ebook img

Charged Semiconductor Defects: Structure, Thermodynamics and Diffusion PDF

303 Pages·2009·8.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Charged Semiconductor Defects: Structure, Thermodynamics and Diffusion

Engineering Materials and Processes Series Editor Professor Brian Derby, Professor of Materials Science Manchester Materials Science Centre, Grosvenor Street, Manchester, M1 7HS, UK Other titles published in this series Fusion Bonding of Polymer Composites Fuel Cell Technology C. Ageorges and L. Ye N. Sammes Composite Materials Casting: An Analytical Approach D.D.L. Chung A. Reikher and M.R. Barkhudarov Titanium Computational Quantum Mechanics for G. Lütjering and J.C. Williams Materials Engineers L. Vitos Corrosion of Metals H. Kaesche Modelling of Powder Die Compaction P.R. Brewin, O. Coube, P. Doremus Corrosion and Protection and J.H. Tweed E. Bardal Silver Metallization Intelligent Macromolecules for Smart Devices D. Adams, T.L. Alford and J.W. Mayer L. Dai Microbiologically Influenced Corrosion Microstructure of Steels and Cast Irons R. Javaherdashti M. Durand-Charre Modeling of Metal Forming and Machining Phase Diagrams and Heterogeneous Equilibria Processes B. Predel, M. Hoch and M. Pool P.M. Dixit and U.S. Dixit Computational Mechanics of Composite Electromechanical Properties in Composites Materials Based on Ferroelectrics M. Kamiński V.Yu. Topolov and C.R. Bowen Gallium Nitride Processing for Electronics, Modelling Stochastic Fibrous Materials Sensors and Spintronics with Mathematica® S.J. Pearton, C.R. Abernathy and F. Ren W.W. Sampson Materials for Information Technology E. Zschech, C. Whelan and T. Mikolajick Edmund G. Seebauer • Meredith C. Kratzer Charged Semiconductor Defects Structure, Thermodynamics and Diffusion 123 Edmund G. Seebauer, BS, PhD Meredith C. Kratzer, BS, MS University of Illinois at Urbana-Champaign Department of Chemical and Biomolecular Engineering 600 S. Mathews Avenue Urbana, Illinois 61801-3792 USA ISBN 978-1-84882-058-6 e-ISBN 978-1-84882-059-3 DOI 10.1007/978-1-84882-059-3 Engineering Materials and Processes ISSN 1619-0181 A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008936490 © 2009 Springer-Verlag London Limited Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro- duced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the infor- mation contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Cover design: eStudio Calamar S.L., Girona, Spain Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface Defect charging can affect numerous aspects of defect properties, including physi- cal structure, rate of diffusion, chemical reactivity, and interactions with the elec- trons that give the semiconductor its overall characteristics. This book represents the first comprehensive account of the behavior of electrically charged defects in semiconductors. A comprehensive understanding of such behavior enables “defect engineering,” whereby material performance can be improved by controlling bulk and surface defect behavior. Applications are important and diverse, including fabrication of microelectronic devices, energy production from solar power, ca- talysis for producing chemical products, photocatalysis for environmental reme- diation, and solid-state sensors. The scope of this book is quite large, which helps to identify classes of behavior that are not as readily evident from an examination of defect charging in a narrower material- or application-specific context. The text summarizes current knowledge based on experiments and computations regarding defect structure, thermodynamics, and diffusion for both bulk and surfaces in an integrated way. Indeed, defect charging effects continue to be a fertile area of scientific re- search, with new phenomena coming to light during the past decade. Such effects include ion-induced defect formation, photostimulated surface and bulk diffusion, and electrostatically-mediated surface interactions with bulk defects. The present work outlines key aspects of these new findings. The most sophisticated forms of practical defect engineering have developed within the context of microelectronic device fabrication, particularly in silicon. Yet such engineering will almost certainly spread more broadly into other domains such as semiconductor-based sensors and solar energy devices. The present work does not attempt to review these advances in detail, but does point to more exten- sive reviews where they exist. v vi Preface In general, though, we hope that the scope and integration found in this book will stimulate new scientific findings and offer a new basis for new forms of de- fect engineering. Urbana, Illinois, USA, July 2008 Edmund G. Seebauer Meredith C. Kratzer Acknowledgments The authors would like to thank the following individuals: • Richard Braatz for his advice and insight pertaining to maximum likelihood approximation. • Susan Sinnott for sharing her unpublished findings regarding TiO defect 2 ionization levels. • Alumni and alumnae of the Seebauer research group including Charlotte Kwok, Rama Vaidyanathan, Andrew Dalton, Kapil Dev, Mike Jung, and Ho Yeung Chan, for their intellectual contributions over the years to our knowledge of defect charging. • Patrick McSorley for his literature research and administrative assistance. vii Contents 1 Introduction............................................................................................. 1 References................................................................................................. 3 2 Fundamentals of Defect Ionization and Transport.............................. 5 2.1 Introduction................................................................................... 5 2.2 Thermodynamics of Defect Charging........................................... 5 2.2.1 Free Energies, Ionization Levels, and Charged Defect Concentrations................................. 7 2.2.2 Ionization Entropy............................................................ 13 2.2.3 Energetics of Defect Clustering....................................... 15 2.2.4 Effects of Gas Pressure on Defect Concentration............ 17 2.3 Thermal Diffusion......................................................................... 19 2.4 Drift in Electric Fields................................................................... 24 2.5 Defect Kinetics.............................................................................. 25 2.5.1 Reactions.......................................................................... 25 2.5.2 Charging........................................................................... 29 2.6 Direct Surface-Bulk Coupling....................................................... 31 2.7 Non-Thermally Stimulated Defect Charging and Formation........ 32 2.7.1 Photostimulation.............................................................. 32 2.7.2 Ion-Defect Interactions.................................................... 33 References................................................................................................. 34 3 Experimental and Computational Characterization........................... 39 3.1 Experimental Characterization...................................................... 39 3.1.1 Direct Detection of Bulk Defects..................................... 39 3.1.2 Indirect Detection of Bulk Defects.................................. 43 3.1.3 Diffusion in the Bulk........................................................ 44 3.1.4 Direct Detection of Surface Defects................................. 45 3.1.5 Diffusion on the Surface.................................................. 46 ix x Contents 3.2 Computational Prediction.............................................................. 47 3.2.1 Density Functional Theory............................................... 47 3.2.2 Other Atomistic Methods................................................. 50 3.2.3 Maximum Likelihood Estimation.................................... 51 3.2.4 Surfaces and Interfaces.................................................... 56 References................................................................................................. 56 4 Trends in Charged Defect Behavior...................................................... 63 4.1 Defect Formation........................................................................... 63 4.1.1 Effects of Crystal Structure and Atomic Properties......... 63 4.1.2 Effects of Stoichiometry.................................................. 66 4.2 Defect Geometry........................................................................... 68 4.3 Defect Charging............................................................................. 69 4.3.1 Bulk vs. Surface............................................................... 70 4.3.2 Point Defects vs. Defect Aggregates................................ 71 4.4 Defect Diffusion............................................................................ 71 References................................................................................................. 72 5 Intrinsic Defects: Structure.................................................................... 73 5.1 Bulk Defects.................................................................................. 73 5.1.1 Silicon.............................................................................. 76 5.1.2 Germanium...................................................................... 84 5.1.3 Gallium Arsenide............................................................. 86 5.1.4 Other III–V Semiconductors............................................ 92 5.1.5 Titanium Dioxide............................................................. 95 5.1.6 Other Oxide Semiconductors........................................... 100 5.2 Surface Defects.............................................................................. 105 5.2.1 Silicon.............................................................................. 106 5.2.2 Germanium...................................................................... 111 5.2.3 Gallium Arsenide............................................................. 112 5.2.4 Other III–V Semiconductors............................................ 116 5.2.5 Titanium Dioxide............................................................. 120 5.2.6 Other Oxide Semiconductors........................................... 122 References................................................................................................. 123 6 Intrinsic Defects: Ionization Thermodynamics.................................... 131 6.1 Bulk Defects.................................................................................. 131 6.1.1 Silicon.............................................................................. 131 6.1.2 Germanium...................................................................... 144 6.1.3 Gallium Arsenide............................................................. 148 6.1.4 Other III–V Semiconductors............................................ 156 6.1.5 Titanium Dioxide............................................................. 160 6.1.6 Other Oxide Semiconductors........................................... 166 Contents xi 6.2 Surface Defects.............................................................................. 173 6.2.1 Silicon.............................................................................. 173 6.2.2 Germanium...................................................................... 176 6.2.3 Gallium Arsenide............................................................. 178 6.2.4 Other III–V Semiconductors............................................ 181 6.2.5 Titanium Dioxide............................................................. 183 6.2.6 Other Oxide Semiconductors........................................... 185 References................................................................................................. 187 7 Intrinsic Defects: Diffusion.................................................................... 195 7.1 Bulk Defects.................................................................................. 195 7.1.1 Point Defects.................................................................... 196 7.1.2 Associates and Clusters.................................................... 212 7.2 Surface Defects.............................................................................. 215 7.2.1 Point Defects.................................................................... 215 7.2.2 Associates and Clusters.................................................... 222 7.3 Photostimulated Diffusion............................................................. 222 7.3.1 Photostimulated Diffusion in the Bulk............................. 223 7.3.2 Photostimulated Diffusion on the Surface....................... 225 References................................................................................................. 226 8 Extrinsic Defects..................................................................................... 233 8.1 Bulk Defects.................................................................................. 233 8.1.1 Silicon.............................................................................. 234 8.1.2 Germanium...................................................................... 249 8.1.3 Gallium Arsenide............................................................. 255 8.1.4 Other III–V Semiconductors............................................ 260 8.1.5 Titanium Dioxide............................................................. 265 8.1.6 Other Oxide Semiconductors........................................... 271 8.2 Surface Defects.............................................................................. 277 8.2.1 Silicon.............................................................................. 278 8.2.2 Gallium Arsenide............................................................. 280 8.2.3 Titanium Dioxide............................................................. 281 References................................................................................................. 281 Index................................................................................................................. 291

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.