ebook img

Charmonium spectrum and diffractive production in a light-front Hamiltonian approach PDF

0.46 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Charmonium spectrum and diffractive production in a light-front Hamiltonian approach

Nuclearand ParticlePhysics Proceedings NuclearandParticlePhysicsProceedings00(2017)1–5 ff Charmonium spectrum and di ractive production in a light-front Hamiltonian approach GuangyaoChen∗,YangLi,PieterMaris,KirillTuchin,JamesP.Vary DepartmentofPhysicsandAstronomy,IowaStateUniversity,Ames,IA50011,USA 7 Abstract 1 0 Westudyexclusivecharmoniumproductionindiffractivedeepinelasticscatteringandultra-peripheralheavy- 2 ioncollisionswithinthedipolepicture. Themassspectrumandlight-frontwavefunctionsofcharmoniumareob- n tainedfromthebasislight-frontquantizationapproach,usingtheone-gluonexchangeinteractionplusaconfining a potentialinspiredbylight-frontholography. Weapplytheselight-frontwavefunctionstoexclusivecharmonium J production. Theresultingcrosssectionsareinreasonableagreementwithelectron-protoncollisiondataatHERA 9 andultra-peripheralnucleuscollisionmeasurementsatRHICandLHC.Thecharmoniumcross-sectionhasmodel dependence on the dipole model. We observe that the cross-section ratio of excited states to the ground state ] h hasaweakerdependencethanthecross-sectionitself. Wesuggestthatmeasurementsofexcitedstatesofheavy t quarkonium production in future electron-ion collision experiments will impose rigorous constraints on heavy - l quarkonium light-front wavefunctions, thus improving our understanding of meson structure, which eventually c u willhelpusdevelopaprecisedescriptionofthegluondistributionfunctioninthesmall-xregime. n [ Keywords: charmonium,lightfront,mesonproduction,dipolemodel 1 v 9 7 1. Introduction front wavefunction (LFWF) [7, 11]. Such phe- 2 nomenological models contain free parameters that 2 Exclusive vector meson production processes are weaken the predictive power of the diffractive heavy 0 valuable probes of hadron structures [1] and provide quarkoniumproductionprocess. . 1 insights to QuantumChromodynamics (QCD) in the 0 high energy limit, where saturation dominates the Recently, a new description of heavy quarkonium 7 gluondynamics[1–3].Modelsincorporatingthesatu- system has emerged [13, 14] within the basis light- 1 rationphysicshavebeenverysuccessfulindescribing front quantization (BLFQ) approach [15–17]. The : v highprecisionelectron-protoncollisiondatacollected mass spectra for charmonium and bottomonium are i X attheHadron-ElectronRingAccelerator(HERA)[4– obtained by diagonalizing a Hamiltonian within the 8]. BLFQ framework, with the one-gluon exchange in- r a The diffractive DIS process can be effectively ap- teraction and a confining potential inspired by light- proximated by the scattering of a color dipole, a frontholography[13]. Thesuccessfulapplicationsof quark-antiquark pair, from the proton [9, 10]. The theBLFQformalismtotheelectronanomalousmag- so called dipole picture has been very successful in neticmoment[16,18],andtothepositroniumsystem explainingbothexclusiveanddiffractiveHERAmea- [19,20]havepavedthewayforthestudyoftheheavy surements in the high-energy limit [11, 12], by em- quarkoniumsystem. TheLFWFsfromtheBLFQap- ploying some phenomenological vector meson light- proach, which arise from successful fits to the heavy quarkonia mass spectroscopy, show success in appli- cations to decay constants and to additional observ- ∗Correspondingauthor ablessuchaschargeformfactors.Herewereportpre- Emailaddresses:[email protected](GuangyaoChen), dictions of the LFWFs obtained from the BLFQ ap- [email protected](YangLi),[email protected] proachandcomparewithselectedexperimentdataon (PieterMaris),[email protected](KirillTuchin), [email protected](JamesP.Vary) diffractive charmonium production, which were dis- γ*�→�/ψ� 1. σ /σ � ���� ψ(��) �/ψ ���� Ψ � 102 0.05 0.8 ������� �������� Ψ � 3.2 7.0 0.6 ) � � ( � 10 �� 22.4 0.4 σ� Q2(GeV2) �� 0.2 ���� 1 ���������������Ψ� ����Ψ� 0. 0 20 40 60 0 100 200 300 � (���) �� (����) Figure 1: Predictions of the BLFQ LFWF (solid Figure 2: Predictions of the BLFQ LFWF (solid curves) and the boosted Gaussian LFWF (dashed curves) and the boosted Gaussian LFWF (dashed curves) compared with the HERA experimental data curves) compared with the HERA experimental data of total J/Ψ cross section for different values of Q2 fortheσΨ(2s)/σJ/Ψcross-sectionratioasafunctionof and W [26, 27]. The inner bars indicate the statisti- Q2 inelectron-protonscattering[28]. Errorbarsindi- caluncertainties;theouterbarsarethestatisticaland catethestatisticaluncertainties. systematicuncertaintiesaddedinquadrature. Weemploytheimpactparameterdependentsatura- cussedindetailinRef.[21]. tion(bSat)model[7]andtheimpactparameterdepen- dent Color Glass Condensate (bCGC) model [8] for this study. We use five sets of parameters (bSat I-V) 2. Theoreticalframework in the bSat model[11, 22] and three sets of parame- ters (bCGC I-III) in the bCGC model [23, 24]. The The amplitude for producing an exclusive vector meson in diffractive DIS is calculated as follows in parametersforthesedipolecrosssectionparametriza- tionsaresummarizedinTables1and2inRef.[21]. thedipolepicture[11], TheheavyquarkoniummassspectrumandLFWFs AγT∗,Lp→Ep =i (cid:90) d2r(cid:90) 14dπz (cid:90) d2b(Ψ∗EΨ)T,L(r,z,Q) aeffreeoctbivtaeinliegdhtb-yfrsoonltvHinagmtihletoeniigaenn,vwahluiceheqcoumatiboinneosftahne 0 holographicQCDHamiltonian[25]andtheone-gluon dσ e−i[b−(1−z)r]·∆ qq¯(x,r), (1) exchangedynamics[13], d2b where Q2 is the virtuality of photon, T and L denote Heff|ψh(cid:105)= Mh2|ψh(cid:105), (Heff ≡ P+Pˆ−eff−P(cid:126)2). (3) thetransverseandlongitudinalpolarizationofthepro- with duced vector meson, and the momentum transfer be- itnhge qtu=ark−∆(cid:126)an2d. (cid:126)arnitsiqtuhaerktraannsdvezrsisetsheepaLrFatiloonngbietutwdieneanl Heff =kz(2⊥1+−mz)2q +κc4onζ⊥2 − 4κcm4on2∂z(cid:0)z(1−z)∂z(cid:1) momentumfractioncarriedbythequarkrespectively. q 4πC α (cid:126)bistheimpactparameterofthedipolerelativetothe − F su¯ (k)γ u (k(cid:48))v¯ (k¯(cid:48))γµv (k¯), (4) proton and x is the Bjorken variable. Ψ and Ψ∗ are Q2 s µ s(cid:48) s¯(cid:48) s¯ E LFWFsofthevirtualphotonandtheexclusivelypro- whereC = 4, Q2 = −1(k(cid:48) −k)2 − 1(k¯ −k¯(cid:48))2. The ducedvectormesonrespectively. Thecrosssectionis F 3 2 2 strong coupling constant α is fixed, α (M ) (cid:39) 0.36 relatedtotheamplitudeas s s cc¯ andα (M )(cid:39)0.25. Theeffectivequarkmassm and s bb¯ q dσγT∗,Lp→Ep = 1 |Aγ∗p→Ep(x,Q,∆)|2 . (2) tthhee hcoeanvfiyniqnugasrktroennigutmh κmcoanssarsepedcettreurmmintoedthbeyefixptteinrig- dt 16π T,L mental measurements. The calculated spectra agree Moreover,contributionsfromtherealpartofthescat- with the experimental values within a root-mean- teringamplitudeandskewednesscorrectionshouldbe squaredeviationofaround50MeVforthestatesbe- takenintoaccount,seeRef.[21]fordetails. lowtheopenflavorthresholds. 2 Pb+Pb→Pb+Pb+J/Ψ sNN=2.76TeV The BLFQ LFWFs provide a better fit to the data at 6. bSatI+BLFQΨV bCGCI+BLFQΨV largerQ2region. bSatI+bGΨV bCGCI+bGΨV Using the BLFQ LFWF, the bSat I dipole ALICE parametrization and the bCGC I dipole parametriza- 4. CMS tion yield a prediction of dσ/dy = 59.9 µb and ]mb dσ/dy = 52.6 µb respectively for the coherent J/Ψ [ σ/ddy2. plirdoidnugcattio√nsaNtNm=id2-r0a0piGdietVy watitRhHtwICo.gBooldthnruecsulelitscaorle- consistentwithlatestdatadσ/dy = 45.6±13.3(stat) ±5.9(sys)µb[29]. In Fig. 3, solid curves show the prediction of the 0. -4. -2. y0. 2. 4. BLFQ J/Ψ LFWF using bSat I (red) and bCGC I (blue) dipole model parametrizations for coherent Figure3: ThepredictionsoftheBLFQLFWF(solid production of J/Ψ at mid-rapidity in ultra-peripheral curves) and the boosted Gaussian LFWF (dashed √ Pb-Pb collisions at s = 2.76 TeV [30, 31]. We curves) for the coherent production of J/Ψ produc- NN √ find both of these results are within the statistical tioninultra-peripheralcollisionat s =2.76TeV, NN uncertainty of the experimental data. In contrast, comparedtothemeasurementsbytheALICEcollabo- dashedcurvesarethepredictionsoftheboostedGaus- ration[30]andCMScollaboration[31]atLHC.Error sian LFWF of J/Ψ using bSat I (red) and bCGC I barsshowstatisticaluncertaintiesonly. (blue) dipole model parametrizations. We find both of these overshoot the data. Both the BLFQ LFWF and boosted Gaussian LFWF underestimate the pro- TheheavyquarkoniumLFWFfromtheBLFQap- duction of Ψ(2s) in ultra-peripheral Pb-Pb collisions proachhasseveraladvantagesoverLFWFsfromphe- √ at s =2.76TeV[32]. nomenological models. First, it is constrained by a NN variety of observables. Second, it provides access to higher excited states without introducing additional 4. Dipolemodeldependence assumptions. Moreover, it can be improved by in- cludinghigherFocksectors,e.g.,thequark-antiquark- Theuncertaintiesassociatedwiththeheavyquarko- gluonsector. nium LFWFs and the dipole cross section both con- tributetouncertaintiesintheresultsforheavyquarko- nium production in the dipole picture. On the other 3. Charmonium production at HERA, RHIC and hand, the uncertainties from the dipole cross section LHC parametrizationmaybecorrelatedforthecalculation We study the diffractive charmonium production ofdifferentstatesofthesamequarkoniumsystem,for example, J/Ψ and Ψ(2s) states of charmonium. It using the heavy quarkonium LFWF from the BLFQ couldleadtoweakerdependenceonthedipolemodel approach.Theresultingcrosssectionsasafunctionof forthecalculationofthecross-sectionratioofhigher various kinematic variables are in reasonable agree- excited states over the ground state than the calcula- ment with electron-proton collision data at HERA tionofthecrosssectionitself. Wecalculatetheratio and ultra-peripheral nucleus collision measurements of the Ψ(2s) cross section to the J/Ψ cross section at RHIC and LHC. We present some representative as a function of Q2 predicted by the BLFQ LFWF resultsusingtheBLFQLFWFsofheavyquarkonium and various dipole cross section parametrizations in and compare our predictions with the predictions of Tables 1 and 2 in Ref. [21] for electron-proton colli- boostedGaussianLFWFs. sions and electron-ion collision as well. We observe To make comparison with HERA measurements that the cross-section ratio exhibits insignificant de- [26, 27], we employ the bSat II dipole model in Ta- pendenceondipolemodels,especiallyinthelargeQ2 ble1inRef.[21]. InFig.1, solidanddashedcurves arepredictionsofthetotalJ/Ψcrosssectionasafunc- regime. Thecaseforelectron-leadcollisionsisshown tionofvariousvaluesof Q2 andW bytheBLFQand inFig.4. the boosted Gaussian LFWFs respectively. Except when Q2 is very small, the predictions of the BLFQ 5. Conclusions LFWF are slightly lower than the experimental mea- surements. Note that the theoretical uncertainty in We study diffractive charmonium production with the dipole model is large at small Q2. Fig. 2 shows BLFQ light-front wavefunctions within the dipole thepredictionsoftheBLFQLFWFs(solidcurve)and model. It has been shown that the effective Hamil- the boosted Gaussian LFWFs (dashed curve) for the tonian incorporating one-gluon exchange dynamics σΨ(2s)/σJ/Ψ cross-sectionratioasafunctionof Q2 in fromQCDLagrangianandeffectiveconfiningpoten- electron-proton scattering measured at HERA [28]. tialinspiredbysoft-walllight-frontholographicQCD 3 1. ingustheexperimentaldataforΨ(2s)measurement. σψ(��)/σ�/ψ�����(��) ThisworkwassupportedinpartbytheDepartmentof EnergyunderGrantNos. DE-FG02-87ER40371and 0.8 ���� � ���� � DESC0008485 (SciDAC-3/NUCLEI). We acknowl- ���� �� ���� � edge computational resources provided by the Na- ���� ��� ���� �� ψ ���� �� ���� ��� tional Energy Research Scientific Computing Center σ/�0.6 (NERSC)underContractNo.DE-AC02-05CH11231. / )� � ψ(0.4 References σ [1] L.V.Gribov,E.M.LevinandM.G.Ryskin,Phys.Rept.100, 0.2 �+��→�+��+� 1(1983). [2] J.Jalilian-Marian,A.Kovner,L.D.McLerranandH.Weigert, Phys.Rev.D55,5414(1997). 0. [3] F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, 0 20 40 Ann.Rev.Nucl.Part.Sci.60,463(2010). �� (����) [4] K.Golec-BiernatandM.Wu¨sthoff,Phys.Rev.D59(1999) 014017.K.Golec-BiernatandM.Wu¨sthoff,Phys.Rev.D60 (1999)114023. Figure 4: The cross-section ratio σΨ(2s)/σJ/Ψ as a [5] E. Levin and K. Tuchin, Nucl. Phys. A 691, 779 (2001). function of Q2 predicted by BLFQ LFWF and vari- E.LevinandK.Tuchin,Nucl.Phys.A693,787(2001). ous dipole cross section parametrizations in Tables 1 [6] E.Gotsman,E.Levin,U.MaorandE.Naftali,Phys.Lett.B 532,37(2002). and 2 in Ref. [21] for coherent charmonium produc- [7] H.KowalskiandD.Teaney,Phys.Rev.D68,114005(2003). tion in electron-lead collisions. The experiment data [8] E.Iancu,K.ItakuraandS.Munier,Phys.Lett.B590(2004) pointsaremeasurementsbyZEUScollaboration[28] 199. inelectron-protonscatteringatHERA. [9] A.H.Mueller,Nucl.Phys.B335,115(1990). [10] N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607 (1991). [11] H. Kowalski, L. Motyka and G. Watt, Phys. Rev. D 74, reproducestheheavyquarkoniumspectrum[13]. We 074016(2006). foundtheresultingcharmoniumLFWFgivescompat- [12] C.Marquet,Phys.Rev.D76,094017(2007). ibledescriptionsofdiffractiveJ/ΨandΨ(2s)produc- [13] Y.Li,P.Maris,X.ZhaoandJ.P.Vary,Phys.Lett.B758,118 (2016). tiondataatHERA,RHICandLHC[21]. Thecross- [14] Y.Li,arXiv:1612.01259[nucl-th]. sectionratioofσΨ(2s)/σJ/ΨasafunctionofQ2shows [15] J. P. Vary, H. Honkanen, J. Li, P. Maris, S. J. Brodsky, aweakdependenceonthedipolemodel,whichcould A.Harindranath,G.F.deTeramond,P.Sternberg,E.G.Ng lead to a reduction of theoretical uncertainties asso- andC.Yang,Phys.Rev.C81,(2010)035205. [16] H.Honkanen, P.Maris, J.P.VaryandS.J.Brodsky, Phys. ciated with the structure of heavy quarkonium at fu- Rev.Lett.106,061603(2011). ture electron-ion collision experiments [33, 34], by [17] J.P.Vary,L.Adhikari,G.Chen,Y.Li,P.MarisandX.Zhao, measuring the cross-section ratios of the higher ex- FewBodySyst.57,no.8,695(2016). citedstatestothegroundstate. Thegluondistribution [18] X.Zhao,H.Honkanen,P.Maris,J.P.VaryandS.J.Brodsky, inthesaturationregimecouldbeextractedefficiently Phys.Lett.B737,65(2014). [19] P.Wiecki,Y.Li,X.Zhao,P.MarisandJ.P.Vary,Phys.Rev. throughdiffractiveproductionprocesseswithaccurate D91,no.10,105009(2015). heavyquarkoniumLFWFs. [20] L.Adhikari,Y.Li,X.Zhao,P.Maris,J.P.VaryandA.A.El- Hady,Phys.Rev.C93,no.5,055202(2016). Our preliminary results show that, the predic- [21] G. Chen, Y. Li, P. Maris, K. Tuchin and J. P. Vary, tions using BLFQ LFWFs lead to reasonable agree- arXiv:1610.04945[nucl-th]. ment with diffractive charmonium and bottomonium [22] A. H. Rezaeian, M. Siddikov, M. Van de Klundert and production in UPC at LHC through proton-proton, R.Venugopalan,Phys.Rev.D87,no.3,034002(2013). [23] G.Soyez,Phys.Lett.B655,32(2007). proton-leadandlead-leadcollisionsatvariousenergy [24] A. H. Rezaeian and I. Schmidt, Phys. Rev. D 88, 074016 scales [35]. The incoherent production of charmo- (2013). nium states and bottomonium states at the LHC and [25] S.J.Brodsky,G.F.deTeramond,H.G.DoschandJ.Erlich, theEICareunderinvestigation. Futureimprovement Phys.Rept.584,1(2015). [26] S.Chekanovetal.[ZEUSCollaboration],Nucl.Phys.B695, includes increasing the Fock sectors for the heavy 3(2004). quarkonium system and to reduce the theoretical un- [27] A.Aktasetal.[H1Collaboration], Eur.Phys.J.C46, 585 certaintiesassociatedwithnon-perturbativeeffectsof (2006). thedipolemodelapproximation[36]. [28] H.Abramowiczetal.[ZEUSCollaboration],Nucl.Phys.B 909,934(2016). [29] S. Afanasiev et al. [PHENIX Collaboration], Phys. Lett. B 679,321(2009).A.Takahara,Dissertation,2013. Acknowledgments [30] E.Abbasetal.[ALICECollaboration],Eur.Phys.J.C73,no. 11,2617(2013). We thank X. Zhao, P. Wiecki and Y. Xie for valu- [31] V. Khachatryan et al. [CMS Collaboration], ablediscussions. WethankN.Kovalchukforprovid- [arXiv:1605.06966[nucl-ex]]. 4 [32] J.Adametal.[ALICECollaboration],Phys.Lett.B751,358 (2015). [33] J.L.AbelleiraFernandezetal.[LHeCStudyGroupCollabo- ration],J.Phys.G39,075001(2012). [34] A.Accardietal.,arXiv:1212.1701[nucl-ex]. [35] G.Chen,Y.Li,P.Maris,K.TuchinandJ.P.Vary,inprepara- tion. [36] J.P.Varyetal.,arXiv:1612.03963[nucl-th]. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.