Closed Form Solutions for Potential and Field of a Charged Ring Kurt Nalty July 18, 2013 Abstract Thisnoteprovidesastepbystepcalculationforthevoltagepoten- tial and and electric field associated with a charged filament. At the end of the note is a listing of a quick numerical verification of closed form and discrete sum models. Summary of Results The source is a ring of charge q and radius R in the XY plane at z = 0. The observation point in cylindrical coordinates is (ρ,φ,z). (cid:115) 4ρR k = (ρ+R)2 +z2 q 1 V(ρ,φ,z) = K(k) (cid:112) 2π2(cid:15) (ρ+R)2 +z2 q (cid:18)K(k) (cid:20)E(k) z2 +R2 −ρ2 (cid:21)(cid:19) E = − ρ 4π(cid:15)ρ(cid:112)(R+ρ)2 +z2 π π (R−ρ)2 +z2 E = 0 φ (cid:18) (cid:19) q E(k) 2ρz E = z 4π(cid:15)ρ(cid:112)(ρ+R)2 +z2 π (R−ρ)2 +z2 1 Potential of the Charged Ring Inthissection,wewillcalculatetheelectrostaticpotentialassociatedwiththe charged ring. Just as a mathematical point charge has an infinity associated with the field at the charge point, we will likewise have an infinity for the field at the ring radius as well. Traditionally, we don’t try to measure the voltage at the ring, itself. For these calculations, I will be using MKS units. I will put a ring of charge q and radius R in the XY plane at z = 0. I will place my observation (cid:112) point in cylindrical coordinates at (ρ,φ,z), where ρ = x2 +y2. Due to cylindrical symmetry, this same potential will be found all around the circle at height z and radial distance same as our test point x coordinate. My path of integration around the ring will be parameterized by angle θ, starting at the x axis and going counter-clockwise as seen from above. The potential V at an observation point (ρ,φ,z) is given by q q(cid:48) = charge density 2πR (cid:112) r = (x−Rcosθ)2 +(y −Rsinθ)2 +z2 distance from ring to observation point (cid:112) = x2 +y2 +z2 +R2 −2xcosθ−2ysinθ expanded (cid:112) = ρ2 +z2 +R2 −2ρRcosθ aligning θ and φ (cid:73) 1 (cid:16) q (cid:17) 1 V = Rdθ 4π(cid:15) 2πR r (cid:73) q 1 = dθ 8π2(cid:15) r (cid:73) q dθ = (cid:112) 8π2(cid:15) ρ2 +z2 +R2 −2ρRcosθ (cid:73) q 1 dθ = √ (cid:112) 8π2(cid:15) ρ2 +z2 +R2 1−b2cosθ (cid:115) 2ρR b = ρ2 +z2 +R2 We look at this, and recognize our K(k) integral in disguise. 2 1√ (cid:73) dθ K(k) = 1+b2 √ 4 1−b2cosθ (cid:73) dθ 4 √ = √ K(k) 1−b2cosθ 1+b2 (cid:32)(cid:114) (cid:33) 4 2b2 = √ K 1+b2 1+b2 2ρR b2 = ρ2 +z2 +R2 2ρR+ρ2 +z2 +R2 1+b2 = ρ2 +z2 +R2 (cid:73) q 1 dθ V = √ (cid:112) 8π2(cid:15) ρ2 +z2 +R2 1−b2cosθ (cid:32)(cid:114) (cid:33) q 1 4 2b2 = √ K (cid:112) 8π2(cid:15) ρ2 +z2 +R2 1+b2 1+b2 (cid:32)(cid:114) (cid:33) q 1 2b2 = K (cid:112) 2π2(cid:15) 2ρr+ρ2 +z2 +R2 1+b2 We now substitute for b2 to get a nice, standalone expression. (cid:32)(cid:115) (cid:33) q 1 4ρR V(ρ,φ,z) = K (cid:112) 2π2(cid:15) 2ρR+ρ2 +z2 +R2 2ρR+ρ2 +z2 +R2 (cid:32)(cid:115) (cid:33) q 1 4ρR = K (cid:112) 2π2(cid:15) (ρ+R)2 +z2 (ρ+R)2 +z2 q 1 V(ρ,φ,z) = K(k) (cid:112) 2π2(cid:15) (ρ+R)2 +z2 (cid:115) 4ρR k = (ρ+R)2 +z2 The voltage along the X axis is plotted in Figure 1. The voltage along the Z axis is plotted in Figure 2. 3 Figure 1: Voltage Along X Axis for a 1 µC, 1 m Radius Loop 4 Figure 2: Voltage Along Z Axis for a 1 µC, 1 m Radius Loop 5 Static Electric Field We are working in cylindrical coordinates. The gradient components are (cid:126) (cid:126) E = −∇V ∂V 1∂V ∂V (cid:126) ∇V = (cid:126)a +(cid:126)a +(cid:126)a ρ φ z ∂ρ ρ ∂φ ∂z Repeating our potentials, we see V is independent of φ. (cid:115) 4Rρ k = z2 +(R+ρ)2 q 1 V(ρ,φ,z) = K(k) (cid:112) 2π2(cid:15) (R+ρ)2 +z2 The electric field components are then ∂V E = − ρ ∂ρ E = 0 φ ∂V E = − z ∂z We will have a number of terms in the derivative expression. We should list some of these before we get started. (cid:20) (cid:21) ∂K(k) E(k) K(k) ∂k = − ∂ρ k(1−k2) k ∂ρ (cid:20) (cid:21) ∂K(k) E(k) K(k) ∂k = − ∂z k(1−k2) k ∂z 6 (cid:115) 4Rρ k = z2 +(R+ρ)2 (cid:115) √ ∂k 1 4R 1 4Rρ(2(R+ρ)) = − ∂ρ 2 ρ(z2 +(ρ+R)2) 2(cid:0)z2 +(R+ρ)2(cid:1)3/2 (cid:20) (cid:21) k 1 2(R+ρ) = − 2 ρ z2 +(R+ρ)2 k (cid:20)z2 +(R+ρ)2 −2(R+ρ)ρ(cid:21) = 2 ρ(z2 +(R+ρ)2) k (cid:20) z2 +R2 −ρ2 (cid:21) = 2ρ z2 +(R+ρ)2 (cid:115) 4Rρ k = z2 +(R+ρ)2 √ (cid:18) (cid:19) ∂k 4Rρ 1 = − 2z ∂z (cid:0)z2 +(R+ρ)2(cid:1)3/2 2 ∂k zk = − ∂z z2 +(R+ρ)2 Cylindrical Radial Field Component We start with E . ρ q 1 V(ρ,φ,z) = K(k) (cid:112) 2π2(cid:15) (R+ρ)2 +z2 ∂V E = − ρ ∂ρ (cid:32) (cid:33) q ∂ 1 = − K(k) (cid:112) 2π2(cid:15)∂ρ (R+ρ)2 +z2 7 (cid:34) (cid:32) (cid:33) (cid:35) q ∂ 1 1 ∂K(k) E = − K(k)+ ρ 2π2(cid:15) ∂ρ (cid:112)(R+ρ)2 +z2 (cid:112)(R+ρ)2 +z2 ∂ρ (cid:34)(cid:32) (cid:33) (cid:35) q −(R+ρ) 1 ∂K(k) = − K(k)+ (cid:112) 2π2(cid:15) (cid:0)(R+ρ)2 +z2(cid:1)3/2 (R+ρ)2 +z2 ∂ρ Typesetting requires I re-arrange the leading constants to allow line breaks (cid:32) (cid:33) 2π2(cid:15) −(R+ρ) − E = K(k)+ q ρ (cid:0)(R+ρ)2 +z2(cid:1)3/2 1 (cid:20) E(k) K(k)(cid:21) k (cid:20) z2 +R2 −ρ2 (cid:21) − (cid:112) (R+ρ)2 +z2 k(1−k2) k 2ρ z2 +(R+ρ)2 (cid:32) (cid:33) −(R+ρ) = K(k)+ (cid:0)(R+ρ)2 +z2(cid:1)3/2 1 (cid:20) E(k) (cid:21) 1 (cid:20) z2 +R2 −ρ2 (cid:21) −K(k) (cid:112) (R+ρ)2 +z2 (1−k2) 2ρ z2 +(R+ρ)2 (cid:32) (cid:33) −(R+ρ) = K(k)− (cid:0)(R+ρ)2 +z2(cid:1)3/2 (cid:32) (cid:33) −(R+ρ) (cid:20) E(k) (cid:21) 1 (cid:20)z2 +R2 −ρ2(cid:21) −K(k) (cid:0)(R+ρ)2 +z2(cid:1)3/2 (1−k2) 2ρ (R+ρ) Re-arranging our new common factor for typesetting, we have (cid:18)2π2(cid:15)(cid:19)(cid:32)(cid:0)(R+ρ)2 +z2(cid:1)3/2(cid:33) (cid:20) E(k) (cid:21) 1 (cid:20)z2 +R2 −ρ2(cid:21) −E = −K(k)+ −K(k) ρ q (R+ρ) (1−k2) 2ρ (R+ρ) 8 We are going to work on the right hand side for a little bit. (cid:20) E(k) (cid:21) 1 (cid:20)z2 +R2 −ρ2(cid:21) RHS = −K(k)+ −K(k) (1−k2) 2ρ (R+ρ) 4ρR k2 = (R+ρ)2 +z2 (R−ρ)2 +z2 1−k2 = (R+ρ)2 +z2 1 (R+ρ)2 +z2 = 1−k2 (R−ρ)2 +z2 (cid:20) (R+ρ)2 +z2 (cid:21) 1 (cid:20)z2 +R2 −ρ2(cid:21) RHS = −K(k)+ E(k) −K(k) (R−ρ)2 +z2 2ρ (R+ρ) (cid:20) (R+ρ)2 +z2 (cid:21) 1 (cid:20)z2 +R2 −ρ2(cid:21) RHS = −K(k)+ E(k) −K(k) (R−ρ)2 +z2 2ρ (R+ρ) (cid:20) (R+ρ)2 +z2 (cid:21)(cid:20)z2 +R2 −ρ2(cid:21) = −K(k)+ E(k) −K(k) (R−ρ)2 +z2 (2ρR+2ρ2) (cid:20) z2 +R2 −ρ2(cid:21) (cid:20) (R+ρ)2 +z2(cid:21)(cid:20)z2 +R2 −ρ2(cid:21) = −K(k) 1+ + E(k) (2ρR+2ρ2) (R−ρ)2 +z2 (2ρR+2ρ2) (cid:20)(R+ρ)2 +z2(cid:21) (cid:20) (R+ρ)2 +z2(cid:21)(cid:20)z2 +R2 −ρ2(cid:21) = −K(k) + E(k) (2ρR+2ρ2) (R−ρ)2 +z2 (2ρR+2ρ2) (cid:20)(R+ρ)2 +z2(cid:21)(cid:18) (cid:20) z2 +R2 −ρ2 (cid:21)(cid:19) RHS = −K(k)+ E(k) 2ρ(R+ρ) (R−ρ)2 +z2 (cid:18)2π2(cid:15)(cid:19)(cid:32)(cid:0)(R+ρ)2 +z2(cid:1)3/2(cid:33) LHS = −E ρ q (R+ρ) Re-uniting, and clearing common factors, we have q 1 1 (cid:18) (cid:20) z2 +R2 −ρ2 (cid:21)(cid:19) E = K(k)− E(k) ρ 2πρ2π(cid:15)(cid:112)(R+ρ)2 +z2 (R−ρ)2 +z2 q (cid:18)K(k) (cid:20)E(k) z2 +R2 −ρ2 (cid:21)(cid:19) = − (cid:112) 4π(cid:15)ρ (R+ρ)2 +z2 π π (R−ρ)2 +z2 9 Axial Field Component ∂V E = − z ∂z (cid:32) (cid:33) (cid:16) q (cid:17) ∂ 1 = − K(k) (cid:112) 2π2(cid:15) ∂z (R+ρ)2 +z2 (cid:32) (cid:33) (cid:18)2π2(cid:15)(cid:19) ∂ 1 1 ∂K(k) − E = K(k)+ z (cid:112) (cid:112) q ∂z (R+ρ)2 +z2 (R+ρ)2 +z2 ∂z As before, we will work on the right hand side. (cid:32) (cid:33) (cid:18)2π2(cid:15)(cid:19) ∂ 1 1 ∂K(k) − E = K(k)+ z (cid:112) (cid:112) q ∂z (R+ρ)2 +z2 (R+ρ)2 +z2 ∂z (cid:32) (cid:33) −z 1 ∂K(k) = K(k)+ (cid:112) (cid:0)(R+ρ)2 +z2(cid:1)3/2 (R+ρ)2 +z2 ∂z (cid:32) (cid:33) −z = K(k) (cid:0)(R+ρ)2 +z2(cid:1)3/2 (cid:20) (cid:21) 1 E(k) K(k) ∂k + − (cid:112) (R+ρ)2 +z2 k(1−k2) k ∂z (cid:32) (cid:33) −z = K(k) (cid:0)(R+ρ)2 +z2(cid:1)3/2 (cid:20) (cid:21)(cid:18) (cid:19) 1 E(k) K(k) zk + − − (cid:112) (R+ρ)2 +z2 k(1−k2) k z2 +(R+ρ)2 (cid:32) (cid:33) −z = K(k) (cid:0)(R+ρ)2 +z2(cid:1)3/2 (cid:32) (cid:33) (cid:20) (cid:21) z E(k) − −K(k) (cid:0)(R+ρ)2 +z2(cid:1)3/2 (1−k2) (cid:32) (cid:33) (cid:20) (cid:21) z E(k) = − (cid:0)(R+ρ)2 +z2(cid:1)3/2 (1−k2) 10
Description: