ebook img

Charmonium, $D_s$ and $D_s^*$ from overlap fermion on DWF configurations PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Charmonium, $D_s$ and $D_s^*$ from overlap fermion on DWF configurations

Charmonium, D and D from overlap fermion on s ∗s domain wall fermion configurations ∗ 4 1 0 2 Y.B.Yang†,1,2 Y.Chen,1 A.Alexandru,3 S.J.Dong,2 T.Draper,2 M. Gong,1,2 F.X.Lee,3 n a A. Li,4 K.F.Liu,2 Z.Liu,1 M.Lujan,3 andN.Mathur5 J 7 (c QCDCollaboration) ] t a 1 InstituteofHighEnergyPhysicsandTheoreticalPhysicsCenterforScienceFacilities, l - ChineseAcademyofSciences,Beijing100049,China p E-mail: [email protected],[email protected],[email protected], e h 2 DepartmentofPhysicsandAstronomy,UniversityofKentucky,Lexington,KY40506,USA [ E-mail: [email protected] 1 3 DepartmentofPhysics,GeorgeWashingtonUniversity,Washington,DC20052,USA v 4 InstituteforNuclearTheory,UniversityofWashington,Seattle,WA98195,USA 7 5 DepartmentofTheoreticalPhysics,TataInstituteofFundamentalResearch,Mumbai40005, 8 4 India 1 . 1 Wetakeanewapproachtodeterminethescaleparameterr ,thephysicalmassesofstrangeand 0 0 charmquarksthroughaglobalfitwhichincorporatescontinuumextrapolation,chiralextrapola- 4 1 tionandquarkmassinterpolationtothelatticedata. Thecharmoniumandcharm-strangemeson : v spectrumarecalculatedwithoverlapvalencequarkson2+1-flavordomain-wallfermiongauge i X configurationsgeneratedbytheRBCandUKQCDCollaboration. We usethemassesofDs, D∗s r andJ/y asinputsandobtainmMS(2GeV)=1.110(24)GeV,mMS(2GeV)=0.104(9)GeVand a c s r =0.458(11)fm. Subsequently,thehyperfine-splittingofcharmoniumand f arepredictedto 0 Ds be112(5)MeVand254(5)MeV,respectively. 31stInternationalSymposiumonLatticeFieldTheory-LATTICE2013 July29-August3,2013 Mainz,Germany ThisworkissupportedinpartbytheNationalScienceFoundationofChina(NSFC)underGrantsNo.10835002, ∗ No.11075167,No.11105153andalsobytheU.S.DOEGrantsNo.DE-FG05-84ER40154.Y.C.andZ.L.alsoacknowl- edgethesupportofNSFCandDFG(CRC110). †Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Charmonium,D andD fromoverlapfermiononDWFconfigurations Y.B.Yang s ∗s 1. Introduction In lattice QCD simulations, quark masses and the strong coupling constant are bare param- eters in the QCD action. The coupling constant is related closely to the dimensional quantity on the lattice, the lattice spacing a, which should be determined first through a proper scheme to set the scale. After that, the physical point is approached through extrapolation or interpolation of the bare quark masses by requiring that the physical values of hadron masses and other physical quantities are reproduced. In this proceeding, we implement a global fit scheme combining the continuum limit extrapolation, the chiral extrapolation and the quark mass interpolation to set the scale parameter r and determine quark masses (at a specific energy scale m ) simultaneously. We 0 adopt the overlap fermion action for valence quarks and carry out the practical calculation on the 2+1-flavordomainwallfermiongaugeconfigurations generatedbytheRBC/UKQCDCollabora- tion[1,2]. Ithasbeenverifiedthatthecharmquarkregioncanbereachedbytheoverlapfermions onthesixensembles oftheRBC/UKQCDconfigurations attwolattice spacings a 1.7GeVand ∼ a 2.3 GeV [3], such that by applying the multi-mass algorithm in the calculation of overlap ∼ fermion propagators, we can calculate the hadron spectrum and other physical quantities at quite a lot of quark masses ranging from the chiral region (u,d quark mass region) to the charm quark region. This permits us to perform a very precise interpolation to the physical strange and charm quark masses. In order to compare with experimental values, the lattice values of dimensionful physical quantities should be converted to the values in physical units through a scale parameter, forwhichwechoosetheSommer’sparameterr [4]andexpressitintheunitsoflatticespacing at 0 each ensemble through the calculation of static potential. Assuch, all the dimensionful quantities calculated onthelattice(andtheirexperimentalvalues)canbeexpressed inunitofr . Inorderfor 0 the physical quantities calculated at different bare quark masses and different lattice spacings to be fitted together, we calculate the quark mass renormalization constant to convert the bare quark masses to the renormalized quark masses at a fixed energy scale in the MS scheme . With these prescriptions, the physical quark masses and the r can be determined by some physical inputs, 0 through whichwecanpredictotherquantities atthephysicalpointinthecontinuum limit. 2. Quarkmass renormalizationandthe scalesetting Ourcalculation arecarried out onthe2+1 flavor domain wallfermion configurations gener- ated by the RBC/UKQCD collaboration with the parameters listed in Tab. 1. For valence quarks b L3 T msa msa m a × s l res 2.13 243 64 0.04 0.005 0.01 0.02 0.00315(4) × 2.25 323 64 0.03 0.004 0.006 0.008 0.00067(1) × Table1: TheparametersfortheRBC/UKQCDconfigurations[2]. msaandmsaarethemassparametersof s l thestrangeseaquarkandthelightseaquark,respectively.m aistheresidualmassofthedomainwallsea res quarks. weusetheoverlapfermionoperatorD =1+g e (H (r ))todefinetheeffectivemassivefermion ov 5 W 2 Charmonium,D andD fromoverlapfermiononDWFconfigurations Y.B.Yang s ∗s operator r D ov D (ma) +ma, (2.1) c ≡ 1 D /2 ov − where H (r )=g D (r )withD (r )the Wilson-Dirac operator witha negative mass parameter W 5 W W r , and the parameter ma is purely the bare current quark mass (in lattice units) and free of ad- − ditiverenormalization owingtothegood chiralproperty g ,D (0) =0. Through themulti-mass 5 c { } algorithm, quarkpropagatorsS (ma)=D 1(ma)fordozensofdifferentvalencequarkmassesma F −c can be calculated simultaneously, such that we can calculate multiple physical quantities at each valence quark mass and obtain clear observation of the quark mass dependence of these quan- tities. We estimate the physical strange quark mass to be around m a = 0.056 for the 243 64 s × lattice and m a=0.039 for the 323 64 lattice, therefore we choose the m a to vary in the range s s × m a [0.0576,0.077] andm a [0.039,0.047] forthetwolattices,respectively. Figure1showsan s s ∈ ∈ almostlinearbarequarkmassdependenceofthemassesofJ/y ,h ,D ,andD calculatedfromthe c s ∗s sixgaugeensembles. Inaddition totheaboveobservation, wealsofindthatthehyperfinesplitting ofvector andpseudoscalar mesons, D =M M ,varies withquark masseslike (cid:181) 1/√m[3],as V PS − shown in Fig. 2. Taking into account the sea quark mass dependence, D can be well described by theformula C+C m 1 l M M = (2.2) V− PS pmq1+mq2+d m to a high precision. The detailed discussion of this dependence will be presented in Ref. [5]. Finally, theglobalfitformulaforthemesonsystemis 1 M = (A +A m +A m +A m +(A +A m ) ) meson 0 1 c 2 s 3 l 4 5 l √m +m +d c s (cid:0)1+B0a2+B1m2ca2+B2m4ca4(cid:1)+A4a2 (2.3) × withd aconstant parameter. NotethatA issettozeroforthecharmquark-antiquark system, and 2 A is expected to be close to 1(or 2) for the meson masses of c¯s(c¯c) system. We keep the m a 1 c correction to the forth order and add explicit O(a2) correction term to account the artifacts due to the gauge action and other possible artifacts. There should be m a corrections, but they are very s smallandareneglected. InlatticeQCD,thebarequarkmassesareinputparametersinlatticeunits,say,m a. However q in the global fit including the continuum extrapolation using Eq. (2.3), one has to convert the m a to the renormalized current quark mass mR(m ) at a fixed scale m which appears uniformly q q in Eq. (2.3) for different lattice spacings. This requires two issues to be settled beforehand. The first is the renormalization constant Z of the quark mass for a fixed lattice spacing a. Since we m use the overlap fermion operator D , if the quark field y is replaced by the chirally regulated ov field yˆ =(1 1D )y in the definition of the interpolation fields and the currents, it is expected − 2 ov that there are relations Z =Z and Z =Z , where Z , Z , Z , and Z are the renormalization S P V A S P V A constants of scalar, pseudoscalar, vector, and axial vector currents, respectively. In addition, Z m canbederivedfromZ bytherelationZ =Z 1. InthecalculationofZ andotherZ’softhequark S m S− S bilinearcurrents, weadopttheRI-MOMschemetodothenon-perturbative renormalization onthe lattice first, then convert them to the MS scheme using ratios from continuum perturbation theory (The numerical details can be found in Ref. [6]). The relations between Z’s mentioned above are 3 Charmonium,D andD fromoverlapfermiononDWFconfigurations Y.B.Yang s ∗s Mass of Ds mass of Ds* 4 4 2464-005 2464-005 3.5 2464-010 3.5 2464-010 2464-020 2464-020 3264-004 3264-004 M(GeV)PS 2 .235 33226644--000068 M(GeV)V 2 .235 33226644--000068 1.5 1.5 1 1 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 mc+ms(GeV) mc+ms(GeV) Mass of h c mass of J/y 3.5 3.5 2464-005 2464-005 2464-010 2464-010 3 23426644--002004 3 23426644--002004 M(GeV)PS 2.5 33226644--000068 M(GeV)V 2.5 33226644--000068 2 2 1.5 1.5 0.6 0.8 1 1.2 1.4 1.6 0.6 0.8 1 1.2 1.4 1.6 mc(GeV) mc(GeV) Figure1: ThequarkmassdependenceofthemassesofD ,D ,h ,andJ/y areillustratedintheplotsfor s ∗s c thesixRBC/UKQCD configurationensembles,wherethelinearbehaviorsinm aorm a+m aareclearly c c s seen. split of mPS and mV 100000 equal u/d-s 10000 u/d-c -2V) 1000 ss--cc* e G -2m( 100 D 10 1 0.1 1 mq1+mq2(GeV) Figure2:ThequarkmassdependenceofthehyperfinesplittingsD m=m m forc¯sandc¯csystems. For V PS − clarity,the(D m) 2 versusm +m areplottedinthefigure,whereonecanseeanalmostlinearbehavior − q1 q2 throughouttherangem +m [0.1,3]GeV. ThisbehaviorsuggeststherelationD m 1 . q1 q2 ∈ ∼ √mq1+mq2+d verified, andZ atthe scale m =2GeV inthe MSisdetermined tobe ZMS(2GeV)=1.127(9) for S S the 243 64 lattice and 1.056(6) for the 323 64 lattice. Besides the statistical error, systematic × × errors from the scheme matching and the running of quark masses in the MS scheme are also considered in Ref. [6]). The systematic error from the running quark mass in the MS scheme is negligible small, while the one from scheme matching is at four loops, and has a size of about 1.4%. The second is the precise determination of the lattice spacing a. This is a subtle question becauseahasdirectrelationshipwiththecouplingconstantb andtheseaquarkmass. Ontheother 4 Charmonium,D andD fromoverlapfermiononDWFconfigurations Y.B.Yang s ∗s b =2.13 b =2.25 m a 0.02 0.01 0.005 0 0.008 0.006 0.004 0 l r /a 3.906(3) 3.994(3) 4.052(3) 4.126(11) 5.421(5) 5.438(6) 5.459(6) 5.504(4) 0 Table2: r /a’sforthesixensemblesweareusing. 0 hand,thecontinuum limitsofphysicalquantities areindependent ofa. Soweneedadimensionful physicalquantityasascaleparameter,whichisindependentofquarkmasses,suchthatdimensional quantities such as hadron masses, lattice spacing a, and quark masses can be expressed in units of this parameter. A proper choice for this purpose is Sommer’s scale parameter r . In each 0 gauge ensemble, the ratio r /a=p(1.65 e )/(s a2) can be determined very precisely through 0 c − the derivation of the static potentialV(r/a), where e and s a2 are the parameters inV(r/a), say, c aV(r/a)=aV e /(r/a)+s a2(r/a). Table2liststher /a’sforthesixensembles weareusing. 0 c 0 − r /ahasobvious m adependence, soweextrapolate ittothechirallimitm˜ =m a+m a=0by 0 l l l res a linear fit, r (m˜ a,a)/a=r (0,a)/a+cm˜ a ,for the ensembles with a same b . The extrapolated 0 l 0 l valuesC(a) r (m˜ a,a)/aarealsolistedinTab.2 0 l ≡ Withtheaboveprescriptions, wecanreplacetherenormalizedquarkmassesandabythebare quarkmassparametersm a,C(a),r ,andZ (2GeV,a)as q 0 m C(a) mR(2GeV)=Z (2GeV,a)(m a) (2.4) q m q r 0 In this way r enters into Eq. (2.3) as a new parameter and can be fitted simultaneously with the 0 parameters A andB inEq. (2.3). i i Inadditiontothe1Sand1PcharmoniummassesandD /D masses,wealsoobtainpredictions s ∗s ofthedecayconstant ofD ,namely, f . f isdefinedas s Ds PS Z 0y¯ g g y PS =E f , (2.5) A a 4 5 b PS PS h | | i where E is the energy of the pseudoscalar and Z is the renormalization constant of the axial PS A vectorcurrent, oralternatively throughthePCACrelation E2 0y¯ g y PS = PS f . (2.6) a 5 b PS h | | i m +m qa qb The later isobviously renormalization independent since Z Z =1 for the overlap fermion. With m P the Z calculated in Ref. [6], we find the two definitions are compatible with each other within A errors. Inpractice, wecarryoutacorrelatedglobalfittothefollowingquantitiesinthesixensembles –themassesofJ/y ,h ,c ,c ,h ,D andD mesonsand f withjackknifecovariancematrices. c c0 c1 c s ∗s Ds As a first step, we obtain the parameters A’s and B’s for each quantity. Subsequently we use the i i experimental values mJ/y = 3.097GeV, mDs = 1.968GeV, and mD∗s = 2.112GeV to determine mMS(2GeV),mMS(2GeV),andr . Finally, weusethesephysical parameters topredict themasses c s 0 of h , c , c , h , and f at the physical pion point and with O(a2) corrections. The results are c c0 c1 c Ds illustrated in Tab. 3. Here is the description of the error budget: i) The statistical errors are the 5 Charmonium,D andD fromoverlapfermiononDWFconfigurations Y.B.Yang s ∗s r0 mMs S(2GeV) mMc S(2GeV) mJ/y −mh c mcc0 mc c1 mhc fDs (fm) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) PDG – 0.095(5) 1.09(3) 0.117(1) 3.415 3.511 3.525 0.258(6) thiswork 0.458 0.104 1.110 0.1119 3.411 3.498 3.518 0.2542 s (stat) 0.011 0.006 0.012 0.0054 0.035 0.045 0.028 0.0049 s (r /a) 0.002 0.000 0.000 0.0000 0.003 0.000 0.000 0.0000 0 s (¶ r0) 0.003 0.004 0.005 0.0005 0.003 0.006 0.002 0.0003 ¶ a2 s (MR/stat) – 0.003 0.020 0.0000 0.003 0.011 0.004 0.0003 s (MR/sys) – 0.000 0.003 0.0000 0.000 0.000 0.000 0.0000 s (all) 0.011 0.009 0.024 0.0054 0.046 0.047 0.028 0.0049 Table 3: The final results from the global fit in this work. The physical masses of D , D , and J/y are s ∗s usedasinputstodeterminer ,mMS(2GeV)andmMS(2GeV). Thephysicalmassesofthe1Pcharmoniacan 0 s c be reproducedwith these values. The hyperfine splitting mJ/y −mh c and the decay constant fDs are also predicted. The error budgetis given for each quantity with s (stat), the statistical error, and two kinds of systematicerrors,onefromr andanotheronefrommassrenormalization. Fortheonefromr ,itincludes 0 0 s (r ) the uncertaintyowingto the statistical errorof r /aon each ensemble, ands ( ¶ r0 ) the systematic 0 0 ¶ (a2) uncertaintyfromtheadependenceofr /a. Fortheonefrommassrenormalization,itincludess (MR/stat) 0 fromthestatisticaluncertaintiesofZ intheRI/MOMschemewhicharenotcorrelatedonthetwolattices, m ands (MR/sys)fromthesystematicuncertaintyinmatchingfromRI/MOMtoMSwhichisthesameonthe twolatticesandonlycontributestotheuncertaintyofquarkmasses. Thetotalerrors (all)combinesallthe uncertaintiesinquadrature. jackknife errors from the global fit. ii) The systematic uncertainty due to the linear a2 continuum extrapolation cannot be controlled at present since we have only two lattice spacings. iii) For the chiral extrapolation we only use the linear fit in the u,d sea quark mass and have not considered a sophisticated fit based on chiral perturbation theory, so this systematic uncertainty has not been analyzed. iv)Weconsider twopossible systematic uncertainties introduced byr , oneof which is 0 fromthestatisticalerrorofC(a)=r (a)/a(denotedass (r /a)),andtheotherisfromnon-zeroa2 0 0 dependence ofr (a)(denotedass (¶ r0)). Thelatterisnotsostraightforward. Inourglobalfit,we 0 ¶ a2 takether atafinitelattice spacing tobetheoneinthecontinuum limit. Toaddress theissuethat 0 ourpredictionforr (0.458(11)fm)isslightlysmallerthantheonefromRBC/UKQCD(0.48(1)fm), 0 weset ¶ r0 =0.2(whichmakesther (a)atthetwolattice spacings tobearound 0.48astheRBC- ¶ a2 0 UKQCD collaboration so determines) , so as to check the changes of the predictions to estimate theirsystematicerrors. Itturnsout,thec 2oftheglobalfitisinsensitivetothisdependenceandthe results do not change much. v) Theerror s (MR)takes into account two kinds of uncertainties of Z (m ), one ofwhich isthestatistical error ofZ (m )inthe RI/MOMscheme, andthe other isdue m m to the systematic error of perturbative matching and the running of the MS masses to the scale of 2GeV. Allof these uncertainties are combined together inquadrature togivethe total uncertainty s (all)ofeachphysicalquantity. 6 Charmonium,D andD fromoverlapfermiononDWFconfigurations Y.B.Yang s ∗s 1.6 Exp (PDG Live) Lat (MDs, MDs* and MJ/y as Input) 1.4 0.095(5) 3.52541(16) 1.2 1.09(3) 0.1166(12) 3.51066(7) 0.2575(61) o 3.41475(31) ati R 1 0.458(11)0.104(9) 3.518(28) 0.8 1.110(24) 0.1119(54) 3.498(47) 0.254(5) 3.411(46) 0.6 r0(fm)mc ms MJ/y -Mhc Mcc0Mcc1 Mhc fDs Figure3: TheratiosbetweenPDGLiveaveragesandoursimulations. NotethatthenumbersofPDGLive are in italic type, and all the numbersare in unitof GeV, exceptr . For r , we list the one fromHPQCD 0 0 (0.4661(38)fm)andRBC-UKQCD(0.48(1)fm)forreference. 3. Summary With overlap fermions as valence quarks on domain wall fermion configurations generated by theRBC/UKQCDCollaboration, wehave undertaken aglobal fitscheme combining thechiral extrapolation, thephysical quark massinterpolation, and thecontinuum extrapolation. Weusethe physical masses of J/y , D , and D as the inputs to determine r , the charm and strange quark s ∗s 0 massestobe r =0.458(11)fm, mMS(2GeV)=0.104(9)GeV, mMS(2GeV)=1.110(24)GeV (3.1) 0 s c Our r is smaller than 0.48(1) fm obtained by RBC/UKQCD [7] but close to the HPQCD result 0 0.4661(38) fm [8]. With these results, we can reproduce the physical masses of c , c and h , c0 c1 c andfurther predictthehyperfinesplitting mJ/y −mh c andthedecayconstant fDs, mJ/y −mh c =112(5)MeV, fDs =254(5)MeV. (3.2) Theerrorswequoteabovearequadratic combinations ofthestatistical andsystematicerrors. References [1] C.Alltonetal.(RBC-UKQCDCollaboration),Phys.Rev.D78,114509(2008). [2] Y.Aokietal.(RBCandUKQCDCollaborations),Phys.Rev.D83,074508(2011)[arXiv:1011.0892 [hep-lat]]. [3] A.Lietal.[c QCDCollaboration],Phys.Rev.D82,114501(2010)[arXiv:1005.5424[hep-lat]]. [4] R.Sommer,Nucl.Phys.B411,839(1994). [5] YingChen,Keh-FeiLiu,ZhaofengLiu,Yi-BoYang,Inpreparation. [6] Z.Liuetal.[chiQCDCollaboration],PoS(LATTICE2013)307,2013,arXiv:1312.0375[hep-lat]. [7] R.Arthuretal.[RBCandUKQCDCollaborations],arXiv:1208.4412[hep-lat]. 7 Charmonium,D andD fromoverlapfermiononDWFconfigurations Y.B.Yang s ∗s [8] C.T.H.Daviesetal.[HPQCDCollaboration],Phys.Rev.D81,034506(2010)[arXiv:0910.1229 [hep-lat]]. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.