ebook img

Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement PDF

346 Pages·2005·9.529 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement

SpringerSerieson atomic, optical, and plasma physics 37 SpringerSerieson atomic, optical, and plasma physics TheSpringerSeriesonAtomic,Optical,andPlasmaPhysicscoversinacompre- hensivemannertheoryandexperimentintheentirefieldofatomsandmolecules andtheirinteractionwithelectromagneticradiation.Booksintheseriesprovide arichsourceofnewideasandtechniqueswithwideapplicationsinfieldssuchas chemistry,materialsscience,astrophysics,surfacescience,plasmatechnology,ad- vancedoptics,aeronomy,andengineering.Laserphysicsisaparticularconnecting themethathasprovidedmuchofthecontinuingimpetusfornewdevelopments inthefield.Thepurposeoftheseriesistocoverthegapbetweenstandardunder- graduatetextbooksandtheresearchliteraturewithemphasisonthefundamental ideas,methods,techniques,andresultsinthefield. 27 QuantumSqueezing ByP.D.DrumondandZ.Ficek 28 Atom,Molecule,andClusterBeamsI BasicTheory,ProductionandDetectionofThermalEnergyBeams ByH.Pauly 29 Polarization,AlignmentandOrientationinAtomicCollisions ByN.AndersenandK.Bartschat 30 PhysicsofSolid-StateLaserPhysics ByR.C.Powell (PublishedintheformerSeriesonAtomic,Molecular,andOpticalPhysics) 31 PlasmaKineticsinAtmosphericGases ByM.Capitelli,C.M.Ferreira,B.F.Gordiets,A.I.Osipov 32 Atom,Molecule,andClusterBeamsII ClusterBeams,FastandSlowBeams,AccessoryEquipmentandApplications ByH.Pauly 33 AtomOptics ByP.Meystre 34 LaserPhysicsatRelativisticIntensities ByA.V.Borovsky,A.L.Galkin,O.B.Shiryaev,T.Auguste 35 Many-ParticleQuantumDynamicsinAtomicandMolecularFragmentation Editors:J.UllrichandV.P.Shevelko 36 AtomTunnelingPhenomenainPhysics,ChemistryandBiology Editor:T.Miyazaki 37 ChargedParticleTraps PhysicsandTechniquesofChargedParticleFieldConfinement By F.G.Major,V.N.Gheorghe, G.Werth Vols.1–26oftheformerSpringerSeriesonAtomsandPlasmasarelistedattheendofthebook F.G. Major V.N. Gheorghe G. Werth Charged Particle Traps Physics and Techniques of Charged Particle Field Confinement With187Figures 123 Dr.FouadG.Major 284MichenerCourtE,SevernaPark,MD,USA E-mail:[email protected] ProfessorDr.VioricaN.Gheorghe ProfessorDr.Gu¨ntherWerth JohannesGutenbergUniversita¨t,FachbereichPhysik(18),Institutfu¨rPhysik Staudingerweg7,55099Mainz,Deutschland E-mail:[email protected],[email protected] ISSN1615-5653 ISBN3-540-22043-7SpringerBerlinHeidelbergNewYork LibraryofCongressControlNumber:2004107650 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,inits currentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsareliable toprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia. springeronline.com ©Springer-VerlagBerlinHeidelberg2005 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Typesetting:Camera-readycopiesbytheauthor Final Processing:PTP-BerlinProtago-TEX-Production GmbH, Germany CoverconceptbyeStudioCalmarSteinen Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:10876306 57/3141/YU-543210 Preface Overthelastquarterofthiscentury,revolutionaryadvanceshavebeenmade bothinkindandinprecisionintheapplicationofparticletrapstothestudy ofthephysics ofchargedparticles,leadingtointensifiedinterestin,andwide proliferation of, this topic. This book is intended as a timely addition to the literature, providing a systematic unified treatment of the subject, from the point of view of the application of these devices to fundamental atomic and particle physics. Thetechniqueofusingelectromagneticfieldstoconfineandisolateatomic particles in vacuo, rather than by material walls of a container, was initially conceivedbyW.Paulintheformofa3Dversionoftheoriginalrfquadrupole mass filter, for which he shared the 1989 Nobel Prize in physics [1], whereas H.G. Dehmelt who also shared the 1989 Nobel Prize [2] saw these devices (including the Penning trap) as a way of isolating electrons and ions, for the purposes of high resolution spectroscopy. These two broad areas of applica- tion have developed more or less independently, each attaining a remarkable degreeofsophisticationandgeneratingwidespreadinterestandexperimental activity. In the case of mass spectrometry, starting in the 1960s there was initially a rapid proliferation of the use of the 3D rf quadrupole in many fields, such as residual gas analysis, upper atmospheric research, environmental studies, gas chromatography. Since then the field has continued to grow and become refined along differentiated specialized directions, for example sequential ion mass spectrometry. The extant literature on the mass spectrometry uses of ion traps is comprehensive, both in the form of monographs and published proceedings of conferences, such as [3,4]. On the other hand, it was not until tunable laser radiation sources be- came available that the application of particle traps to the study of atomic and particle physics saw an explosive expansion in interest and laboratory activity. By combining laser techniques with those of particle trapping it be- came possible to fully exploit the particle isolation property of the latter. Beforethat,withthenotableexceptionoftheexquisitelypreciseworkonthe freeelectronspectrumbyDehmelt’sgroup,theearlydifficultexperimentsto exploitthelongperturbation-freespectralobservationtimeiniontrapswere severelyhandicappedbysmallsignal-to-noiseratios.Theseexperimentswere carried out by students of Dehmelt and Major on the magnetic resonance VI Preface spectrum of He+, and Jefferts on H+. The first successful attempt to detect 2 optical resonance fluorescence from trapped ions using a conventional light source was achieved at NASA Goddard by Major and Werth in measuring the hyperfine interval in Hg+. It was first shown by Werth at Mainz that the scattering of laser light, even from a diffuse distribution of trapped ions, could be readily detected. The ultimate break-through in the laser detection of trapped ions came in the work of Toschek et al., in which single ions were visuallyobserved.This,combinedwiththedemonstrationoflasercoolingby Wineland et al. led to the incorporation of laser technology into ion trap- ping, from which evolved a technique in which not only is the signal-to-noise ratio problem eliminated, but also through laser cooling, the Doppler broad- ening of the particle spectrum is effectively annulled, ultimately leading to the formation of ion crystals as first observed by Walther and coworkers and transforming the technique into one of great power and elegance. Unlike the application of ion traps to mass spectrometry, the literature on ion trap physics is diffuse, covering many aspects in the form of extensive review articles, including for example [5–8]. Also an overview on different aspectsofiontrapphysicscanbefoundintheformofconferenceproceedings, suchas[9–11].AsinglemonographIonTraps byP.Ghosh(Oxford)appeared in 1995. Neverthelessinviewoftheacceleratedadvancesinthetechniqueinrecent years,andthefundamentalimportanceofthemanyapplications,itisevident that a serious gap in the literature exists, which this volume is meant to fill. Thetreatmentofthesubjectmatterisdesigned,ontheonehand,todevelop an appreciation of the practical evolution of the technique, its current power and limitations, and, on the other hand, to provide the necessary theoretical underpinning, also through appendices and a comprehensive bibliography. It is left for a future volume to deal with the many important applications, such as ultrahigh resolution spectroscopy, atomic frequency/time standards, particle physics, and quantum computation. Having been associated as ex- perimentalists with the development and application of ion trapping from the time of its inception, F.G. Major and G. Werth have a natural desire to attempt an integrated treatment of the subject, which it is hoped will prove authoritative and useful. With the cooperation of V.N. Gheorghe the treatment of the experimental areas is nicely complemented by supporting theory. V.N.GheorgheacknowledgessupportfromtheJohannesGutenbergUni- versity, Mainz, Germany and the Alexander von Humboldt Foundation, en- abling fruitful international cooperation while on leave from the National Institute for Laser, Plasma, and Radiation and the Physics Department at the University in Bucharest, Romania. Mainz, Fouad G. Major July 2004 Viorica N. Gheorghe Gu¨nter Werth Contents Part I Trap Operation Theory 1 Introduction.............................................. 3 1.1 Historical Background................................... 3 1.2 Principles of Particle Confinement ........................ 10 2 The Paul Trap............................................ 17 2.1 Theory of the Ideal Paul Trap............................ 17 2.2 Motional Spectrum in Paul Trap ......................... 23 2.3 Adiabatic Approximation................................ 24 2.3.1 Potential Depth .................................. 25 2.3.2 Optimum Trapping Conditions..................... 26 2.4 Real Paul Traps........................................ 27 2.4.1 Models for Ion Clouds ............................ 28 2.5 Instabilities in an Imperfect Paul Trap .................... 33 2.6 The Role of Collisions in a Paul Trap ..................... 36 2.7 Quantum Dynamics in Paul Traps........................ 39 2.7.1 Quantum Parametric Oscillator .................... 39 2.7.2 Quantum Dynamics in Ideal Paul Trap.............. 43 2.7.3 Effective Potentials ............................... 46 3 The Penning Trap ........................................ 51 3.1 Theory of the Ideal Penning Trap ........................ 51 3.2 Motional Spectrum in Penning Trap ...................... 56 3.3 Real Penning Traps..................................... 57 3.4 Shift of the Eigenfrequencies ............................. 59 3.4.1 Electric Field Imperfections........................ 59 3.4.2 Magnetic Field Inhomogeneities .................... 62 3.4.3 Distortions and Misalignments ..................... 64 3.4.4 Space Charge Shift ............................... 67 3.4.5 Image Charges ................................... 68 3.5 Instabilities of the Ion Motion............................ 68 3.6 Tuning the Trap........................................ 70 3.7 Quantum Dynamics in Ideal Penning Trap................. 72 3.7.1 Spinless Particle Dynamics ........................ 72 3.7.2 Spin Motion ..................................... 78 VIII Contents 3.8 Quantum Dynamics in Real Penning Traps ................ 81 3.8.1 Electric Field Perturbations ....................... 81 3.8.2 Magnetic Field Perturbations ...................... 83 3.8.3 The General Hamiltonian ......................... 84 4 Other Traps .............................................. 87 4.1 Combined Traps........................................ 87 4.1.1 Equations of Motion .............................. 87 4.1.2 Magnetron-free Operation ......................... 90 4.1.3 Quantum Dynamics in Combined Traps ............. 91 4.2 Cylindrical Traps....................................... 95 4.2.1 Electrostatic Field in a Cylindrical Trap............. 96 4.2.2 Inherent Anharmonicity of the Field ................ 98 4.2.3 Control for Anharmonicity ........................ 99 4.2.4 Dipole Field in a Cylindrical Trap .................. 102 4.2.5 Open-ended Cylindrical Traps ..................... 105 4.3 Nested Traps .......................................... 107 4.4 Multipolar Traps ....................................... 108 4.5 Linear Traps........................................... 109 4.5.1 The Ideal Linear Trap ............................ 109 4.5.2 Electrostatic Field in a Linear Quadrupole Trap...... 113 4.5.3 Electric Field in a Linear Multipole Trap ............ 115 4.6 Ring Traps ............................................ 117 4.7 Planar Paul Traps ...................................... 118 4.8 Electrostatic Traps ..................................... 123 4.9 Kingdon Trap.......................................... 124 Part II Trap Techniques 5 Loading of Traps ......................................... 131 5.1 Ion Creation Inside Trap ................................ 131 5.2 Ion Injection from Outside the Trap ...................... 133 5.3 Positron Loading ....................................... 135 6 Trapped Charged Particle Detection...................... 139 6.1 Destructive Detection ................................... 139 6.1.1 Nonresonant Ejection ............................. 139 6.1.2 Resonant Ejection ................................ 140 6.2 Nondestructive Detection................................ 141 6.2.1 Electronic Detection .............................. 141 6.2.2 Bolometric Detection ............................. 142 6.2.3 Fourier Transform Detection....................... 145 6.2.4 Optical Detection ................................ 146 Contents IX Part III Nonclassical States of Trapped Ions 7 Quantum States of Motion ............................... 153 7.1 Fock States ............................................ 153 7.2 Oscillator Coherent States ............................... 154 7.2.1 The Ideal Penning Trap ........................... 155 7.2.2 The Harmonic Paul Trap.......................... 156 7.3 Squeezed States ........................................ 159 8 Coherent States for Dynamical Groups ................... 161 8.1 Trap Symmetries ....................................... 161 8.2 Quasienergy States for Combined Traps ................... 162 8.2.1 A Single Trapped Charged Particle ................. 162 8.2.2 Quantum Multiparticle States...................... 165 9 State Engineering and Reconstruction .................... 169 9.1 Trapped Ion-Laser Interaction............................ 169 9.1.1 Atom-Field Hamiltonians.......................... 169 9.1.2 Two-Level Approximation ......................... 170 9.2 State Creation ......................................... 173 9.2.1 Number States................................... 173 9.2.2 Coherent States .................................. 174 9.2.3 Squeezed States .................................. 175 9.2.4 Arbitrary States.................................. 176 9.2.5 Thermal States .................................. 177 9.2.6 Schro¨dinger-Cat States............................ 178 9.3 State Reconstruction.................................... 183 9.3.1 Wigner Functions ................................ 183 9.3.2 Experimental State Reconstruction ................. 185 Part IV Cooling of Trapped Charged Particles 10 Trapped Ion Temperature ................................ 193 10.1 Measurement of Ion Temperature......................... 194 11 Radiative Cooling ........................................ 197 12 Buffer Gas Cooling ....................................... 203 12.1 Paul Trap ............................................. 204 12.2 Penning Trap .......................................... 206 13 Resistive Cooling ......................................... 211 13.1 Negative Feedback...................................... 215 13.2 Stochastic Cooling...................................... 216 X Contents 14 Laser Cooling............................................. 221 14.1 Physical Principles ..................................... 221 14.2 Doppler Cooling: Semi-classical Theory.................... 223 14.3 Resolved Sideband Cooling .............................. 226 14.4 EIT Cooling ........................................... 233 14.5 Sisyphus Cooling ....................................... 236 14.6 Stimulated Raman Cooling .............................. 246 14.7 Sympathetic Cooling.................................... 250 15 Adiabatic Cooling ........................................ 257 Part V Trapped Ions as Nonneutral Plasma 16 Plasma Properties ........................................ 263 16.1 Coulomb Correlation Parameter.......................... 263 16.2 Weakly Coupled Plasmas................................ 263 16.2.1 Penning Traps ................................... 263 16.2.2 Paul Traps ...................................... 266 17 Plasma Oscillations ....................................... 269 17.1 Rotating Wall Technique ................................ 272 18 Plasma Crystallization.................................... 275 18.1 Phase Transitions ...................................... 275 18.2 Chaos and Order ....................................... 278 18.3 Crystalline Structures................................... 280 18.3.1 Crystals in Paul Traps ............................ 281 18.3.2 Crystals in Penning Traps ......................... 290 18.3.3 Crystals in Storage Rings.......................... 291 19 Sympathetic Crystallization .............................. 295 A Mathieu Equations ....................................... 299 A.1 Parametric Oscillators .................................. 299 B Orbits of Trapped Ions ................................... 303 C Nonlinear Oscillator ...................................... 309 C.1 Multipole Expansions ................................... 309 C.2 Normal Forms ......................................... 310 C.3 Nonlinear Resonances ................................... 312

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.