Chem Soc Rev REVIEW ARTICLE View Article Online View Journal | View Issue Catalysis of the electrochemical reduction of carbon dioxide† Citethis:Chem.Soc.Rev.,2013, 42,2423 Cyrille Costentin, Marc Robert and Jean-Michel Save´ant* A 0 6 3 5 S3 The direct and catalyzed electrochemistry of CO2 partake in the contemporary attempts to reduce this C 2 inert molecule to fuels by means of solar energy, either directly, after conversion of light to electricity, C 9/ or indirectly in that all elements of comprehension derived from electrochemical experiments can be 33 0110 used in the design and interpretation of photochemical experiments. Following reviews of the activity y 210. inthefielduntil2007–2008,thepresentreviewreportsmorerecentfindingseveniftheirinterpretation versité Paris 7 on 25 Februar2 on http://pubs.rsc.org | doi: RDweOwcIe:wi1v.e0rsd.1c.03o30r9tgh//ccA2sucrsg3u5s3t6200a12 rttfteahhhmveaeotaeprtialenerbracsflntoeursronpmrdocireaeleenrmtcpaoearifnsete.saoercIfitniadetallxlyiasnisodathdinndeidtgetieovcaernaorleotgiapnellysinkhseuetosolsymeuwfstouhogcleaennbtnoeatelthyoitosehuinsesn.seoctcahbetajsaestlcaytatrilycolodfwsayatscaatteniavmaerlesyfzaauinvntagudirleaaobnnwldeot.chrAokemmecpormuanpcrgiihnatalghsceimshgeoisemrnepiecurariatglloortornroleeunthsdoleysf Uni201 CD ber 1 Introduction negative as (cid:3)1.97 V vs. SHE in an aprotic solvent like N,N0- d by SDecem Among the contemporary energy objectives, the reduction of dstirmateetghiyelsfohramvaemthiduesb(DeeMnFd),e6vealonpded(cid:3)t1o.9a0voiindtwhaeteinr.t7erCmaetadliyatcicy wnloaded on 11 cCaOrb2oinntodifouxeidlsebiysmameaanjsoroifsssoulea.rIdeneaelrlgyy,.oOnneedwreaaymissttoodcoirnevcetlryt omfatyheexCpOec2tafnroiomntrhadeieclaelcftororcohbetmainicianlgrethdeucvtairoinouosfpCrOod2uatctlsesosneer Dohe use light to achieve this conversion. The other involves the energeticcosts.8Mostoftheseproductsappearinthediagram s bli preliminary conversion of light into electricity and then the represented in Fig. 1. Not represented on the diagram are u P electrochemical reduction of CO2. The first of these approaches multi-carbon products starting with oxalate and other even has been the object of recent reviews1–3 with particularly note- more important condensation products. Fig. 1 is actually a worthyexamples.4,5Wewillthereforeconcentrateontheelectro- setofPourbaixdiagramsrelatingthestandardpotentialofeach chemicalreductionofCO2,havinghoweverinmindthatthedata, CO2 conversion reaction to the pH in water as the solvent, modelsandallelementsofmechanisticcomprehensionderived pointing to the fact that in most cases not only electrons but fromelectrochemicalexperimentscanbeusedinthedesignand also protons are involved. This observation should be borne interpretationofphotochemicalexperiments. in mind when discussing these energetically more favorable Beforeaddressingthestrategiesdevelopedforcatalyzingthe strategies, in water as well as in non-aqueous solvents. These electrochemical reduction of CO2, it is useful to remind what strategies essentially consist of catalyzing the target reaction products are obtained by direct reduction on an electrode by means of a homogeneous or a heterogeneous catalyst. materialthatdoesnotinterfereinthereactionandthefactors Homogeneous catalysis has essentially, but not exclusively, thatgovernthecompetitionbetweentheirformations.Thiswill involvedreducedstatesoftransitionmetalcomplexes.Following betheobjectofthesecondsectionofthisreview. the pioneering work on Ni and Co macrocyclic complexes as Directreductiononsuchan‘‘outersphereelectrode’’entails potential catalysts for electrochemical CO reduction,10 many 2 theinitialformationofthehighlyenergeticCO2anionradical. metal complexes have been used for this purpose. Recent The standard potential of the CO2=CO(cid:2)2(cid:3) couple is indeed as reviews11,12 have listed them, sometimes in great detail, until 2007–2008, with however rather cursory descriptions of their performances. In particular, comparison between the various Universit´eParisDiderot,SorbonneParisCit´e,Laboratoired’Electrochimie catalystscouldnotbeperformedonsoundbases.Thesearethe Mol´eculaire,Unit´eMixtedeRechercheUniversit´e–CNRSNo7591, reasons that the present review pursues the following goals: (i) BaˆtimentLavoisier,15rueJeandeBa¨ıf,75205ParisCedex13,France. reportmorerecentfindingseveniftheirinterpretationremains E-mail:[email protected] †Partofthesolarfuelsthemedissue. uncertain on the one hand and to analyze and (ii) compare Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Soc.Rev.,2013, 42,2423--2436 2423 View Article Online ReviewArticle ChemSocRev A Scheme1ReductionofCO2ataninertelectrode. 0 6 3 5 3 S C 2 C 9/ 33 10 01 y 210. Fig.1Variationoftheapparentstandardpotential,E0ap,withpH(Pourbaix ebruarg | doi: dIniatghreamorsd)efrorofthdeecreredauscintigvevacolunevseorsfioEn0apoaftCpOH2=in0to:CthHe4,foClHlo3wOiHn,gCpHr2oOd,uCctOs. s 7 on 25 Fpubs.rsc.or (aofrfuelClR2liOTnl4neH)1,(cid:3)0H/(CFROTwl2niHt1h,0Ht/h2CeFO)e.2x(cid:3)c(edpatsiohnedoflinthee),hCo2Oriz4oHn2t,aCl2lOin4eHs(cid:3)a,nCd2Oo4f2t(cid:3)h.e9Tfohremsalotipoens versité Pari2 on http:// mneocreessrairgyodraotuasalyretahveaiplaebrlfeo.rTmhaenlcaettseroofbtjhecetivceatraelqyustisreswrheecnalltinhge Uni201 or describing of some notions that are deemed useful to this CD ber purpose.ThisistheobjectofSection3inwhichemphasiswill Sm d by Dece boveeprpuotteonntitahleforerlaptiroenpsahraiptisvethsactallienkextpuerrnimoveenrtfsr.eqItuewnicllyaalnsdo de1 a1 describe the way in which cyclic voltammetry can provide an Downloshed on acacctaelsyssttsocrteheensiengr.eSleactitoionnsh4ipresviienwsththeefhraommeowgeonrkeouofscaatqaluyisctks dFiegn.s2ityOoxafl1a.t6emyieAldcmin(cid:3)t2haetp0re1pCaarastaivefuenlcetciotrnoloysfisCOof2CcOon2ciennDtrMatFioant.1a6current bli that convert CO essentially to CO (which can be further u 2 P converted to fuels, like, e.g., methanol or hydrocarbons). The favorable role of acid addition is emphasized and the section closes with an attempt to benchmark the various in Scheme 1.13–16 They are the results of the homogeneous catalysts described in the literature. Section 5 is devoted to chemistry of the CO2 anion radical. Dimerization, leading to thehomogeneouscatalyststhatgiverisetoproductsotherthan oxalate, is a manifestation of the radical character of CO(cid:2)2(cid:3) CO, i.e., formate and oxalate. Attempts to produce CO + H entailingaone-electronstoichiometry. 2 mixtures in prescribed proportions are discussed. The last CO and carbonate, on the one hand, and formate, on the sectionisdedicatedtoheterogeneouscatalystsputtingempha- other, result from CO(cid:2)2(cid:3) being a Lewis base and a Brønsted sis, thanks to a few examples, on the role of the metal of the base,respectively,leadingtoatwo-electronstoichiometry.The electrode. dimerizationoftheanionradicalisfastinDMF6andinwater (from pulse radiolysis experiments17), close to the diffusion limit.Thismechanismwassubstantiatedbyacarefulanalysis 2 Direct electrochemical reduction at of the product ratio oxalate/CO as a function of the concen- tration of CO . The oxalate/CO product ratio (in the absence inert electrodes 2 of purposely added water), is an increasing function of the Mercuryandleadmaybeconsideredasthebestapproximation following parameter: prr¼ krr I (I is the cur- ofelectrodematerialsthatdonotinterfereinthechemistryof rs ðkrsÞ3=2½CO2(cid:4)3=2D1=2F CO reduction. Three products are formed upon electrolysis rent density, D the CO diffusion coefficient. k and k are 2 2 rr rs in DMF at the level of the very negative cyclic voltammetric defined in Scheme 1). The good agreement between the theo- CO reduction wave,6 namely carbon monoxide, oxalate reticalpredictionsandexperimentsprovides(Fig.2)arigorous 2 and formate, with a quantitative global faradaic yield. The proof of the mechanism, a rare event in direct and catalyzed reactionpathwaysthatleadtothesethreeproductsareshown electrochemicalreductionofCO . 2 2424 Chem.Soc.Rev.,2013, 42,2423--2436 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemSocRev ReviewArticle 3 Useful notions Werecallinthissectionnotionsconcerningcatalysisingeneral that may be useful in the mechanism analysis and practical designofcatalyticsystemsfortheelectrochemicalreductionof CO . The distinction between redox catalysis and chemical 2 catalysis is not a recently uncovered notion but seems worth recalling each time a booming, and necessarily somewhat anarchic,attentionispaidtoanewcatalysisfieldasispresently the reduction of CO . This is the object of the following first 2 subsection.Re-examiningthenotionofturnovernumber,and turnover frequency, and their possible dependence on over- A potential is also a timely task for the same reasons. Clarifica- 0 36 tionofthesequestionsinpreparative-scaleconditionsforboth 5 S3 heterogeneousandhomogeneous catalysisistheobjectofthe C Fig.3Redoxandchemicalcatalysisofelectrochemicalreactions.1:redox 2 following second subsection. Fast screening of the catalytic C catalysis,2:one-stepchemicalcatalysis,3:two-stepchemicalcatalysis. 9/ properties of molecules by means of a non-destructive technique 33 10 01 such as cyclic voltammetry, serving as guidelines for preparative- ebruary 2g | doi:10. smcaaldeeesliegcntrifoilcyasnets,pirsogarlessoseas.tTimhieslyisqtuheestoiobnje,cwthoficfhollhoawsinrgectehnitrldy esters and nitriles, which give rise to a quasi-redox catalysis on 25 Fs.rsc.or psurobvsiedcetiothne. Tbhaseesnootfiomnesadneinveglfouplecdominpathriessoentwbeotwlaesetnsuthbesevcatriioonuss, leadingexclusivelytooxalate.21 versité Paris 7 2 on http://pub cr3ea.1dtaulcyRttiiocendmoooxfleaCcnOudl2ecsahsthedamitsihccuaasvlsecebadetaeinnlytsphirseopfoolsleodwifnorgtsheecteiloenctsr.ochemical 3aTwn.hi2tdehhrOteehavteecertrciopoogonnetdensnieettoiqiouaunlseankcnac0edtcaldtyueskrpi,nsir2coe2tvepedrrefsirneenqStuscehanencmyaeilnm2,hoscotommgoepgnleeenrmaeoleuntwsteod- Uni201 Inredoxcatalysis,18thecatalystsimplyshuttleselectronsbetween electronstoichiometryreactionscheme.23Thecatalyticcurrent D er theelectrodeandthesubstrate,actingasanoutersphereelectron in preparative-scale electrolysis then results from the combi- Cb d by SDecem tmraonresfeprhryesaicgaelntth.aTnhechveemryicraeal:sothnethelaetctcraotnaslystoisbiseotrbatnaisnfeerdreids nstaetaiodny-sotfateelelcintreoadredeilffecutsriovne ttrraannssfpeorrst, cshkeetmchiceadl rienacFtiigo.n4s,afnodr ade11 are dispersed in a three-dimensional space instead of being both heterogeneous catalysis (where a film of catalytic mole- wnlod on confined within a two-dimensional space. Electrochemists are culeshasbeendepositedontheelectrode surface)andhomo- Dohe keen designing porous electrodes, so porous that they are geneous catalysis (where the catalytic molecules are dispersed s bli sometimes named ‘‘volumic electrodes’’. Redox catalysis is inthewholecellcompartment).24,25Itfollowsthat: u P the equivalent of such an electrode where ‘‘volumization’’ dCb SD (cid:2)dC (cid:3) IS reachesthemolecularscale. C¼(cid:3) A C ¼ dt V dx 2FV Incontrastwithredoxcatalysis,wherethecatalystactsasan x¼d outersphereelectrontransferagent,chemicalcatalysisinvolves more intimate interactions between the active form of the In practically interesting systems, the catalytic reaction is catalystandthesubstrate.Twosituationsmayariseaccording I fast,inwhichcase: ¼kC0G intheheterogeneouscaseand to the strength of these interactions. In the first of these, 2F A Q bonded interactions in the transition state confer to electron I ¼qffi2ffiffikffiffiCffiffiffiffi0ffiffiffiDffiffiffiffiffiffiðC Þ inthehomogeneouscase. transfer an innersphere character, which results in a lower F A P Q x¼0 Usingtheclassical definition of the turnovernumber, TON, as activation energy than for an outersphere electron transfer of the ratio between the number of molecules transformed by the same driving force (Fig. 3). Stronger interactions may involve catalyticreactionandthenumberofcatalystmoleculesemployedto theformationofanadduct(Fig.3),whichshouldnothowever achievethistransformation,oneobtainsintheheterogeneouscase: betoostableforanefficientcatalysistooperate. Amongothers,thereductiveconversionofvicinaldihalides molC Cb (cid:5)V G TON¼ ¼ C ¼kC0 Q(cid:5)t ð1Þ intothecorrespondingolefinshasprovidedaparticularlyclear molðPþQÞ G0 (cid:5)S AG0 illustration of redox and chemical catalysis.19,20 In the case of P P CO reduction,unambiguousexamplesofredoxcatalysiscould andthus,theturnoverfrequency: 2 notbeestablishedbecauseofdeactivationofthecatalystinthe G courseofthecatalyticprocess.Indeed,aromaticmolecules,the TOF¼kCA0GQ0 ð2Þ P anionradicalsofwhichusuallyserveasredoxcatalysts,undergo carboxylation, preventing them to act as electron mediators. Inthehomogeneouscase,theaboveexpressionofthecurrent A noteworthy exception to this rule is provided by aromatic densityisvalidforfastcatalyticprocesses,suchastheonesof Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Soc.Rev.,2013, 42,2423--2436 2425 View Article Online ReviewArticle ChemSocRev A 0 6 3 5 3 S C 2 C 9/ 33 10 01 y 210. on 25 Februars.rsc.org | doi: Scheme2Generaltwo-electronstoichiometrycatalyticreactionscheme(P/Q:catalystcouple,Asubstrate,Cproduct,B:intermediate). s 7 pub interestinthepresentdiscussion.Then‘‘purekineticconditions’’ Counting only the catalyst molecules present in the reaction versité Pari2 on http:// aecolreemctaprcoehdnieseavsetuidrofnaccooerf,roecsfaptaaoslnytdetiaicndgrye-sattocattietoh,newhaenisctdhabcrleaisstauhllmytssetfnrdot,imffcultoshsieoenmt:outtuhael ltTahhyeiesrpaeisrpfpothrromeabacnhasciiesssoaoftfavhaefratieairrnocagenednweimothuesacnuainrnrdgefnhutlopmcroaomcgtepicnaeer,ioswuoshniccbahetatwtlayesketesns. SCD Unimber 201 DPdd2xC2Q(cid:3)2kCA0CQ¼0; itnhsetedaedtetrhmeincaattaiolynstopfrtehseenTtOinNtahnedwThOolFe(ssoeleutSieocntiionnto4a).cTcohuisntniont ownloaded by ed on 11 Dece Within this reawctiitohnð–CdQiffÞxu¼s1ion¼l0a;yer,(cid:2)tdhdCexQQ(cid:3)-xp¼r1of¼ile0, obtained by ogtinhentenleyercofuaeuntrasedl,cyuasmltyt.aadlTkyishsiniaesdg,vvboatuhnlutetmaalcgseoeo-smtodhp-osoaeumrsrisfnoaogocnetenrbreeaefolttueiwocsetceotanhfteatthlahyecsetiuscveatallolrpwiowrauoorpsduelrhdreteipetthoesrreootnsf- DPublish cspoancdeitiinotnegsriast:ionoftheabovedifferentialequationandboundary mouetasnidiengtlheses.reWaectinoontelathyeart tmheaycastearlvyestsaspraeseunsetfiunl tshtoecskolwuthioenn deactivationofthecatalystinthecourseofelectrolysisoccurs,a 0 sffiffiffiffiffiffiffiffiffiffiffiffi 1 2kC0 possibilitythatisnotavailableinheterogeneouscatalysis. CQðxÞ¼ðCQÞx¼0exp@(cid:3) D AxA Inanumberofcases,electrontransferbetweentheelectrode P andthecatalystissofastthattheNernstlawisobeyed.Then,in qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi boththeheterogeneousandhomogeneouscases: corresponding to an approximate thickness m¼ D =2kC0. P A kC0 Keeping the same definition of TON as in the case of hetero- TOF¼ A ð3Þ 1þexp½fðE(cid:3)E0 Þ(cid:4) geneouscatalysis,weconsiderthetotalamountofthecatalyst, cat including both forms, per unit surface area in the reaction wheref=F/RTandE0 isthecatalyststandardpotential,i.e.the cat layer: standardpotentialoftheP/Qcouple. sffiffiffiffiffiffiffiffiffiffiffiffi In a more general case the kinetics of electron transfer to D molðPþQÞm¼S 2kCP0CP0 the catalyst is not so fast and may therefore interfere. Then, A assuming the validity ofthe Butler–Volmer rate lawwitha 0.5 leadingtoexactlytheexpressionsofTONandTOFsimilarbut transfercoefficient:27 notidenticaltotheirheterogeneouscounterparts(eqn(1)and F 1 (2),respectively): I ¼ 2kC0G0exp½(cid:3)fðE(cid:3)E0 Þ(cid:4) A P cat molC ðC Þ TON¼ ¼kC0 Q x¼0(cid:5)t ð10Þ 1 1 molðPþQÞ A C0 þ þ m P khet;catG0exp½(cid:3)fðE(cid:3)E0 Þ=2(cid:4) 2kC0G0 S P cat A P TOF¼kC0ðCQÞx¼0 ð20Þ in the heterogeneous case, where khSet,cat is the heterogeneous A C0 P electron transfer standard rate constant (corresponding to a 2426 Chem.Soc.Rev.,2013, 42,2423--2436 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemSocRev ReviewArticle intheheterogeneouscase: qffiffiffiffiffiffiffiffiffi (cid:5) (cid:6) 1 expð(cid:3)fZÞ 2 kCA0 exp (cid:3)f2Z ¼ þ p TOF TOF0 khSet;cat ffiTffiffiffiOffiffiffiFffiffiffiffi0ffiffi ð4Þ exp½(cid:3)fðE0 (cid:3)E0 Þ(cid:4) þ AC cat TOF 0 andinthehomogeneouscase: 1 ¼expð(cid:3)fZÞþpffi2ffiffiDffiffiffiffiPffiffiepxp(cid:5)(cid:3)f2Z(cid:6) TOF TOF0 kcSat ffiTffiffiffiOffiffiffiFffiffiffiffi0ffiffi exp½(cid:3)fðE0 (cid:3)E0 Þ(cid:4) A þ AC cat ð5Þ 60 TOF0 3 5 3 with: S C C2 TOF ¼kC0 exp½(cid:3)fðE0 (cid:3)E0 Þ(cid:4) 9/ 0 A AC cat 33 0110 inbothcases. s 7 on 25 February 2pubs.rsc.org | doi:10. tTbcuaehrttianIwstloeytvsreheetnurcwescfnraaaetstpqalylpucyheeseanatmsrrcsayeicnrtatghencearodditnzotethcvrdoeaernsrbptecyoewitpstiewttnahotaditalihelnlofedfiwnopesriprteeeeavanircodephuleranpsettacinoirspotneitacsirouhacnlimoapmrtehbctpaeaeattrtwrasei,lseayoeicsthnnts. versité Pari2 on http:// TtahnOadFtavaingcedoovidetsrcsoaav.teaArlypnsotetiexsnacmthiapallr,ealecoatfedrtiihnzeegdtloobgythTaeOlarFar–gtZheeTcruOtrrFvievainaisldasaphshomwornailslminZ Uni201 Fig.4Catalysisofelectrochemicalreactions.Electrodeelectrontransfer, Fig. 5, where three linear variation zones can be delineated: D er chemicalreactionsandsteadystatelineardiffusivetransportinheterogeneous independencefromZatlargevaluesof Z,linearvariationwith Cb Sm andhomogeneousmolecularcatalysisofanelectrochemicalreactionaccording an F/RTln10 slope at small values of Z, and, in between, an ded by 1 Dece tCo0A,Sicshmemaient2ai(nwedithcokn0sctankt),dinurtinhgecthaseewwhhoelerectohuersseubofsteraletcetrboulylksisc.o26ncxe:ndtirsatatinocne, Fco/2nRtrTilbnu1t0ionsloofpeelelcintreoanrtrvaanrisafetirotnotchoerrceastpaolynsdt.inTghetloatttehresekgimneetnict wnload on 1 tdo:dthiffeuesiloenctrlaoydeerstuhrifcakcnee,sms.:Dfilsmubs(ctrioppt:)doiffruresiaocntioconelffiayceiern(btso.tGtosumbs)crtihpti:cksunrefsasc,e decreases in size and eventually vanishes as electron transfer Doshe concentrations.Csubscript:volumeconcentrations.G0P,C0P:totalsurfaceand becomesfasterandfaster. bli volumeconcentrationsofthecatalyst.S:electrodesurfacearea,V:cell Itthusappearsthatoneofthebestwaystocharacterizethe u P compartmentvolume.I:currentdensity,k:catalyticsecondorderrate intrinsic catalytic properties of a molecule is the value of its constant(seeScheme2). TOF ,theturnoverfrequencyatoverpotentialzero. 0 Thelowoverpotentiallinearvariationzoneineqn(4)maylook atfirstsightasaformofaTafelplot.A‘‘Tafelplot’’isaclassical reactantattachedtotheelectrodesurface,dimensionoftime(cid:3)1), and: F 1 ¼ I qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2kC0D C0exp½(cid:3)fðE(cid:3)E0 Þ(cid:4) A P P cat 1 1 þ þ kcSatCP0exp½(cid:3)fðE(cid:3)Ec0atÞ=2(cid:4) qffi2ffiffikffiffiCffiffiffiffiA0ffiffiffiDffiffiffiPffiffiffiCP0 in the homogeneous case, where kcat is the electron transfer S standardrateconstantcorrespondingtoareactantinsolution (dimensionofspace(cid:5)time(cid:3)1) Iftheoverpotential,Z,definedasZ=E0 (cid:3)E(whereEisthe AC electrode potential at which electrolysis is run and E0 AC thestandardpotentialcorrespondingtothetransformationof the substrate A into the product C), is introduced in the Fig.5Anexampleofturnoverfrequencyvs.overpotentialrelationship. precedingequations: EA0C(cid:3)Ec0at=0.64V,logTOF0ðs(cid:3)1Þ=(cid:3)4.6,pffi2ffiffiDffiffiffiffiPffiffi=kS¼2qffikffiffiCffiffiffiffiA0ffiffi=khSet;cat¼0:03s1=2. Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Soc.Rev.,2013, 42,2423--2436 2427 View Article Online ReviewArticle ChemSocRev linear approximation of the relationship between the current, tobeusedtoestimatetheoverpotentialandthecatalyticefficiency,29 orcurrentdensity,andtheoverpotentialofanelectrochemical successfulstrategies,asdetailedbelow,forderivationoftheTOF–Z reaction, kinetically controlled by electron transfer. It is char- relationshipfromcyclicvoltammetricdataarerecent.22 acterized by a transfer coefficient, a, giving rise to the slope In the homogeneous case, Fig. 6 shows a zone diagram aF/RTln10 and an exchange current density I defined as depicting the various diffusion/reaction regimes that can be 0 thecurrentdensityatzerooverpotential.Inthepresenthetero- observedbymeansofcyclicvoltammetryaccordingtothevarious geneouscase: interveningparameters(thesehavebeendefinedinthecaptionof Fig.4,nisthescanrate).30,31Thecatalyticsystemsofinterestare a¼1 and I =2F ¼kC0G0exp½(cid:3)fðE0 (cid:3)E0 Þ(cid:4) 0 A P AC cat those in which k is large enough for the representative point of ¼TOF (cid:5)G0 the system to stand in one of the three upper zones in which 0 P ‘‘pure kinetic conditions’’ are achieved. Pure kinetic conditions are exactly the same as already introduced in preparative-scale 0A It is seen that, unlike TOF0, I0 is not a molecular intrinsic conditions, corresponding to the same steady-state situation. 6 53 expression of the catalytic capabilities of the catalyst since it ThemostclassicalcyclicvoltammetricresponseistheS-shaped 3 S dependsontheamountofcatalystonehasbeenabletodeposit waveintheupperright-handzoneofFig.6,ofequation:32,33 C C2 ontheelectrodesurface.Moreover,Tafelplotswithunitytransfer qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y 201310.1039/ ccoalelffiyccoienntrtosllaerdebqyueilteectrraornetfroarnsefleerc.tTrohcihsermeciaclalsltroeaucstitohnastekqinne(t5i)- FiS¼1þexp2½k(cid:3)CfA0ðDEP(cid:3)CEP0c0atÞ(cid:4) ð6Þ ebruarg | doi: iosvenroptoatennaticatlupalloTtacfhealrpalcotte.rIitziinsgraatdheeproasittuerdnmovoelrefcruelqaurecnactaylyvsst. (i:current,S:electrodesurfacearea).Itisindependentofscanrate on 25 Fs.rsc.or intLhiekelwowiseovinerpthoetehnotimalorgeegnieoonu.scasewhere: arensdpothneserecvoerrrseesptroancdesistoidaefnatsictaclattoaltyhtiecfroerawctairodntwraicthe.nTehviesrtthypeleesosf Université Paris 7 2012 on http://pub eTqanfel(p5)lotasn.d thIe0=pFlo¼tsqinffi2ffiffiDffiffiffiFffiPffiiffi=ffigffikffi.ffiffiCffiffi5ffiA0ffiffi,ffiC8P0(cid:5)anTdOF100; are not actual nlehoalfeeeyglectplhrtire,geodiadbrnbeleed.yveAcdaornisnvafiiasbldyuslsitemnisegPploe/ttQfichoteenrwxopconaaefvtrettairhmlatyenhetissnacuftteabcrilusstbrrreroeaesbttunweslteetisnerbvnybtehydtthehmeierneepcaateanchattsaiekoloynacfsu–btedrsqareiffnennnudc(ts6e,it)ohioi0pnesf, CD ber 3.3 Analysisofcatalyticresponsesincyclicvoltammetry catalysis(e.g.intheabsenceofsubstrate):34,35 Sm ded by 1 Dece Ccaatrarlyyisntg,doeutetrmaisnyesttehmeabteicstsceorniedsitoiofnesleocftirtosluyssees,atvooiedvianlugastiedea- Fip0S¼0:446(cid:5)CP0pffiDffiffiffiPffiffipffifffivffiffi ð7Þ a1 nloon phenomenasuchasohmiclosses,self-inhibition,deactivation Dowhed etc...isanexhaustingtask.Thisisthereasonthatnon-destructive Thenormalizationprocedurethatthusconsistsofreplacing blis techniques,suchascyclicvoltammetry,28arecurrentlyusedto eqn(6)byeqn(8):36 Pu rapidly gauge what can be the catalytic significance of a rffiffiffiffiffiffiffiffiffi moleculeandestablishthebestconditionsforpreparativescale 2kC0 2:24 A electrolyses. In spite of previous attempts to define the i ¼ fv ð8Þ potentialofthecyclicorrotating-diskelectrodevoltammogram ip0 1þexp½fðE(cid:3)Ec0atÞ(cid:4) is a straightforward manner of avoiding the determination of thecatalystdiffusioncoefficientandtheelectrodesurfacearea. Arepresentationofeqn(8)isgiveninFig.7a. Eqn (6) has been used extensively to measure the global catalytic rate constant and thereof to analyze mechanism through determination of reaction orders in catalyst, CO 2 or molecules favoring catalysis such as protons donors (see Section4.1).37–42Cautionhassometimesbeentakentousethis equation when it is indeed applicable, i.e., when the cyclic voltammetric response is (or is close to) an S-shaped curve independentfromthedirectionofthepotentialscanandfrom the scan rate.41 In a large number of cases it has nonetheless beenundulyappliedwhenthecatalyticresponseispeak-shaped and–comingtogether–scan-ratedependent.Theoddsituation ofascan-ratedependentcatalyticrate‘‘constant’’thusarises.40 One may consequently wonder what the reliability of reactions ordersderivedintheseconditionsisandthereofofthemecha- Fig.6Diffusion/reactionregimesandshapeofthecyclicvoltammetricresponses incatalyticreactionsofthetyperepresentedinScheme2. nistic conclusions drawn.37–40,43–46 Various side-phenomena 2428 Chem.Soc.Rev.,2013, 42,2423--2436 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemSocRev ReviewArticle A 0 6 3 5 3 S C 2 C 9/ 33 10 01 y 210. ebruarg | doi: on 25 Fs.rsc.or s 7 pub Université Pari2012 on http:// caF(roi,iggna.hs0:7ut)CmCf0Aoapr=ttaiao1lynttyM.ipcF,icrc2oyakcmllsi=cybsv1ltuoe0elm0tat,smo(cid:3)v1my=,ee0nllto.o1rwysVur:ebsCs(cid:3)s0Apt1or,(aMnDtseP)e==sco(11lne0,sf(cid:3)0ut5).m1ac,pmn0td2.i0ofs1no(cid:3),.o10b,t-C.,o00Pbf0-=05t:h;1seu2m-bkwsM=atrv,a1eTt0ea=0n2sa(cid:3)9ly18s.eKs. D er Cb Sm ded by 1 Dece hreasvpeobneseenwehveonkeadntSo-sehxapplaedinrtehspeoanpspeeaisraenxcpeecotfeda.4p0e,4a7k,4-8shaped a1 nloon The most obvious of these side-phenomena is substrate owed consumption. Passing indeed from the upper-right zone of Dh Publis Fcoign.su6mptotiotnhoeftthweosulebfstt-hraatned,thzeondeiffsuseinotnaiolsfwahnichinbcerecaosminegs Feilegc.t8roCgaetnaelyrsaitseodfFteh(e0)eTlPePct.rCoycchliecmvioclatlarmemduecttriyonofoFfeCTOPP2t(1omCOMb)yinDMF+0.1M thesolerate-determiningstepin‘‘totalcatalysis’’conditions.In n-Bu4NBF4,inthepresenceof0.23MCO2and0.1(a,a0),3(b,b0)MPhOHatascan the intermediatezone, theinterference ofsubstrate consump- rateof0.1Vs(cid:3)1.a,b:cyclicvoltammetricresponses.Solidline:experiments; dashedline:simulationofthecorrespondinghypotheticalunperturbedcatalytic tion decreases when one approaches the foot of the catalytic responses.a0,b0:foot-of-the-waveanalyses.c:Resultingturnoverfrequencyvs. wave.Thisobservationsuggestsastrategyconsistingofplotting overpotentialrelationships(thicklines)derivedfromthefoot-of-the-wave i=i0againstf1þexp½fðE(cid:3)E0 Þ(cid:4)g(cid:3)1.Inthecasewherethecatalytic analysesat0.1,1,10,50Vs(cid:3)1(green,red,magentaandbluerespectively).The p cat reactionisnotperturbedbysidephenomena,astraightlineisthus threeyellowdotsrepresenttheresultsobtainedbymeansofpreparativescale electrolysisinthesameconditionsasina. obtained over the whole range of f1þexp½fðE(cid:3)E0 Þ(cid:4)g(cid:3)1, as cat pictured in Fig. 7a, a0. This is no longer the case if substrate consumption comes into play (Fig. 7b, b0), but remains true chargeisincreased,e.g.inhibitionbyproducts,48ordeactivation at the foot of the wave within an interval that decreases when ofthecatalyst.22The‘‘foot-of-the-wave’’strategyappliestothese thisside-phenomenoninterferesincreasingly.Theslopeofthis cases too and to any other side-phenomena that interfere linearportionmaythenbeusedfordeterminingofkandfinally increasinglyuponincreasingthefaradaicchargepassed. of the TOF–Z relationship for any catalyst without taking sub- An illustrative example is given in Fig. 8 where the catalyst strateconsumptionintoaccount.Thisisduetothefactthatat forCO -to-COreductioniselectrogeneratediron(0)tetraphenyl- 2 the foot of the wave, the faradaic charge passed is small and porphyrin(Fe(0)TPP)inthepresenceofphenol22(thefavorable therefore the amount of substrate transformed is also small. roleofaddingacidwillbefurtherdiscussedinSection4.1).Itis Raising the scan rate also results in a decrease of the faradaic worth noting that the results of preparative-scale electrolysis charge passed in a given potential interval, thus extending the are consistent with the predictions made on the basis of the linearportionoftheplot.22Thereareotherphenomena,which foot-of-the-waveanalysis,thusvalidatingthisstrategy. may be considered as side-phenomena, vis a` vis the catalytic Extension to the case where electron transfer between the reaction,whichinterfereinanincreasingmannerasthefaradaic catalystandtheelectrodeisnotunconditionallyfastispossible. Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Soc.Rev.,2013, 42,2423--2436 2429 View Article Online ReviewArticle ChemSocRev Thismaybecomenecessaryevenwithfastelectronexchanging of CO to CO.49 However, the catalyst deactivates after a few 2 catalystswhencatalysisissofastthatelectrontransferwiththe turnovers.AdditionofLewis50,51andBrønstedacids47,52consider- electrode starts to interfere in the overall kinetics. Then, the ably boosts catalysis. In the latter case, weak acids such as functionthatshouldbeplottedagainstf1þexp½fðE(cid:3)E0 Þ(cid:4)g(cid:3)1is alcohols,particularlytrifluoroethanol,wereusedtoavoidcatalysis cat nolongeri=i0 but,rather: ofprotonreductionasobservedwiththesameFe(0)TPP,whenan p acid as strong as Et NH+ is used.53 It has been shown more 3 i FITðE(cid:3)Ec0atÞ ¼ 1(cid:3)0:446ipffiDffiffiPffiffipip0ffifffivffiffiexphfðE(cid:3)Ec0atÞi raelscoentblyoothsatstacdadtiatiloysnisofwmhoidleerastteilllysytireolndginagcidess,sseuncthiaallsyphCeOnolass, ip0 kS 2 product.22Amechanism,basedonreactionordersderivedfrom rffiffiffiffiffiffiffiffiffi cyclicvoltammetricresponsesclosetothecanonicalS-shape,has 2kC0 2:24 A been proposed (Scheme 3 in ref. 47). More reliable and more fv ¼ 1þexp½fðE(cid:3)E0 Þ(cid:4) detailed mechanistic pictures are expected from the systematic A cat 0 applicationofthefoot-of-the-waveanalysisofcyclicvoltammetric 6 53 ksisthestandardrateconstantofelectrontransferbetweenthe responses as illustrated in Section 3.3 (Fig. 8) with, precisely, 3 S catalyst and the electrode, as derived from the cyclic voltam- theexampleofphenoladdition.54 C C2 metryofthecatalystcoupleintheabsenceofcatalysis.kisthen Similar studies of the effect of weak Brønsted acids on the 13039/ obtainedfromtheslopeoftheinitiallinearportion,oftheFIT catalysis of the conversion of CO2 to CO by means of electro- y 2010.1 plot, leading finally to the TOF–Z relationship. An example of reduced[Re(bpy)(CO)3(py)]2(cid:3)havebeenperformed,55inaceto- ebruarg | doi: tshtriastemgyorisegsiovepnhiisnticSaetcetdionap4p.2li.cation of the foot-of-the-wave- ncaittraillyes,t.f5o6lMlowecihnagntihsteicpcioonnceleursiinognsstwuedrieessimofilathretoRteh(obspeyd)(rCaOw)n3 on 25 Fs.rsc.or tionApopflitchaetiognlobofalthciastasltyrtaictegraytehacsontwstoanotustcaosmaesf:u(ni)ctdioenteromfitnhae- irneptehaetecdasereocfenFetl(y05)7puosripnhgyrtihnes.sTahmeesawmeaekexBpreørnimsteendtsachiadvse,bweiethn s 7 pub concentrationofthevariousreactants,andhencethemechanism determination of reaction orders and of H/D kinetic isotope versité Pari2 on http:// moesftocasabttlaeislffiyhsmcisieebnnyttcmoofentadhniestiTooOnfsFth–oeZfrpreeraleacpttiiaoornnastoihvriedp-esarcssaltaehgueulseidcdteertoetolrymssieisnleaecdnt;dt(hitioe) ecthyffceelycictds.vooAnlptoapmtlicpmalatoitogernaauom.fsIenqanrfae(c8st),cwathnaes-ractotwenosiincdhdeaerpreadecntadesreisnsattfiecesbveecncaantunhsooetutghbhee Uni201 comparetheintrinsicpropertiesofthecatalystsproposed. separated,buttheresultsaremostprobablyreliablebecausethe D er peaksareveryshallow,closetoaplateaubehavior. Cb Sm aded by 11 Dece 4ofHCoOm2otogeCnOeous catalysis of the reduction 4to.2a. veArtytaecffihicniegntthceaatacliydsigsroupstothecatalystmoleculeleads nloon 4.1 Favorableroleofacids wd Basedontheaboveobservationsofthefavorableroleofacids, oe Dsh In the series of palladium–phosphine catalysts, addition of an iron(0) tetraphenylporphyrin with OH substituents in ortho, ubli acidhasbeenshowntobebeneficialsincethebeginning.37–42Itis ortho0positionsofthephenylgroups(Fig.9,thephenylgroups P remarkablethatinspiteofthechoiceofastrongacid,HBF ,to areinfactperpendiculartotheporphyrinring)provedtobea 4 accelerateCO conversion,COremainsthemainproductwithno particularly efficient catalyst of the CO to CO electroreduc- 2 2 or little hydrogen production. In spite of the above-mentioned tion.58 Fig. 9a shows the very large catalytic current obtained uncertaintiesonreactionorders,themechanismislikelytobe withthismolecule.Asinmanyaforementionedcases,itdoesnot ofthetypeshowninScheme3ofref.42. plateauoff.Thisisthereforeatypicalcasewherethefoot-of-the- Electrogeneratediron(0)porphyrins,essentiallytetraphenyl- wave analysis shows its usefulness. The catalysis rate constant porphyrin(TPP)hasbeenshowntobeacatalystfortheconversion canbederivedfromthelinearportionoftheplot(Fig.9b)aswell Fig.9Aniron(0)porphyrincatalystwiththeacidgroupsattachedtothemolecule.a:cyclicvoltammetryofFeTDHPP(1mM)inDMF+0.1Mn-Bu4NBF4,intheabsence (black)andpresence(red)ofCO2(0.23M)atascanrateof0.1Vs(cid:3)1.b:Foot-of-the-waveanalysis(seetext). 2430 Chem.Soc.Rev.,2013, 42,2423--2436 Thisjournalis c TheRoyalSocietyofChemistry2013 View Article Online ChemSocRev ReviewArticle 5 Homogeneous catalysis of the reduction of CO to other products 2 5.1 Formate(vs.CO,vs.H ) 2 Formateisalsoaninterestingproductsinceformicacidmaybe usedforhydrogenstorageorasafuel.63Whenthereductionof CO takestheanionradicalpathway,formateresultsfromthe 2 reaction with water and is indeed the only product of electro- lysisinwateronaninertelectrode.Inhomogeneouscatalysis, formateappearsasaside-productinmanycasesbutthereare catalyststhatgiveamorespecificaccesstoitsproduction.For Fig.10Correlationbetweenturnoverfrequencyandoverpotentialfortheseries example, substantial amounts of formate were obtained with 0A ofCO2-to-COelectroreductioncatalystslistedinTable1.Thickredandblue Rh(diphos)2 (diphos = 1,2-bis(diphenylphosphino)ethane) as 6 3 segments:TOFvaluesderivedfrom‘‘foot-of-the-wave-analysis’’ofthecyclic catalyst at a potential where the intermediacy of the rhodium 5 S3 voltammetriccatalyticresponsesofFeI/0TDHPPandFeI/0TDMPP,respectively, hydride appears likely,64 based on previous investigations of 9/C2C iFneIt/h0TeDpMrePsPen(bcoetotofm2)M.ThHe2Ost.aDrainshdeicdatleinseas:pprleoptasrfaotrivFee-0sTcaDlHePePxp(teorpim)eanntdwith the electrochemistry of this complex.65 Substantial amounts 1303 Fe0TDHPPascatalyst. of formate were obtained together with CO and H2 with ebruary 20g | doi:10.1 astheTOF–Zrelationship.ThisisshowninFig.10whereitis Rypirueel(sdbepniync)e2(fCoorfOma)2aptaresotioncanctraedlaoyssnetosri.nw66itaIhcteittshoeninitptreKirlaeesotoifnrtghmteoetphnraoontteoonlthidantontthhoeer on 25 Fs.rsc.or (csoemepSaercetdiotno4o.t3h)e.rBceactaaulyssetsooffththeehCigOh2tcoatCaOlyteiclecratrtoe,reedlueccttrioonn pobretaseinnetd. wSiitmhirlaerdluyceidmcpiso-r[tRahn(tbpyyi)e2lXd2s]+(oXf=fCorl(cid:3)moartethewterriefluaolrsoo- s 7 pub transferkineticsbetweentheelectrodeandthecatalysthadto methane-sulfonate anion)67 or with another rhodium complex versité Pari2 on http:// bI(snetattrahkiinesnFciiangs.teo10tao)cocf,oaultlnshteininrelitsnhueeltwanoitafhlyptsrhiesepapasrraedtdeiivtcaetiiloescdnailonefStehelecetciftoornoolty3-so.3ifs-. ca[(alZlto5aw-lMyesdet5Casnh5)oRewhvne(bnpinyb)eCtSltc]e+hr6e8smpieenci3faiacc,eittyion,nwitarictiehleto.sntRiiltelrcialeennt+onu5-sn%eegolwifgaittbehlree, Uni201 the-wave analysis. That the remarkable catalytic properties of productionofhydrogen(15%).69 D er this molecule are related to the presence of the phenolic OH Amuchbetterselectivityisobtainedwhenusingatungsten- Cb d by SDecem gcoronufiprsmiendtbhyecmomolpecaurilseocnlowsiethtoththeepiorropnh(y0r)incamtaolylteiccucleenwtehreries ceolencttaroindiengsufrofarmceaitne wdaetheyrdwroitghenaahseighentzuyrmnoeveardsfroerqbueednctoy atnhde ade11 alltheOHgroupshavebeenreplacedbymethoxysubstituents averylowoverpotential.70 wnlod on (FeTDMPP). Rather high TOF values are also obtained but Several indications from the papers cited above point to a Doshe at the price of a much larger overpotential, resulting in a firstcompetitionbetweentheadditionofCO2andofH+onthe bli TOF value one billion times smaller than with FeTDHPP. activereducedformofthecatalyst.TheformerleadstoCOand u 0 P Comparison with the kinetics of catalysis by Fe(0)TPP in the the latter to a metal hydride. The hydride may then react presence of phenol (Fig. 8c) shows that the eight phenolic competitively with CO and H+, yielding formate and H , 2 2 groupsinFe(0)TDHPPareequivalenttoa150Mconcentration respectively. One would thus expect that increasing the ofphenolinsolution. medium acidity would make the product distribution pass from CO to formate and finally to H . This is indeed what 2 seems to happen with the catalyst shown in Scheme 3b.71 4.3 Catalystsbenchmarking Formate is the ‘‘major product’’ (no figures provided) in the The intrinsic catalytic properties of most of the proposed presenceofbenzoicacidwhereashydrogenistheonlyproduct homogeneous catalysts are compared in Fig. 10, based on the in the presence of the stronger toluenesulfonic acid. In this value of the turnover frequency and overpotential as derived case,thethreecorneredcompetitionbetweenCO,formateand from preparative-scale experiments described in the literature H formation under the effect of added acids of various 2 (the list is limited to catalysts with a reasonable stability, strengths clearly requires further investigation. This is also at least several hours and to electrode materials that do not thecasewithiron(0)porphyrin,whichappearsasanexcellent interfereinthecatalyticprocess).Theintrinsiccatalyticproper- catalyst for H evolution in the presence of a strong acid, 2 ties of the various molecules may be compared according to protonated triethylamine,53 whereas addition of weak (e.g. the location of the representative point in the log TOF vs. trifluoroethanol), and moderately weak (e.g. phenol) acids Z plane. The characteristics of each catalyst are summarized acceleratestheformationofCO.Inotherwords,theconditions inTable1,inwhichcomparisoncanalsobemadethroughthe for producing syngaz mixtures with adjustable proportions of TOF values. It is seen that the two most efficient catalysts COandH usingasinglecatalystarenotyetathand.Another 0 2 areFeTDHPPandRe(bpy)(CO) ,withaslightadvantageforthe approachtothe samegoalconsistsofthecombination oftwo 3 former, which also involves a mustmore common metal than catalyst systems, as in ref. 72 (Re(bpy-tBu)(CO) Cl and p-Si 3 thesecond. underillumination). Thisjournalis c TheRoyalSocietyofChemistry2013 Chem.Soc.Rev.,2013, 42,2423--2436 2431 View Article Online ReviewArticle ChemSocRev Table1CatalysisofCO2reductionintoCO.Correlationbetweenturnoverfrequencyandoverpotentialfortheseriesofcatalystslisted Solvent Catalyst E0 (Vvs.SHE) E0 (Vvs.SHE) Z(V) logTOF(s(cid:3)1) logTOF (s(cid:3)1) Ref. CO2=CO cat 0 DMF+2MH O Fe0TDHPP 0.41–0.56 2.0–3.9 (cid:3)4.9 58 2 (cid:3)0.690 (cid:3)1.333 Fe0TDMPP 0.89–0.99 1.0–2.2 (cid:3)14.2 (cid:3)1.69 Re(bpy)(CO) 0.57 3.0 (cid:3)6.1 56 3 (cid:3)1.25 DMF+HBF {m-(triphos) [Pd(CH CN)] } 0.80 0.37 (cid:3)7.8 59 4 2 3 2 (cid:3)0.260a (cid:3)0.76 CH CN+5%H O (cid:3)1.16 0.51 (cid:3)0.35 (cid:3)8.7 60 A 3 2 0 (cid:3)0.650 6 3 5 3 S C 2 C 9/ 33 10 01 ebruary 2g | doi:10. C(cid:3)H0.36C5N0 (cid:3)1.30 0.87 1.2 (cid:3)9.8 61 on 25 Fs.rsc.or s 7 pub versité Pari2 on http:// (cid:3)1.25 0.81 1.2 (cid:3)9.1 Uni201 D er Cb Sm ded by 1 Dece 1(cid:3):04.6H502OCH3CN (cid:3)1.30 0.55 1.9 (cid:3)7.4 62 a1 nloon wd oe Dh s bli aThelargechangeinE0 isduetothepresenceofastrongacid,HBF ,muchstrongerthan(CO +H O). Pu CO2=CO 4 2 2 quantitativeinacetonitrileonaglassycarbonelectrodeatavery low overpotential, prior to the reduction of dioxygen, allowing the capture and reduction of CO from air selectively to a C2 2 product, oxalate. It should however be noted that no simple routetoreductivelytransformoxalateoroxalicacidtovaluable carbonderivativesisavailablesofar. Scheme3CatalystsforthereductionofCO2toformate. 6 Heterogeneous catalysis of the reduction of CO 2 5.2 Oxalate 6.1 ReductiontoCObymeansoftransitionmetalcomplexes atmercuryelectrodes OxalateisformedinhighyieldstogetherwithCOinthedirect reductionofCO oninertelectrodesinaproticmedia,bymeans In spite of the fact that reduced nickel cyclams have been 2 ofdimerizationoftheinitialCO anionradical(Section3).Itis shown to catalyze the reduction of CO to CO on an inert 2 2 formedexclusivelyinthesamemediumwithanionradicalsof electrodesuchasglassycarbon,62,74thesamecomplexesgivea aromatic esters and nitriles as catalysts (Section 3.1). In both muchbettercatalysisonmercurymakingthesesystemsonesof cases, a rather large overpotential is required to make the the most selective and efficient catalysts for the CO to CO 2 reaction go. A remarkable catalytic system in this connection conversion.75–78Carefulstudieshaveshownthatthemostlikely isshowninScheme4.73Theformationofoxalateispractically catalystisthenickel(I)complexchemisorbedonmercury.74,79,80 2432 Chem.Soc.Rev.,2013, 42,2423--2436 Thisjournalis c TheRoyalSocietyofChemistry2013
Description: