University of Colorado, Boulder CU Scholar Chemistry & Biochemistry Graduate Theses & Chemistry & Biochemistry Dissertations Spring 1-1-2015 Charge Transfer Dynamics in Complexes of Light- Absorbing CdS Nanorods and Redox Catalysts Molly Bea Wilker University of Colorado at Boulder, [email protected] Follow this and additional works at:https://scholar.colorado.edu/chem_gradetds Part of theNanoscience and Nanotechnology Commons, and thePhysical Chemistry Commons Recommended Citation Wilker, Molly Bea, "Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts" (2015). Chemistry & Biochemistry Graduate Theses & Dissertations. 154. https://scholar.colorado.edu/chem_gradetds/154 This Dissertation is brought to you for free and open access by Chemistry & Biochemistry at CU Scholar. It has been accepted for inclusion in Chemistry & Biochemistry Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Charge Transfer Dynamics in Complexes of Light- Absorbing CdS Nanorods and Redox Catalysts by Molly Bea Wilker B.A. Gustavus Adolphus College, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2015 This thesis entitled: Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts written by Molly B. Wilker has been approved for the Program of Chemistry and Biochemistry Gordana Dukovic Niels Damrauer Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Wilker, Molly Bea (Ph.D., Chemistry and Biochemistry) Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts Thesis directed by Assistant Professor Gordana Dukovic The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This dissertation describes research efforts to understand the photoexcited charge transfer kinetics in complexes of colloidal CdS nanorods coupled with either a water oxidation or reduction catalyst. The first project focuses on the charge transfer interactions between photoexcited CdS nanorods and a mononuclear water oxidation catalyst derived from the [Ru(bpy)(tpy)Cl]+ parent structure. Upon excitation, hole transfer from CdS oxidizes the catalyst (Ru2+→Ru3+) on a 100 ps – 1 ns timescale. This is followed by a 10 – 100 ns electron transfer that reduces the Ru3+ center. The relatively slow electron transfer dynamics may provide opportunities for accumulation of the multiple holes at the catalyst, which is necessary for water oxidation. The second project details the electron transfer kinetics in complexes of CdS nanorods coupled with [FeFe]-hydrogenase, which catalyzes H+ reduction. These complexes photochemically produce H with quantum yields of up to 20%. The kinetics of electron transfer 2 from CdS nanorods to hydrogenase play a critical role in the overall photochemical reactivity, as the quantum efficiency of electron transfer defines the upper limit on the quantum yield of H 2 generation. For optimized complexes, the electron transfer rate constant and the electron iv relaxation rate constant in CdS nanorods are comparable, with values of ≈107 s−1, resulting in a quantum efficiency of electron transfer of 42%. Insights from these time-resolved spectroscopic studies are used to discuss the intricate kinetic pathways involved in photochemical H 2 generation in photocatalytic complexes. Finally, experimental results from photodriven H 2 generation and measurements of nanocrystal excited state lifetimes when the length of the nanocrystal-surface ligand was varied provide a deeper understanding into the mechanism for electron transfer from photoexcited nanorods to hydrogenase. v Acknowledgements The work in this dissertation would not have been possible without for the assistance and support of many people. I would like to acknowledge the funding sources that have supported this work: the Renewable and Sustainable Energy Institute (RASEI), the National Science Foundation CAREER grant (CHE-1151151), the U.S. Department of Energy Office of Basic Energy Sciences Division of Materials Sciences and Engineering grant (DE-SC0010334), and lab startup funds from the University of Colorado. I would like to thank the people at CU who contributed to and supported this work, especially my graduate advisor, Gordana Dukovic. In addition, a huge thanks to the present and former members of the Dukovic group including: Kyle Schnitzenbaumer, Amanda Grennell, Katherine Shinopoulos, Bryan Tienes, Kim See, Kyureon Lee, Hiroko Nakao, Tais Labrador, Hayden Hamby, James Utterback, Orion Pearce, Chi-Hung Chuang, and Yinggang Lu. And thanks to the undergraduate students who contributed to this work: Sophie Greene, David Garfield, and Russell Perkins. I would also like to thank my collaborators who were instrumental in making this work possible including, from NREL: Paul King, Kate Brown, David Mulder, and Mike Ratzloff, and from CU: Huan-Wei Tseng, Niels Damrauer, Jennifer Ellis, Dan Hickstein, Wei Xiong, Margaret Murnane, Henry Kapteyn, and Joel Eaves. In my personal life, my thanks go to my family and friends for their love and support that has helped me to get to this place in my life. A special thank you to my parents, Scott and Gloria, my grandmother, Phyllis, and my brother, Sam for always believing in me and encouraging me to strive for greatness. My thanks go to my husband, Brett, for his patience and support. I would vi also like to thank my friends who have been incredible confidants over the years, especially Liz, Rebecca, Jen, Kyle, Jamie, Katherine, Carly, Amanda, and Katie. Beyond my family and friends, I would also like to thank those who have helped guide my education and upbringing as a scientist. Thank you to my undergraduate research mentors: Jonathan Smith (Gustavus), Andreas Stein (U of MN), Jeffrey Hartgerink (Rice U), and Steven Miller (Gustavus). vii Contents Chapter 1 Introduction ................................................................................................................................... 1 1.1 Motivation .................................................................................................................................................................... 1 1.1.1 Solar Energy Harvesting ............................................................................................................................... 1 1.2 Background .................................................................................................................................................................. 2 1.2.1 Semiconductor Nanocrystals as Photosensitizers ............................................................................. 2 1.2.2 Nanocrystal-‐Catalyst Heterostructures .................................................................................................. 4 1.2.3 Photoexcited Charge Carrier Dynamics ................................................................................................. 5 1.2.4 Biomimetic Nanocrystal-‐Catalyst Assemblies ..................................................................................... 6 1.2.5 Considerations for Photogenerated Holes ......................................................................................... 11 1.3 Summary .................................................................................................................................................................... 12 Chapter 2 Charge Transfer Dynamics between Photoexcited CdS Nanorods and Mononuclear Ruthenium Water-‐Oxidation Catalysts ........................................................................... 14 2.1 Introduction ............................................................................................................................................................. 14 2.2 Experimental ............................................................................................................................................................ 16 2.2.1 Synthesis of CdS Nanorods ....................................................................................................................... 16 2.2.2 Transmission Electron Microscopy (TEM) ........................................................................................ 18 2.2.3 Synthesis of Ru(II) Complexes ................................................................................................................ 18 2.2.4 Coupling of CdS NR to Complex 1 .......................................................................................................... 18 2.2.5 Photoluminescence Spectroscopy ......................................................................................................... 19 2.2.6 Ultrafast Transient Absorption (TA) Spectroscopy ....................................................................... 20 2.2.7 Nanosecond-‐Microsecond Transient Absorption Spectroscopy .............................................. 21 2.3 Results and Discussion ........................................................................................................................................ 21 2.3.1 Design of the CdS NR-‐Complex 1 System ............................................................................................ 21 viii 2.3.2 Analysis of the PL quenching mechanism .......................................................................................... 27 2.3.3 Transient Absorption Spectroscopy of CdS NR-‐Complex 1 system ........................................ 30 2.3.4 Assignment of Charge Transfer Decay Kinetics ............................................................................... 36 2.3.5 Electron Decay Kinetics for Varying CdS NR: Complex 1 Molar Ratios ................................. 39 2.3.6 Model for Analysis of TA Decay Kinetics ............................................................................................. 40 2.3.7 Charge Transfer Dynamics for Varied CdS NR Sizes ...................................................................... 44 2.4 Conclusions ............................................................................................................................................................... 46 Chapter 3 Characterization of Electron Transfer Kinetics in CdS Nanorod-‐[FeFe]-‐ hydrogenase Complexes and Implications for Photochemical H Generation ............................. 47 2 3.1 Introduction ............................................................................................................................................................. 47 3.2 Experimental ............................................................................................................................................................ 52 3.2.1 Sample Preparation ...................................................................................................................................... 52 3.2.1.1 CdS Nanorods .................................................................................................................................................................................. 52 3.2.1.2 CaI and CaIIm Purification, Characterization, and Coupling to CdS NRs ................................................................ 54 3.2.1.3 Determination of reduction potential of CdS nanorods ............................................................................................... 55 3.2.2 Sample Characterization ............................................................................................................................ 56 3.2.2.1 Steady-‐state Absorption Spectroscopy ................................................................................................................................ 56 3.2.2.2 Transmission Electron Microscopy (TEM) ........................................................................................................................ 56 3.2.2.3 Transient Absorption Spectroscopy ..................................................................................................................................... 56 3.2.2.4 Photodriven H2 Production ....................................................................................................................................................... 57 3.3 Results ......................................................................................................................................................................... 58 3.3.1 Electron decay kinetics in CdS NRs ....................................................................................................... 58 3.3.2 ET kinetics in CdS-‐CaI complexes .......................................................................................................... 64 3.3.3 ET kinetics for varying CaI:CdS molar ratios .................................................................................... 67 3.3.4 TA kinetics in CdS NR complexes with inactivated CaI ................................................................ 71 3.4 Discussion ................................................................................................................................................................. 75 ix 3.4.1 Competition between ET and electron relaxation in CdS-‐CaI complexes ............................ 75 3.4.2 Electron pathways in H production .................................................................................................... 79 2 3.4.3 The value of k in CdS-‐CaI complexes ................................................................................................. 81 ET 3.4.4 Comparison of CdS-‐CaI with CdS-‐Pt Nanoheterostructures ...................................................... 83 3.5 Conclusions ............................................................................................................................................................... 85 Chapter 4 Relationship between surface ligand length, electron transfer, and hydrogen production in CdS nanorod-‐ [FeFe]-‐hydrogenase complexes ............................................................ 87 4.1 Introduction ............................................................................................................................................................. 87 4.2 Experimental ............................................................................................................................................................ 89 4.2.1 Sample Preparation ...................................................................................................................................... 89 4.2.1.1 CdS Nanorods .................................................................................................................................................................................. 89 4.2.1.2 CaI Purification, Characterization, and Coupling to CdS NRs ..................................................................................... 91 4.2.2 Sample Characterization ............................................................................................................................ 91 4.2.2.1 Steady-‐state Absorption Spectroscopy ................................................................................................................................ 91 4.2.2.2 Photoluminescence Spectroscopy .......................................................................................................................................... 92 4.2.2.3 Transmission Electron Microscopy (TEM) ........................................................................................................................ 92 4.2.2.4 Transient Absorption Spectroscopy ..................................................................................................................................... 92 4.2.2.5 Light-‐Driven H2 Production ...................................................................................................................................................... 93 4.3 Results and Discussion ........................................................................................................................................ 93 4.3.1 Characterization of Ligand Exchanged CdS NRs .............................................................................. 93 4.3.2 H Production using CdS with varied ligand lengths ..................................................................... 96 2 4.3.3 TA Spectroscopy of CdS NRs .................................................................................................................... 99 4.3.4 Electron Decay Kinetics in CdS NRs ................................................................................................... 105 4.3.5 Predicted ET Kinetics for CdS-‐CaI Complexes ............................................................................... 112 4.3.6 TA Kinetics of CdS-‐CaI Complexes ...................................................................................................... 114 4.4 Conclusions ............................................................................................................................................................ 119
Description: