min: 14%B.TheHPLC-PDA-ESI-MSchromatogramspectral Molecules2017,22,942 10of13 datawerestoredandprocessedwithMasslynx4.1datasystem. Eachpeakinthechromatogramwas accomplishedinasinglechromatographicruninordertobeidentified[35]. 3.6. AntibacterialandAntifungalActivities 3.6.1. BacterialStrains Fivereferencebacterialstrains,includingGram-positive(i.e.,StaphylococcusaureusATCC6538, Enterococcus feacium ATCC 19434, Streptococcus agalactiae ATCC 12386), and Gram-negative (i.e., Escherichia coli ATCC 8739, 29212 and Salmonella typhimurium ATCC 14028), were used to assess theantibacterialpropertiesoftheextracts. 3.6.2. FungalStrains Candidaspp. Three references strains of Candida (i.e., Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019,CandidaalbicansATCC10231),andfourCandidaalbicansstrains(i.e.,CD1358,CD1378,CD1407, CD1408)isolatedfromcloacaoflayinghens,wereusedtoevaluatetheanti-CandidaactivityofI.viscosa extracts. AllstrainswereobtainedfromthefungalcollectionoftheDepartmentofVeterinaryMedicine attheUniversityofBari(AldoMoro,Italy). Malasseziaspp. Strains AtotalofsixMalasseziaspp. strains(threeMalasseziapachydermatisandthreeMalasseziafurfur) weretested. Tworeferencestrains(i.e.,M.pachydermatisCBS1879andM.fufurCBS1978),twostrains isolatedfromdogswithdermatitisand/orotitis(i.e.,M.pachydermatisCD112andCD90),twoM.furfur strainsfromhumanskin(i.e.,M.furfurCD1029),andonefromahumanbloodstreaminfection(i.e., M.furfurCD1006)weretested. Aspergillusfumigatusstrains ThreeA.fumigatusstrains(CD1435,CD1438andCD1441)weretested. Allstrainswereisolated fromtherespiratorytractofcriticallyillhumanpatients. Allstrainswereobtainedfromthefungal collectionoftheDepartmentofVeterinaryMedicineattheUniversityofBari. Microsporumcanisstrains ThreeM.canisstrains(CD1243,CD1447,andCD1279),isolatedwithskinlesionsfromhuman, cat,anddogweretested,respectively.AllstrainswerestoredinthefungalcollectionoftheDepartment ofVeterinaryMedicineattheUniversityofBari. 3.7. DeterminationofAntibacterial,Anti-CandidaandAntifungalActivityofI.viscosaExtract Theantibacterial,anti-Candidaandanti-Malasseziaactivitieswereevaluatedbythediskdiffusion method[36],whereastheantifungalactivityofI.viscosaextractsagainstM.canisandA.fumigatuswas assessedbystudyingthetoxicityeffectoftheextractonvegetativegrowthandsporulationaswell theireffectonfungalgermination. 3.7.1. ToxicityAssay TheantifungalactivityofD.viscosaextractsagainstM.canisandA.fumigatuswasassessedas previouslyreported[37]. Inparticular,theantifungalpropertiesofextractswereassessedbyapplying thefollowingmathematicalmodelinordertoevaluatethedegreeoftoxicity: T=20[VG]+80[SR]/100 (1)
Description: