Mon.Not.R.Astron.Soc.000,1–??(2011) Printed30June2014 (MNLATEXstylefilev2.2) Chemical and photometric evolution models for disk, irregular and low mass galaxies Mercedes Molla´ 1,2 ⋆ 4 1DepartamentodeInvestigacio´nBa´sica,CIEMAT,Avda.Complutense40,E-28040Madrid.Spain. 1 2IAG,UniversityofSa˜oPaulo,05508-900,Sa˜oPaulo-SP.Brasil 0 2 n a AcceptedReceived;inoriginalform J 4 ABSTRACT ] We summarize the updated set of multiphase chemical evolution models performed with A 44 theoreticalradial mass initial distributionsand 10 possible valuesof efficienciesto form G molecularcloudsandstars.Wepresenttheresultsabouttheinfallratehistories,theformation . ofthedisk,andtheevolutionoftheradialdistributionsofdiffuseandmoleculargassurface h density,stellarprofile,starformationratesurfacedensityandelementalabundancesofC,N,O p andFe,findingthattheradialgradientsfortheseelementsbeginverysteeper,andflattenwith - o increasingtimeordecreasingredshift,althoughtheouterdisksalwaysshowacertainflatten- r ingforalltimes.Withtheresultingstarformationandenrichmenthistories,wecalculatethe t s spectralenergydistributions(SEDs)foreachradialregionbyusingtheonesforsinglestellar a populationsresultingfromtheevolutivesynthesismodelpopstar.Withthese SEDswemay [ computefinallythebroadbandmagnitudesandcolorsradialdistributionsintheJohnsonand 1 intheSLOAN/SDSSsystemswhicharethemainresultofthiswork.Wepresenttheevolution v ofthesebrightnessandcolorprofileswiththeredshift. 1 6 Keywords: galaxies:abundances–galaxies–evolutiongalaxies–photometry 7 0 . 1 0 1 INTRODUCTION Itwasearlyevidentthatitwasimpossibletoreproducethese 4 observationsbyusingtheclassicalclosedboxmodel(Pagel,1989) 1 Chemicalevolutionmodelstostudytheevolutionofspiralgalaxies whichrelatesthemetallicityZ ofaregionwithitsfractionofgas : has been the subject of a high number of works for the last v overthetotalmass,(stars,s,plusgas,g),µ =g/(g+s).Therefore decades. FromtheworksbyLynden-Bell (1975);Tinsley(1980); g i infall or outflows of gas in MWG and other nearby spirals were X Clayton (1987, 1988); Sommer-Larsen&Yoshii (1989), many soonconsiderednecessarytofitthedata.Infact,suchasitwases- r other models have been developed to analyze the evolution of tablished theoretically by Goetz&Koeppen (1992) and Koeppen a a disk galaxy. The first attempts were performed to interpret (1994) aradial gradient of abundances may becreated only by 4 the G-dwarf metallicity distribution and the radial gradient of possible ways: 1) A radial variation of the Initial Mass Function abundances (Peimbert, 1979; Shaveretal., 1983; Fich&Silkey, (IMF); 2) A variation of the stellar yields along the galactocen- 1991; Fitzsimmonsetat., 1992; V´ılchez&Esteban, 1996; tric radius; 3) A star formation rate (SFR) changing with the ra- Smartt&Rolleston, 1997; Afflerbach,Churchwell,&Werner, dius; 4) A gasinfall ratevariable, f, withradius. Thefirstpossi- 1997;Estebanetal.,1999;Esteban,Peimbert,&Torres-Peimbert, bilityisnotusuallyconsideredasprobable, whilethesecondone 1999b; Esteban,Peimbert,Torres-Peimbert,&Garc´ıa-Rojas, isalready included inmodern models, sincethestellar yieldsare 1999c; Smarttetal., 2001) observed in our Milky Way Galaxy in fact dependent on metallicity. Thus, from the seminal works (MWG). A radial decrease of abundances was soon observed from Lacey&Fall (1985); Gu¨sten&Mezger (1983) and Clayton in most of external spiral galaxies, too (see Henry&Worthey, (1987) most of the models in the literature (Diaz&Tosi, 1984; 1999, and references therein), although the shape of the radial Matteucci&Francois, 1989; Ferrinietal., 1992, 1994; Carigi, distribution changes from galaxy to galaxy, at least when it is 1994; Prantzos&Aubert, 1995; Chiappini,Matteucci,&Gratton, measuredindexkpc−11. 1997;Boissier&Prantzos,1999),includingthemultiphasemodel usedinthiswork, explaintheexistence of thisradial gradient by thecombinedeffectsofaSFRandaninfallofgaswhichvarywith ⋆ E-mail:[email protected] thegalactocentricradiusintheGalaxy. 1 Recentresultsseemindicatethattheradialgradientmaybeuniversalfor allgalaxies whenismeasuredindexreff−1 (Sa´nchezetal.,2013),reff beingtheradiusenclosingthehalfofthetotalluminosityofadiskgalaxy, yearsagobyGarnett(1998)althoughthestatisticalwasnotlargeenoughto orwithanyothernormalizationradius,somethingalreadysuggestedsome reachaccurateconclusions. (cid:13)c 2011RAS 2 Molla´ Most of the chemical evolution models of the literature, and10possiblevaluesofefficienciestoformmolecularcloudsand included some of the recently published, are, however, only stars.Nowwehaveupdatedthesemodelsbyincludingabulgere- devoted to the MWG, totally or only for a region of it, halo gionandbyusingadifferentrelationmass–life-meantimeforstars or bulge (Costa,Maciel,&Escudero, 2008; Tumlinson, 2010; nowfollowingthePadovastellartracks.Thesemodelsdonotcon- Marcon-Uchida,Matteucci,&Costa, 2010; Caimmi, 2012; sider radial flows, nor stars migration since no dynamical model Tsujimoto&Bekki, 2012; Micali,Matteucci,&Romano, 2013) isincluded.Thepossibleoutflowsbysupernovaexplosionsisnot or to any other individual local galaxy as M 31, M 33 or other included, too. We check that with the continuous star formation local dwarf galaxies (Carigi,Hernandez,&Gilmore, 2002; histories resulting of these models, the supernova explosions do Va´zquez,Carigi,&Gonza´lez, 2003; Carigi,Col´ın,&Peimbert, notappearinsufficientnumberastoproducetheenergyinjection 2006; Magrinietal., 2007; Barker&Sarajedini, 2008; necessarytohaveoutflowsofmass.Withthesechemicalevolution Magrinietal., 2010; Marcon-Uchida,Matteucci,&Costa, 2010; model results, we calculate the spectro-photometric evolution by Lanfranchi&Matteucci, 2010; Herna´ndez-Mart´ınezetal., usingeachtime-stepof theevolutionary model asasinglestellar 2011; Kangetal., 2012; Romano&Starkenburg, 2013; populationsatwhichweassignaspectrumtakenfromthepopstar Robles-Valdez,Carigi,&Peimbert, 2013a,b). These works evolutionary synthesis models (Molla´,Garc´ıa-Vargas,&Bressan, perform the models inaTailor-MadeModelsway, done by hand 2009).Ourpurposeintogiveasacataloguetheevolutionofeach for each galaxy or region. There are not models applicable to radialregionofadiskandthiswaytheradialdistributionsofele- any galaxy, except our grid of models shown in Molla´&D´ıaz mentalabundances,starformationrate,gasandstarswillbeavail- (2005,hereinafterMD05)andtheseonesfromBoissier&Prantzos ablealongwiththeradialprofilesofbroadbandmagnitudesforany (1999,2000),whopresentedawidesetofmodelswithtwoparam- timeofthecalculatedevolution. eters,thetotalmassorrotationvelocityandtheefficiencytoform The work is divided as follows: we summarize the updated molecular clouds and stars in MD05 and a angular momentum chemical evolution models in Section 2. Results related with the parameterinthelastauthorsgrid. surface densities and abundances are given in Section 3. We Besides that, these classical numerical chemical evolution describe our method to calculate the SEDs of these theoretical modelsonlycomputethemassesinthedifferentphasesofaregion galaxies and the corresponding broad band magnitudes and col- (gas, stars, elements...) or the different proportions among them. orsinSection4.Thecorrespondingspectro-photometricresultsare Theydonotusetogivethecorresponding photometricevolution, shown in Section 5 where we give a catalog of the evolution of preventingthecomparisonofchemicalinformationwiththecorre- thesemagnitudesintherest-frameofthegalaxies.Someimportant spondingstellarone.Thereexistafewconsistentmodelswhichcal- predictionsarisefromthesemodelswhicharegivenintheConclu- culateboththingssimultaneouslyinaconsistentway,asthosefrom sions. Va´zquez,Carigi,&Gonza´lez (2003); Boissier&Prantzos (2000) or those from Fritze-vonAlvensleben,Weilbacher,&Bicker (2003);Bickeretal.(2004);Kotullaetal.(2009,hereaftergalev). 2 THECHEMICALEVOLUTIONMODEL The latter, galev evolutionary synthesis models, describe the DESCRIPTION evolutionofstellarpopulationsincludingasimultaneoustreatment ofthechemicalevolutionof thegasandof thespectral evolution The model shown here are the ones from MD05 and therefore a of the stellar content. These authors, however, treat each galaxy more detailed explanation about the computation is given in that as a whole for only some typical galaxies along the Hubble work.Westartedwithamassof primordialgasinasphericalre- sequence and does not perform the study of radial profiles of gionrepresentingaprotogalaxyorhalo.Theinitialmasswithinthe mass, abundances and light simultaneously. The series of works protogalaxyisthedynamicalmasscalculatedbymeansoftherota- byBoissier&Prantzos(1999,2000);Prantzos&Boissier(2000); tionvelocity,V(Radius),throughtheexpression(Lequeux,1983): Boissieretal.(2001)seemsoneoffewthatgivemodelsallowing M(Radius)=M =2.32105RadiusV2(Radius) (1) an analysis of the chemical and photometric evolution of disk H,0 galaxies. with M inM ,RadiusinkpcandV inkms−1.WeusedtheUni- ⊙ Giventheadvancesintheinstrumentation,itisnowpossible versalRotationCurvefrom(URC)fromPersicetal.(1996)tocal- tostudyhighredshiftgalaxiesasthelocaloneswithspatialresolu- culateaset of rotationvelocity curvesV(Radius) and fromthese tionenoughgoodtoobtainradialdistributionsofabundancesand velocity distributions we obtained the mass radial distributions ofcolorsormagnitudesandthustoperformcarefulstudiesofthe M(Radius)(seeMD fordetailsandFig.2showing thesedistribu- possibleevolutionofthedifferentregionsofdiskgalaxies.Forin- tions).Itwasalsopossibletousethoseequationstoobtainthescale stancetochecktheexistenceofradialgradientsatotherevolution- lengthofthediskR ,theopticalradius,definedastheonewhere D arytimesdifferentthanthepresent(Crescietal.,2010;Yuanetal., thesurfacebrightnessprofileis25magarcsec−2,which,ifdisksfol- 2011; Queyreletal., 2012; Jonesetal., 2013) and their evolution lowtheFreeman’s(Freeman,1970)law,isRopt =3.2R ,andthe D withtimeorredshiftisnowpossible.Itisalsopossibletocompare virial radius, which we take as the galaxy radius Rgal. The total thesegradientswiththeradialdistributionsfromthestellarpopula- massofthegalaxy Mgalistakenasthemassenclosedinthisra- tionstostudypossiblemigrationeffects.Itisthereforeimportantto diusRgal.TheexpressionfortheURCwasgivenbymeansofthe haveagridofconsistentchemo-spectro-photometricmodelswhich parameter λ = L/L , the ratio between the galaxy luminosity, L, ∗ allowstheanalysisofbothtypesofdatasimultaneously. andtheoneoftheMWG,L ,inbandI.Thisparameterdefinesthe ∗ The main objective of this work is to give the spectro- maximum rotation velocity, Vmax and the radii described above. photometric evolution of the theoretical galaxies presented in Thus, weobtained the values of themaximum rotation velocities MD05, for which we have updated the chemical evolution mod- andthecorrespondingparametersandmassradialdistributionsfor els.Inthatworkwepresentedagridofchemicalevolutionmodels asetofλvaluessuchasitmaybeseeninTable1fromMD05. for440theoreticalgalaxies,with44differenttotalmass,asdefined To the radial distributions of disks calculated by means of by its maximum rotation velocity, and radial mass distributions, Eq.1describedabove,wehaveaddedaregionlocatedatthecenter (cid:13)c 2011RAS,MNRAS000,1–?? Chemical andphotometricmodels forlatetypegalaxies 3 (R=0)torepresentabulge.Thetotalmassofthebulgeisassumed Table1.TheoreticalgalaxymodelsselectedtorepresentasimulatedHub- asa10%ofthetotalmassofthedisk.Theradiusofthisbulgeis blesequence takenasR /5.Bothquantitiesareestimatedfromthecorrelations D foundbyBalcells,Graham,&Peletier(2007)amongthediskand dis Vmax Mgal Ropt τc nt ǫν ǫδ thebulgesdata. kms−1 1011M⊙ kpc Gyr 3 48 0.3 2.3 31.6 8 0.037 2.610−4 10 78 1.3 4.1 15.5 7 0.075 1.510−3 21 122 4.3 7.1 8.1 6 0.15 1.010−2 2.1 Theinfallrate:itsdependenceonthedynamicalmass 24 163 9.8 10.1 5.4 5 0.30 5.010−2 andonthegalactocentricradius 28 200 17.9 13.0 4.0 4 0.45 1.410−1 We assume that the gas falls from the halo to the equa- 35 250 33.5 16.9 2.9 3 0.65 3.410−1 39 290 52.7 20.6 2.3 1 0.95 8.810−1 torial plane forming out the disk in a scenario ELS (Eggen,Lynden-Bell,&Sandage, 1962). The time-scale of this process, or collapse-time scale τ , characteristic of every gal,c galaxy,changeswithitstotaldynamicalmassMgal,followingthe giveninTable1fromMDtoo,withthecharacteristicτ 3obtained c expressionfromGallagheretal(1984): foreachgalaxytotalmassMgal. By taking into account that the collapse time scale depends τ ∝Mgal−1/2T, (2) gal,c on thedynamical mass, and that spiral disks show a clear profile where Mgal isthe total massof the galaxy, and T is itsage. We ofdensitywithhighervaluesinsidethanintheoutsideregions,we assumeallgalaxiesbegintoformatthesametimeandevolvesfor mayassumethattheinfallrate,andthereforethecollapsetimescale atimeof T = 13.2Gyr. Weuse thevalue of 13.8 Gyr, given by τcoll, has a radial dependence, too. Since the mass density seems the Planck experiment (PlanckCollaborationetal., 2013) for the tobeanexponential inmost ofcases, wethenassumedasimilar ageof theUniverseand thereforegalaxiesstarttoformat atime expression: tstart =0.6Gyr. (Radius−Rc) NormalizingtoMWG,weobtain: τcoll(Radius)=τcexp λ (4) D M where λ is the scale-length of the collapse time-scale, taken as τ =τ MWG, (3) D gal,c MWG,cs Mgal around the half of the scale-length of surface density brightness distribution,R ,thatisλ =0.15Ropt∼0.5R . D D D where MMWG ∼ 1.81012M⊙ is the total mass of MWG and Obviouslythecollapsetimescaleforthebulgeregionisob- τMWG,c = 4 Gyr(seedetailsinthenextparagraph)istheassumed tained naturally from the above equation with R = 0. We show characteristiccollapse-timescaleforourGalaxy. inthe upper panel of Fig. 1 thecollapse timescale τ , in natu- coll Theaboveexpressionimpliesthatgalaxiesmoremassivethan rallogarithmicscale,asafunctionofthegalactocentricradius,for MWG form in a shorter time-scale, that is more rapidly, than seven radial distributions of total mass, as defined by their maxi- the least massive galaxies which will need more time to form mumrotationvelocity, Vmax, andplottedwithdifferent color, as their disks. This assumption is in agreement with the observa- labeled.Theseseventheoreticalgalaxiesareusedasexamplesand tionsfromJimenezetal.(2004);Heavensetal.(2004);Pe´rezetal. theircharacteristicsaresummarizedinTable1,wherewehavethe (2013)whichfindthatthemostmassivegalaxieshavetheirstellar numberofthedistribution,dis,correspondingtocolumn2fromTa- populationsinplaceatveryearlytimeswhilethelessmassiveones ble1inMDincolumn1,themaximumrotationvelocity,Vmax,in form most of their stars at z < 1. This isalso in agreement with kms−1,incolumn2,thetotalmass,Mgal,in1011M units,incol- ⊙ self-consistent cosmological simulations which show that a large umn 3, the theoretical optical radius Ropt, following Persicetal. proportionofmassiveobjectsareformedatearlytimes(highred- (1996) equations, in kpc, in column 4, the collapse time scale in shift)whiletheformationoflessmassiveonesismoreextendedin thecharacteristicradius,τ ,inGyrincolumn5,thevaluentwhich c time,thussimulatingamodernversionofthemonolithiccollapse definestheefficiencies(seeEq.22and23insection2.2)incolumn scenarioELS. 6,andthevaluesfortheseefficienciesincolumns7and8. Thecalculated collapse-timescaleτgal,c isassumed that cor- The red line corresponds to a MWG-like radial distribution. respondstoaradialregionlocatedinacharacteristicradius,which The long-dashed black line shows the time corresponding to 2 isRc=Ropt/2∼6.5kpcfortheMWGmodelwhichusesthedis- timestheageoftheUniverse.Suchaswemaysee,themostmas- tributionwithλ = 1.00andnumber28,withamaximumrotation sive galaxies would have the most extended disks, since the col- velocityVmax = 200kms−1.ThevalueτMWG,c = 4 Gyrwasde- lapse timescale issmaller than the age of the universe for longer terminedbyadetailedstudyofmodelsforMWG.Weperformed radii,thusallowingtheformationofthediskuntilradiiaslargeras alargenumber ofchemicalevolutionmodelschangingtheinputs 20kpc,whiletheleastmassiveoneswouldonlyhavetimetoform free-parametersandcomparingtheresultswithmanyobservational thecentral region, smaller than 1-2kpc, asobserved. The dashed data(Ferrinietal.,1992,1994)toestimatethebestvalue(seesec- (gray)linesshowthetimecorrespondingto2timestheageofthe tion2.1.2).Similarcharacteristicradii2forourgridofmodelswere Universe,T =13.8 Gyr.Thedottedblacklinedefinesthe UNIVERSE collapsetimescaleforwhichthemaximumradiusforthediskof theMWGmodelwouldbe13kpc,theopticalradiusanditcorre- 2 Alltheseradiiandvaluesarerelatedwiththestellarlightandnowiththe spondstoacollapsetimescaleof5timestheageoftheUniverse. mass,butweclearthatwedonotusetheminourmodelsexcepttodefine Other authors have also included a radial depen- thecharacteristicradiusRcforeachtheoreticalmassradialdistribution.The dence for the infall rate in their models (Lacey&Fall, free parameters are selected forthe region defined bythis Rcbuttaking intoaccountthatwenormalizethevaluesafteracalibrationwiththeSolar Neighborhoodmodel,achangeofthisradiuswouldnotmodifyourmodel results. 3 Fromnowwewillusetheexpressionτcforτgal,cinsakeofsimplicity. (cid:13)c 2011RAS,MNRAS000,1–?? 4 Molla´ Carigi&Peimbert (2008); Marcon-Uchida,Matteucci,&Costa (2010), aslabeled. Since theyuse straight linesthecollapse time scale for our model results shorter for the inner disk regions (except for the bulge region R < 3− 4kpc) and longer for the outerones,thantheonesusedbytheotherworks.Thiswillhave consequences in the radial distributions of stars and elemental abundancesaswewillsee. 2.2 Thestarformationlawintwo-steps:theformationof moleculargasphase Thestarformationisassumeddifferentinthehalothaninthedisk. In the halo the star formation follows a Kennicutt-Schmidt law. In the disk, however, weassume a more complicated star forma- tionlaw,bycreating molecular gasfromthediffusegasinafirst step,againbyaKennicutt-Schmidtlaw.Andthenstarsfromfrom the cloud-cloud collisions. There is a second way to create stars fromtheinteractionofmassivestarswiththesurroundingmolecu- larclouds. Thereforetheequationsystemofourmodelis: dg H = −(κ +κ )gn − fg +W (5) dt 1 2 H H H ds 1,H = κ gn −D (6) dt 1 H 1,H ds 2,H = κ gn −D (7) dt 2 H 2,H dg D = −ηgn +α′c s +δ′c2 + fg +W (8) dt D D 2,D D H D dc D = ηgn −(α +α +α′)c s −(δ +δ +δ′)c2 (9) dt D 1 2 D 2D 1 2 D ds 1,D = δ c2 +α c s −D (10) Figure 1. a) Dependence of the collapse time scale, τcoll, in natu- dt 1 D 1 D 2D 1,D ral logarithmic scale, (in Gyr) on the galactocentric radius, Radius, in ds kpc. Each line represents a given maximum rotation velocity, Vmax d2t,D = δ2c2D+α2cDs2D−D2,D (11) or radial mass distribution as labeled. The dashed (gray) and dotted dr (black) lines show the time corresponding to 2 and 5 times, respec- H = D +D −W (12) dt 1,H 2,H H tively, the age of the Universe, TUNIVERSE = 13.8 Gyr. b) Com- dr parison of the radial dependence of the collapse time scale, τcoll, D = D +D −W (13) in natural logarithmic scale, for our MWG model, corresponding to dt 1,D 2,D D Vmax = 200kms−1, shown by the solid red line and labeled MD, Xi,H = (Wi,H−Xi,HWH) (14) withtheradialfunctionsusedbyChangetal.(1999);Boissier&Prantzos dt g H (1999); Chiappini,Matteucci,&Romano (2001); Rendaetal. (2005); X [W −X W + fg (X −X )] Carigi&Peimbert(2008);Marcon-Uchida,Matteucci,&Costa(2010),la- i,D = i,D i,D D H i,H i,D (15) dt g +c beledCHA99,BP99,CHIA01,REN05,CAR08andMAR10,respectively. D D These equations predict the time evolution of the different phases of the model: diffuse gas, g, molecular gas, c, low mass 1985; Matteucci&Francois, 1989; Ferrinietal., 1992; stars, s , and intermediate massand massive stars, s , and stellar 1 2 Portinari,Chiosi,&Bressan, 1998; Boissier&Prantzos, 2000) remnants, r,(whereletters Dand H correspond todiskandhalo, with different expressions. In fact this dependence, which pro- respectively).Starsaredividedin2ranges, s beingthelowmass 1 duces an in-out formation of the disk, is essential to obtain stars, and s the intermediate and massive ones, considering the 2 the observed density profiles and the radial gradient of abun- limitbetweenbothrangesstellaramassm=4M .X arethemass ⊙ i dances, such as it has been stated before (Matteucci&Francois, fractionsofthe15elementsconsideredbythemodel:1H,D,3He, 1989; Ferrinietal., 1994; Boissier&Prantzos, 2000). In the 4He,12C,16O,14N,13C,20Ne,24Mg,28Si,32S,40Ca,56Fe,andthe bottom panel of the same Fig. 1 we show the collapse time richneutronisotopescreatedfrom12C,16O,14Nandfrom13C. scale τcoll, in natural logarithmic scale, assumed in different Thereforewehavedifferentprocessesdefinedinthegalaxy: chemical evolution models of MWG, as a function of the galac- tocentric radius. The red solid line corresponds to our MWG (i) Star formation by spontaneous fragmentation of gas in the model (λ = 1.00 and Number 28 of the mass distributions halo:∝κ gn,whereweusen=1.5 1,2 D of Table 1) from MD. The other functions, straight lines, are (ii) Cloudsformationbydiffusegas:∝ηgn withn=1.5,too D those used by Changetal. (1999); Boissier&Prantzos (1999); (iii) Starformationduetocloudcollision:∝δ c2 1,2 D Chiappini,Matteucci,&Romano (2001); Rendaetal. (2005); (iv) Diffusegasrestitutionduetocloudcollision:∝δ′c2 D (cid:13)c 2011RAS,MNRAS000,1–?? Chemical andphotometricmodels forlatetypegalaxies 5 (v) Inducedstarformationduetotheinteractionbetweenclouds whichdefinestheabsolutelevelofabundancesforagivenmodel, andmassivestars:∝α c s depends on both ingredients. Inthiswork weused theIMF from 1,2 D 2,D (vi) Diffuse gas restitution due to the induced star formation: Ferrini,Palla&Penco (1990) withlimitsm = 0.15 and m = low up α′c s 100M . The stellar yields are from Woosley&Weaver (1995) D 2,D ⊙ (vii) Galaxyformationbygasaccretionfromthehaloorproto- for massive stars (m ≥ 8M ) and from Gavila´n,Buell,&Molla´ ⊙ galaxy: fg (2005); Gavila´n,Molla´,&Buell (2006) for low and intermediate H mass stars (0.8M < m ≤ 8M ). Stars in the range 0.15M < whereα,δ,ηandκaretheproportionalityfactorsofthestars ⊙ ⊙ ⊙ m < 0.8M have no time to die, so they still live today and andcloudformationandarefreeinputparameters.4. ⊙ do not eject any element to the interstellar medium. The mean Thus,thestarformationlawinhaloanddiskis: stellar lifetimes are taken from the isochrones from the Padova Ψ (t) = (κ +κ )gn (16) group (Bressan,Chiosi,&Fagotto, 1994; Fagottoetal., 1994a,b; H 1 2 H Ψ (t) = (η +η )c2 +(α +α )c s (17) Girardietal., 1996), instead using those from the Geneva group D 1 2 D 1 2 D 2D Schalleretal.(1992).Thischangeisdoneforconsistencysincewe Althoughthenumberofparametersseemstobelarge,actually usethePadovaisochronesonthepopstarcodethatwewillusefor notallofthemarefree.Forexample,theinfallrate, f,istheinverse thespectro-photometricmodels.ThesupernovaIayieldsaretaken of the collapse time τcoll, as we described in the above section; fromIwamotoetal.(1999).Thecombinationofthesestellaryields Proportionalityfactorsκ,η,δandαhavearadial dependence, as with this IMF produces the adequate level of CNO abundances, weshowinthestudyofMWGFerrinietal.(1994),whichmaybe abletoreproduce mostofobservational dataintheMWGgalaxy usedinalldisksgalaxiesthroughthevolumeofeachradialregion (Gavila´n,Buell,&Molla´, 2005; Gavila´n,Molla´,&Buell, 2006), andsomeproportionalityfactorscalledefficiencies.Theseefficien- inparticulartherelativeabundancesofC/O,N/O,andC/Fe,O/Fe, ciesorproportionalityfactorsoftheseequationshaveaprobability N/Fe. The study of other combinations of IMF and stellar yields meaningandthereforetheirvaluesareintherange[0,1].Theeffi- willbeanalyzeinMolla´,etal.(2013).ThesupernovatypeIarates cienciesarethen:theprobabilityofstarformationinthehalo,ǫκ, are calculated by using prescriptions from Ruiz-Lapuenteetal. theprobabilityofcloudformation,ǫη;cloudcollision,ǫδ;andthe (2000). interactionbetweenmassivestarsǫ .Thislastonehasaconstant α valuesinceitcorrespondstoalocalprocess.Theefficiencytoform starsinthehaloisalsoassumedconstantforallofthem.Thus,the 3 RESULTS:EVOLUTIONOFDISKSWITHREDSHIFT numberoffreeparametersisreducedtoǫ andǫ . η δ Theefficiencytoformstarsinthehalo,ǫ ,isobtainedthrough The chemical evolution models are given in Tables 2 and 3. We κ the selection of the best value κ to reproduce the SFR and abun- showasanexamplesomelinescorrespondingtothemodelnt=4 dances of the Galactic halo (see Ferrinietal., 1994,for details). anddis = 28, thewholeset of resultswillbegiven inelectronic Weassumed thatitisapproximately constant forallhaloswitha format asacatalogue. InTable2wegive thetypeof efficiencies valueǫ ∼1.5−610−3.Thevalueforǫ isalsoobtainedfromthe ntandthedistributionnumberdisincolumns1and2,thetimein κ α best value α for MWG and assumed as constant for all galaxies Gyrincolumn3,thecorrespondingredshiftincolumn4,theradius since these interactions massive stars-clouds are local processes. ofeachdiskregioninkpcincolumn5,andthestarformationrate The other efficiencies ǫη and ǫδ may take any value in the range in the halo and in the disk, in M⊙yr−1 , in columns 6 and 7. In [0-1].Fromourpreviousmodelscalculatedforexternalgalaxiesof nextcolumnswehavethetotalmassinthehaloandinthedisk.In differenttypes(Molla´etal.,1996),wefoundthatbothefficiencies columns8to16weshowthemassineachphaseofthehalo,diffuse mustchangesimultaneouslyinordertoreproducetheobservations, gas,low-massstars,massivestars,andmassinremnants(columns withhighervaluesfortheearliermorphologicaltypesandsmaller 8to11)andofthedisk,diffuseandmoleculargas,low-massstars, forthethelaterones.InMD05thereisacleardescriptionaboutthe massivestars,andmassinremnants(columns12to16). selectionofvaluesandtherelationǫ −ǫ .Asasummary,wehave We will give the results obtained for our grid of models by η δ calculatedtheseefficiencieswiththeexpressions: showingthecorrespondingonestothegalaxiesfromTable1asa function of the redshift or of the galactocentric radius. When the nt ǫη = exp20 (18) radialdistributionsareplotted,wedothatforseveraltimesorval- ues of redshifts. We assume that each time in the evolution of a nt ǫδ = exp 8 (19) galaxycorrespondstoaredshift.Tocalculatethisredshift,weuse therelationredshift-evolutionarytimegivenbyMacDonald(2006) selecting 10 values nt between 1 and 10 (we suggest to select a withthecosmological parametersfromthesamePLANKexperi- value nt similartothe Hubble typeindex to obtain model results mentPlanckCollaborationetal.(2013)(Ω = 0.685,H = 67.3), fittingtheobservations). Theefficienciesvaluescomputedforthe λ 0 andthiswaythetimeassumedforthebeginningofthegalaxyfor- gridfromMD05areshowninTable2fromthatwork. mation,t =0.6Gyr,correspondstoaredshiftz=7. start 2.3 Stellaryields,InitialMassfunctionandSupernovaIa 3.1 Theformationofthedisk rates Theprocessofinfallofgasfromtheprotogalaxytotheequatorial The selection of the stellar yields and the IMF needs to be done planedependsontimesincethemassremainingintheprotogalaxy simultaneously since the integrated stellar yield for any element, orhaloisdecreasingwithtime.InFig.2werepresenttheresulting totalinfallofmassforour44radialdistributionsofmassasafunc- 4 Sincestarsaredividedintwogroups:thosewiths1,ands2,theparam- tionoftheredshiftz.Sincethisprocessisdefinedbythecollapse eters are divided in the twogroups too, thus κ = κ1 +κ2, δ = δ1 +δ2, time-scale,thetotalinfallrateforthewholegalaxyonlydepends α=α1+α2. on the total mass, and therefore there would be only 44 possible (cid:13)c 2011RAS,MNRAS000,1–?? 6 Molla´ Table2.Evolutionofdifferentphasesalongthetime/redshiftforthegridofmodels.WeshowasexampletheresultsforthepresenttimeofaMWG-like model(nt=4,dis=28).Thecompletetablewillbeavailableinelectronicformat. nt dis t z Radius ΨH ΨD MH MD Gyr kpc M⊙yr−1 M⊙yr−1 109M⊙ 109M⊙ 4 28 1.3201e+01 0.00 0 1.5431e-05 4.9526e-02 1.0337e+00 8.4818e+00 4 28 1.3201e+01 0.00 2 2.5875e-10 2.1748e-02 9.7257e-03 4.2363e+00 4 28 1.3201e+01 0.00 4 2.9111e-08 5.7276e-02 6.4913e-02 9.7481e+00 4 28 1.3201e+01 0.00 6 2.1827e-04 1.8737e-01 3.7799e-01 1.2042e+01 4 28 1.3201e+01 0.00 8 9.6978e-03 4.7546e-01 2.8732e+00 9.6868e+00 4 28 1.3201e+01 0.00 10 3.4321e-02 3.8606e-01 6.6828e+00 5.0472e+00 4 28 1.3201e+01 0.00 12 4.9261e-02 1.8346e-01 8.7949e+00 2.0751e+00 4 28 1.3201e+01 0.00 14 5.2833e-02 7.0495e-02 9.5228e+00 7.8723e-01 4 28 1.3201e+01 0.00 16 5.2396e-02 2.2987e-02 9.7360e+00 2.9398e-01 4 28 1.3201e+01 0.00 18 5.1446e-02 5.7661e-03 9.8290e+00 1.1004e-01 4 28 1.3201e+01 0.00 20 5.0964e-02 9.0888e-04 9.9186e+00 4.1360e-02 4 28 1.3201e+01 0.00 22 5.1061e-02 7.9634e-05 1.0014e+01 1.5583e-02 4 28 1.3201e+01 0.00 24 5.1747e-02 4.7257e-06 1.0104e+01 5.8713e-03 Table2.Cont.Evolutionofthedifferentphasesalongthetime/redshiftforthegridofmodels gH s1,H s2,H remH gD cD s1,D s2,D remD 109M⊙ 109M⊙ 109M⊙ 109M⊙ 109M⊙ 109M⊙ 109M⊙ 109M⊙ 109M⊙ 2.9016e-03 8.6815e-01 1.2048e-05 1.6259e-01 2.7416e-02 1.4705e+00 7.1689e+00 3.3978e-04 1.2371e+00 1.3879e-05 8.1686e-03 1.7090e-07 1.5430e-03 1.4016e-02 1.4705e+00 3.5667e+00 1.5015e-04 6.2852e-01 4.0674e-04 5.4436e-02 4.7128e-07 1.0070e-02 4.1804e-02 1.4705e+00 8.2575e+00 3.9145e-04 1.3868e+00 1.7779e-01 1.7061e-01 2.0974e-06 2.9597e-02 1.3955e-01 1.4705e+00 1.0242e+01 1.2864e-03 1.5234e+00 2.4434e+00 3.7340e-01 6.7054e-05 5.6303e-02 3.5938e-01 1.4705e+00 8.0530e+00 3.2457e-03 1.0218e+00 6.0752e+00 5.3545e-01 2.3428e-04 7.1939e-02 3.9304e-01 1.4705e+00 3.9522e+00 2.6251e-03 4.4801e-01 8.1503e+00 5.7161e-01 3.3513e-04 7.2706e-02 2.8478e-01 1.4705e+00 1.4482e+00 1.2453e-03 1.5079e-01 8.9024e+00 5.5139e-01 3.5900e-04 6.8586e-02 1.7444e-01 1.4705e+00 4.4266e-01 4.7796e-04 4.2150e-02 9.1454e+00 5.2546e-01 3.5588e-04 6.4789e-02 9.5622e-02 1.4705e+00 1.1078e-01 1.5556e-04 9.4763e-03 9.2582e+00 5.0801e-01 3.4936e-04 6.2419e-02 4.6570e-02 1.4705e+00 2.0439e-02 3.8890e-05 1.5411e-03 9.3567e+00 5.0019e-01 3.4607e-04 6.1374e-02 2.1461e-02 1.4705e+00 2.3765e-03 6.0946e-06 1.5895e-04 9.4528e+00 4.9999e-01 3.4672e-04 6.1317e-02 1.0009e-02 1.4705e+00 1.7210e-04 5.3111e-07 1.0686e-05 9.5352e+00 5.0643e-01 3.5137e-04 6.2099e-02 4.4897e-03 1.4705e+00 9.3097e-06 3.1422e-08 5.5691e-07 results, one for each maximum rotation velocity, or mass of the Vmax > 120kms−1 –the green line– (that is all lines except the theoreticalgalaxy.However,sincewehaveassumedaninfallrate orangeandmagentaones)coincideinasamelocusforthepresent variablewiththeradius,eachradialregionofagalaxyhasadiffer- time,andreproducewelltheobservedvaluegivenbySancisietal. entinfallrate.Weshowasashadedregionthelocuswhereourre- (2008)andrepresentedbytheredfullhexagon. sultsforallradialregionsofthewholesetofmodelsfall.Overthis As a consequence of this infall of gas scenario, the disk is regionweshowassolidlinestheresultsforthewholeinfallofthe formed.Theproportionofmassinthediskcomparedwiththeto- same7theoreticalgalaxiesasinthepreviousFig.1,andwiththe taldynamicalmassofthegalaxyis,asexpected,dependentonthis samecolorcoding,aslabeled.Thedashedpurpleandyellowlines totalmass.InFig.3weshowthefractionMgal/M ,whereM is correspond to the prescriptions given by Dekel,Sari,&Ceverino D D themassinthediskresultingfromtheappliedcollapsetimescale (2009)andFaucher-Gigue`re,Keresˇ,&Ma(2011)fortheinfallof prescriptions,asafunctionofthefinalmassinthedisk.Thesere- gasasobtainedbytheircosmologicalsimulationstoformmassive sults,shownasredpoints,arecomparedwiththelineobtainedby galaxies. In both cases these expressions depend on the dynami- Mateo(1998)forgalaxiesintheLocalGroup,solidcyanline,and calhalomass,sowehaveshownbothlinesfor Mdyn = 1012M ⊙ withtheratiobyShankaretal.(2006)calculatedthroughthehalo which will be compared to our most massive model which is on andthestellarmassdistributionsingalaxies,solidblackline.We thetop(blackline)andwhichhaswithasimilartotalmass.There alsoplottheresultsobtainedbyLeauthaudetal.(2010)fromcos- are some differences with the results from cosmological simula- mologicalsimulationsforthreedifferentrangesinredshift,suchas tions for the lowest redshifts, for which our models have lower labeled in the figure. Our results have a similar slope to the one infall rates than these cosmological simulations. However we re- fromMateo(1998),buttheabsolutevaluegivenbythisauthoris mind that these simulations prescriptions are valid for spheroidal slightlylower,whichisprobablyduetoadifferentvalue M /Lto galaxies. We show as dotted purple lines 2 other lines follow- ∗ transformtheobservations(luminosities)instellarmasses.Ourre- ing Dekel,Sari,&Ceverino (2009) prescriptions but for masses sultsare close to the ones predicted by Shankaretal. (2006) and 21012M and31011M ,aboveandbelowthestandarddashedline, ⊙ ⊙ Leauthaudetal. (2010) obtained with different techniques. These checkingthatthislastoneisverysimilartoourcyanline.There- authorsfindinbothcasesanincreaseforhighdiskmasseswhich, fore to decrease the infall rate for the most recent times is prob- obviously,isnotapparentinourmodels,sincewehaveassumeda ably a good solution to obtain disks. In fact all our models for continuousdependenceofthecollapsetimescalewiththedynami- (cid:13)c 2011RAS,MNRAS000,1–?? Chemical andphotometricmodels forlatetypegalaxies 7 dFiiaglurreegi2o.nTshoefeovuorlu4t4iognaolafxtyhemiansfsalvlaglausesrarteeparleosnegnttehdebryedtshheifsthzadfoerdazlolnrae-. mFiogduerles3re.sTulhtseararetiotheMMsgDoallidasreadfudnoctst.ioTnheofcythaenmanadssbilnactkhelindeisskarMeDth.eOruer- Thesolidlinesshowtheevolution ofthewholeinfallrateofthesame7 sultsobtainedbyMateo(1998)andShankaretal.(2006)fromobservations theoreticalgalaxiesshowninFig.1withthesamecolorcoding.Thehigh- oftheLocalGroupofgalaxiesandfromhalodata,respectively.Magenta, est the total mass, the highest the infall rate. Dashed purple and yellow blueandgreendashedlinesareresultsfromLeauthaudetal.(2010)fordif- linesrepresenttheprescriptions fromDekel,Sari,&Ceverino(2009)and ferentranges ofredshift aslabeled. TheMWGpointisrepresented bya Faucher-Gigue`re,Keresˇ,&Ma(2011),respectively.Thedottedpurplelines bluefulltriangleandthedottedblacklinemarksthelimitbetweendiskand aretheDekel,Sari,&Ceverino(2009)prescriptionsformasses21012M⊙ spheroidalgalaxiesfromGonza´lezDelgadoetal.(2013). and31011M⊙,whiletheredhexagoninthepresenttimeistheestimated valuegivenbySancisietal.(2008). the local Universe data obtained by Leroyetal. (2008). The red starmarkstheaveragegivenbySancisietal.(2008). calmass.Shankaretal.(2006)analyzedtheluminosityfunctionof halosanddeterminetherelationwiththemassformedthere,while Leauthaudetal.(2010)computecosmologicalsimulationsandob- 3.3 Evolutionwithredshiftoftheradialdistributionsindisks tain the relation between the dynamical mass and the final mass Innextfiguresweshowtheresultscorrespondingtotheseventhe- intheirdisks.Aswesaybefore,disksobtainedinsimulationsare oretical galaxies used as examples and whose characteristics are smallerthanobservedwhatincreasestheratioMgal/M .Moreover D giveninTable1.Wehaveselected7galaxieswhichsimulategalax- thechange ofslopeinthesecurvesdefinesthelimitinwhichthe ies along the Hubble Sequence. They have have different masses ellipticalgalaxiesbegintoappear,shownbythedottedblackline and sizes and wehave also selected different efficiencies toform asgivenbyGonza´lezDelgadoetal.(2013).Thereforeitispossible starsinordertocomparewithrealgalaxies.Innextfigureswewill thattheseauthorsincludesomespheroidsandgalaxiesSOintheir show our results for 7 values of evolutionary times or redshifts: calculationswhicharenotcomputedinourmodels.Itisnecessary z = 5,4,3,2,1,0.4and0,withcolorspurple,blue,cyan,green, say, however, that the MWG value in this plot is slightly above magenta, orange and red,respectively. Theresultingpresent time thislimit,andjustwheretheShankaretal.(2006)linechangethe radial distributions in disks for diffuse and molecular gas, stellar slope.TakingintoaccountthatmoremassivethanMWGthereex- mass, and star formation rate for the galaxies from Table 1 are ist,maybethislimitsisnottotallycorrect,andthat,insteadasharp showninFig.5.Inthisfigureweshowagalaxyineachcolumnand cut,thereisamixofgalaxiesinthiszoneoftheplot. adifferentquantityineachrow.Thustop,top-middleandbottom- middlepanelsshowthediffusegas,themoleculargasandthestel- larsurfacedensities,respectively,allinM pc−2 unitsandinlog- 3.2 TherelationoftheSFRwiththemoleculargas ⊙ arithmicscale,whilethebottom panel corresponds tothesurface Sincetheformationofmoleculargasisacharacteristicswhichdif- densityofthestarformationrateinM Gyr−1pc−2. ⊙ ferentiatesourmodelfromotherchemicalevolutionmodelsinthe TheradialdistributionsofdiffusegasdensityΣ showamax- HI literature,wewouldliketocheckifourresultingstarformationis imuminthedisk.Theradiusofthemaximumisnearthecenterof inagreementwithobservations.Wecomparetheefficiencytoform thegalaxyforz=5andmoveoutwardswiththeevolution,reach- starsfromthegasinphaseH ,measuredasSFR/MH ,withdata ingaradius∼2/3Roptkpcforthepresent,thatis1.3timesRc,and 2 2 inFig.4.Intheupperpanelweshowtheresultsforagalaxylike ∼ 2theeffectiveradiusinmassorradiusenclosedthehalfofthe MWG,whereeachcoloredlinerepresentsadifferentradialregion: stellarmassofthedisk(seenextsection).ThedensityΣ inthis HI Solidred,yellow,magenta,blue,greenandcyanlines,correspond maximumreachesvalues∼50M pc−2 inearlytimesorhighred- ⊙ toradialregionslocatedat2,4,6,8,10and12kpcoftheGalactic shift.Forthepresent,themaximumdensityis∼ 10M pc−2,very ⊙ centerintheMWGmodel.Inthebottompanelsolidblack,cyan, similar in most of theoretical galaxies. These radial distributions red,blue,green,orange,andmagentalinescorrespondtothegalax- reproduceverywelltheobservationsofHI.Theradialdistribution iesofdifferentdynamicalmassesandefficienciesgiveninTable1 forregionsbeyondthispointshowsanexponentialdecreasingwith andtakenasexamples.Observationsatintermediate-highredshift slopesflatternowthatinthehigh-redshiftdistributions. byDaddietal.(2010);Genzeletal.(2010),areshownascyandots TheradialdistributionsofmoleculargasdensityΣ showba- H2 and blue triangles, respectively, while the green squares refers to sicallythesamebehavior,withamaximuminthediskstoo.Ineach (cid:13)c 2011RAS,MNRAS000,1–?? 8 Molla´ Figure5.Evolutionwithredshiftofthesurfacedensityofdiffusegas,ΣHI,moleculargas,ΣH2,andstellarmass,Σ∗,inM⊙pc−2,intop,middle-top,and middle-bottom rows,andthestarformation rate, Ψ,inM⊙Gyr−1pc−2,inthe bottom one.Allinlogarithmic scale. Eachcolumnshowstheresults fora theoreticalgalaxyoftheTable1,fromthegalaxy,withVmax=78kms−1,tothemostmassiveonethebottomforVmax=290kms−1.Eachlinecorresponds toadifferentredshift:purple,blue,cyan,green,magenta,orangeandredforz=5,4,3,2,1,0.4and0,respectively galaxy,however,thismaximumislocatedslightlyclosertothecen- in a large number of spiral disks for Σ and SFR distri- H2 terthattheonefromtheHIdistribution.Theyshowanexponential butions (Martin&Kennicutt, 2001; Nishiyama&Nakai, 2001; functiontoo,afterthismaximum.Theseradialdistributionsseems Reganetal.,2001),wethink,however,thattheyarestrongerthan moreanexponential shapewithaflatteningatthecenter that the observed. onesfromHIwhichshowaclearermaximum,mainlyfortheleast From all panels we may say that spiral disks would have a massivegalaxies. morecompactappearanceathighredshiftwithhighervaluesmax- Thestellarprofiles,Σ ,showtheclassicalexponential disks. imumandsmallerphysicalsizes,ascorrespondtoainside-outdisk ∗ Thesizeofthesestellardisks,andthescalelengthoftheseexpo- formationasassumed.Thepresentradialdistributionsshowflatter nentialfunctionsareinagreementwithobservations.Howeverthey shapes,withsmallervaluesinthemaximumandintheinnerdisks presentadecreasingorflatteningintheinnerregionsinmostcases, andhigherdensitiesintheouterregions. althoughsomeofthemhaveaabruptincreasejustinthecenter.It Thestarformationisaround2orderofmagnitudelargeratz= isnecessaryremainthatthesemodelsarecalculatedtomodelspi- 5thannowforthemassivegalaxies,inagreementwithestimatedof ral disks, and the bulges are added by hand without any density thestarformationintheUniverse(Glazebrooketal.,1999)while radialprofile.Probablythisproducesabehaviornottotallyconsis- forthesmallergalaxiesthemaximumvalueislowandverysimilar tentwithobservationsatthecenterofgalaxies. thenthannow. In these three panels we show the results only for densities InFig.8,weshow thesame four radial distributionsfor the higherthan0.1M pc−2,whichcorrespondstoaatomicdensityn∼ ⊙ lowestmassgalaxyinourgridwithamaximumrotationvelocity 0.1cm−2whichweconsideralowerlimitforobservations. ofVmax∼50kms−1.Inthiscase,andtakingintoaccountthelimit The star formation radial distributions show similar shapes oftheobservationaltechniques,weseethatthegalaxywillbeonly than Σ and Σ with similar decreasing in the inner re- detectedintheregionaround1kpcandonlyforredshiftz<2since H2 ∗ gions of disks. Although these decreases have been observed forearliertimesthanthisthegalaxywillbeundetected. (cid:13)c 2011RAS,MNRAS000,1–?? Chemical andphotometricmodels forlatetypegalaxies 9 Figure6.Theevolutionofthehalfmassradii,Reffmass,asafunctionof theredshiftzformodelswithefficienciessetsfromnt=1to9andformass distribution numbers from 10 to 44 (see Tables 1 and 2 from MD) cor- responding tomaximum rotation velocities intherange [80-400]kms−1. Black,gray,green,red,orange,magenta,purple,cyanandbluedotscorre- spondtont=1,2,3,4,5,6,7,8,and9respectively. Figure4.Theefficiencytoformstarsfrommoleculargas,SFR/MH2,in galaxies,asmagentaandpurpledots,whichcorrespondtoirregu- logarithmic scale, asafunction ofredshift zforourgridofmodels.The largalaxiesshowthischangeoftheslopeatz<2. evolutionwithredshiftforallradialregionsandgalaxiesareshownbythe shadedzonewhilesolidblackpointsrepresentthegridresultsforz = 0. Upperpanel:Solidblack,red,yellow,magenta,blue,greenandcyanlines, 3.5 Evolutionofelementalabundances correspondtoradialregionslocatedat0,2,4,6,8,10and12kpcofthe GalacticcenterintheMWGmodel.Bottompanel:Solidblack,cyan,blue, TheresultingelementalabundancesaregiveninTable3.Foreach red,green,orange,andmagentalinescorrespondtogalaxiesofdifferentdy- typeofefficienciesntandmassdistributiondis,columns1and2, namicalmassesandefficiencies(seeTable1).Inbothpanelsobservations wegivethetimetinGyrincolumn3,thecorrespondingredshift at intermediate-high redshift are from Daddietal. (2010); Genzeletal. zincolumn4,andtheRadiusinKpcincolumn5.Theelemental (2010),shownascyandotsandbluetriangles,respectively,whilethegreen abundancesforH,D,3He,4He,12C,13C,N,O,Ne,Mg,Si,S,Ca squares refers tothelocal Universe data obtained byLeroyetal. (2008). andFeareincolumns6to19asfractioninmass. TheredstarmarkstheaveragegivenbySancisietal.(2008). Theradialdistributionsofelementalabundancesareshownin Fig.7.Therewehaveforthesame6galaxiesofFig.5fromtheleft totherightcolumn,theabundanceevolutionforC,N,OandFe,as 3.4 Thehalfmassradii 12+log(X/H)fromtoptobottompanels.Ineachpanel,asbefore, Sinceweknowthemassofthediskandthecorrespondingoneto werepresenttheradialdistributionsfor7differentredshifts,z=5, eachphasewemayfollowtheincreaseofthestellarmassineach 4,3,2,1,0.4and0,withthesamecolorcoding.Thewellknown radialregionandcalculateforeachevolutionarytimeoredshiftthe decreasingfromtheinnertotheouterregions,calledtheradialgra- radiusforwhichthestellarmassisthehalfofthetotalofthemass dientsofabundances,appearinthethefinalradialdistributionsfor instarsinthegalaxy,Reff .Thisradiusobviouslywillevolve thepresenttimeinagreementwithdata.Howevertheslopeisnot mass withtimeandsincewehaveassumeanin-outscenarioofdiskfor- unique in most of cases. The radial distribution for any element, mation,itmustincreasewithit.WeshowthisevolutioninFig.6, 12+log(X/H),isnotastraightlinebutacurvewhichisflatterin where we plot with different color the evolution of different effi- thecentralregionandalsointheouterdiskinagreementwiththe ciencies models: black, gray, green, red, orange,magenta, purple, mostrecentobservations(Sa´nchezetal.,2013). cyanandbluefor setsnt =1to9,respectively, formassdistribu- Thedistributionsofabundanceschangewiththelevelofevo- tionsfromnumber10to44,whichcorrespondtomaximumrota- lution of a galaxy. A very evolved galaxy, that is, as the one tionvelocitiesintherangeVmax ∼ 80to400kms−1.Thelowest for the most massive ones, and/or those with the highest effi- massgalaxies,withVmax<78kms−1(orthoseforwhichefficien- ciencies to form stars, show flatter radial gradients that those ciescorrespondtont=10)arenotshownsince,aswewillshowin which evolve slowly, which have steeper distributions. There ex- Fig.8,theyonlywouldhaveavisiblecentralregion.Itisevident ists a saturation level of abundances, defined by the true yield, that the effective radius increases, being smaller to high redshift, and given by the combination of stars of a certain range of thisincreasebeginslaterforthelatertypesofsmallerefficiencies mass and the production of elements of these stars. For our than for the earlier ones or with high efficiencies. Blue and cyan combination of stellar yields from Woosley&Weaver (1995); pointsarebelow1 kpcforredshiftshigherthan1,whiletheothers Gavila´n,Buell,&Molla´ (2005); Gavila´n,Molla´,&Buell (2006) begin to increase already at z =5-6. Moreover a change of slope and IMF from Ferrini,Palla&Penco (1990), this level is 12 + withaabrupt increaseinthesizeoccursatz ∼ 3untilz ∼ 2,for log(X/H) ∼ 8.8,8.0,9.0and 8.2 dex for C,N, O and Ferespec- nt<5,whenthestarformationsuffersitsmaximumvalueinmost tively.Asthegalaxyevolvesthesaturationlevelisreachedinthe of these galaxies which is agreement with the data. Intermediate outerregionsofgalaxy,thusflatteningthegradient. (cid:13)c 2011RAS,MNRAS000,1–?? 10 Molla´ Table3.Evolutionofelementalabundancesalongthetime/redshiftforthegridofmodels.WeshowasexampletheresultsforthepresenttimeofaMWG-like model(nt=4,dis=28).Thecompletetablewillbeavailableinelectronicformat. nt dis t z Radius H D 3He 4He Gyr kpc 4 28 1.3201e+01 0.00 0 7.1000e-01 7.4918e-08 5.2929e-04 2.7149e-01 4 28 1.3201e+01 0.00 2 7.1020e-01 3.7168e-08 5.2559e-04 2.7085e-01 4 28 1.3201e+01 0.00 4 7.0751e-01 1.4105e-06 4.9819e-04 2.7373e-01 4 28 1.3201e+01 0.00 6 7.2710e-01 2.9584e-05 2.3378e-04 2.5935e-01 4 28 1.3201e+01 0.00 8 7.4243e-01 4.6899e-05 1.0063e-04 2.4818e-01 4 28 1.3201e+01 0.00 10 7.4664e-01 5.1180e-05 7.1091e-05 2.4520e-01 4 28 1.3201e+01 0.00 12 7.4958e-01 5.3626e-05 5.6599e-05 2.4321e-01 4 28 1.3201e+01 0.00 14 7.5423e-01 5.7213e-05 4.2096e-05 2.4017e-01 4 28 1.3201e+01 0.00 16 7.6037e-01 6.2123e-05 2.7653e-05 2.3619e-01 4 28 1.3201e+01 0.00 18 7.6558e-01 6.6386e-05 1.7397e-05 2.3283e-01 4 28 1.3201e+01 0.00 20 7.6841e-01 6.8681e-05 1.2615e-05 2.3100e-01 4 28 1.3201e+01 0.00 22 7.6931e-01 6.9386e-05 1.1281e-05 2.3043e-01 4 28 1.3201e+01 0.00 24 7.6947e-01 6.9516e-05 1.1048e-05 2.3032e-01 Table3.Cont.Evolutionofelementalabundancesalongthetime/redshiftforthegridofmodels 12C 13C N O Ne Mg Si S Ca Fe 3.1109e-03 5.6767e-05 1.3390e-03 6.9834e-03 1.1736e-03 3.2207e-04 1.2311e-03 6.2757e-04 8.8136e-05 2.8875e-03 3.1888e-03 5.8285e-05 1.3916e-03 7.1115e-03 1.1987e-03 3.3036e-04 1.2594e-03 6.4239e-04 9.0264e-05 2.9750e-03 3.1561e-03 5.3970e-05 1.2723e-03 7.0513e-03 1.1641e-03 3.1662e-04 1.2872e-03 6.5643e-04 9.1892e-05 3.0407e-03 2.4417e-03 2.8054e-05 7.2097e-04 5.4124e-03 8.6307e-04 2.2721e-04 9.2775e-04 4.7042e-04 6.5617e-05 2.0596e-03 1.7736e-03 1.3776e-05 4.0653e-04 4.0741e-03 6.4323e-04 1.6486e-04 6.0974e-04 3.0600e-04 4.2665e-05 1.2016e-03 1.5606e-03 1.0075e-05 3.1545e-04 3.6797e-03 5.7863e-04 1.4650e-04 5.1733e-04 2.5795e-04 3.5927e-05 9.5008e-04 1.3936e-03 7.4918e-06 2.3852e-04 3.3407e-03 5.2112e-04 1.3070e-04 4.5084e-04 2.2362e-04 3.1087e-05 7.8546e-04 1.0958e-03 4.5570e-06 1.4171e-04 2.6790e-03 4.1288e-04 1.0266e-04 3.4491e-04 1.7020e-04 2.3619e-05 5.6743e-04 6.7707e-04 2.1410e-06 6.2137e-05 1.6978e-03 2.5908e-04 6.4119e-05 2.0782e-04 1.0209e-04 1.4164e-05 3.2295e-04 3.1234e-04 8.0794e-07 2.2182e-05 8.0723e-04 1.2299e-04 3.0589e-05 9.4069e-05 4.6086e-05 6.4103e-06 1.4037e-04 1.1295e-04 2.7003e-07 8.2285e-06 2.9966e-04 4.6226e-05 1.1834e-05 3.3587e-05 1.6495e-05 2.3115e-06 5.1772e-05 5.0752e-05 1.2185e-07 4.7315e-06 1.3420e-04 2.1235e-05 5.7565e-06 1.4834e-05 7.3585e-06 1.0446e-06 2.6329e-05 3.9167e-05 9.4973e-08 4.1239e-06 1.0244e-04 1.6438e-05 4.5963e-06 1.1325e-05 5.6530e-06 8.0808e-07 2.1822e-05 Theradialgradientflattenswiththeevolutionarytimeorred- 4 THEPHOTOMETRICMODELDESCRIPTION shift, mainly in the most massive galaxies. However it maintains ItiswellknownthatgalaxieshaveSEDsdependingontheirmor- a similar value for the smallest galaxies. The extension in which phological type(Coleman,Wu,&Weedman,1980).TheseSEDs, theradialgradientappears,however,changeswithtime.Attheear- and other data related to the stellar phase, are usually analyzed liesttimetheradial gradient appears only for thecentral regions, through (evolutionary) synthesis models(seeConroy,2013, fora until1kpcintheleftcolumngalaxy,whileitdoesuntil22kpcin recentandupdatedreviewaboutthesemodels),basedonSSPscre- theright one, withachange of slopeat around 8kpc. For thera- ated by an instantaneous burst of star formation (SF). The syn- dial regions out of this limit, it shows a flat distribution. At the thesis models began calculating the luminosity (in a broad band present,thisgradientappearsuntilamoreextendedradius,28kpc filter or as a SED, F (λ), or by using the spectral absorption inourmostmassivegalaxy,whileitisonlyintheinner4kpcinthe λ indices) for a generation of stars created simultaneously, (there- smallestone.Ifweanalyzetheresultsforthelowestmassgalaxy fore with a same age, τ and with a same metallicity Z), that is in Fig. 8, we see that abundances show a very uniform distribu- the so-called Single Stellar Population (SSP). The evolutionary tionalongthegalactocentricradiusforallelements,withaslight codescomputethecorrespondingcolors,surfacebrightnessand/or increase at the center for all redshifts that may be considered as spectral absorption indices emitted by a SSP from the sum of nonexistentwithintheusualerrorsbars. spectra of all stars created and distributed along a Hertzsprung Theflatradialgradientinthelowestmassgalaxies,asshown Russell diagram, weighted with an IMF. This SED, given τ and inFig.8,asthisoneofthemostdistantregionsofthediskinthe Z, is characteristic of each SSP. This way it is possible to ex- massivegalaxiesatthehighestredshifts,mustbeconsideredasa tract some information of the evolution of galaxies is by us- productoftheinfallofagasmorerichthatthisoneofthedisk.It ing evolutionary synthesis models in comparison with spectro- isnecessarytotakeintoaccountthatthehaloisformingstarstoo. photometric observations. This method has been very useful for Whenthecollapsetimeislonger,asoccursintheouterregionsof the study of elliptical galaxies, for which was developed, with disks,thereismoretimeandmoregasinthehalotoformstarsand thehypothesis that they are practicallySSPs,allowed toadvance increase itsabundances. Thus, thegas infallingis, even at avery very much in the knowledge of these objects, determining their lowlevel(12+log(X/H)∼4−5),moreenrichedthanthegasof ageandmetallicitywithgoodaccurate(Charlot&Bruzual,1991; thedisk. BruzualA.&Charlot, 1993; Bressan,Chiosi,&Fagotto, 1994; (cid:13)c 2011RAS,MNRAS000,1–??