ebook img

Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts PDF

148 Pages·2017·10.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts

University of Colorado, Boulder CU Scholar Chemistry & Biochemistry Graduate Theses & Chemistry & Biochemistry Dissertations Spring 1-1-2015 Charge Transfer Dynamics in Complexes of Light- Absorbing CdS Nanorods and Redox Catalysts Molly Bea Wilker University of Colorado at Boulder, [email protected] Follow this and additional works at:https://scholar.colorado.edu/chem_gradetds Part of theNanoscience and Nanotechnology Commons, and thePhysical Chemistry Commons Recommended Citation Wilker, Molly Bea, "Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts" (2015). Chemistry & Biochemistry Graduate Theses & Dissertations. 154. https://scholar.colorado.edu/chem_gradetds/154 This Dissertation is brought to you for free and open access by Chemistry & Biochemistry at CU Scholar. It has been accepted for inclusion in Chemistry & Biochemistry Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Charge Transfer Dynamics in Complexes of Light- Absorbing CdS Nanorods and Redox Catalysts by Molly Bea Wilker B.A. Gustavus Adolphus College, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2015 This thesis entitled: Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts written by Molly B. Wilker has been approved for the Program of Chemistry and Biochemistry Gordana Dukovic Niels Damrauer Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Wilker, Molly Bea (Ph.D., Chemistry and Biochemistry) Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts Thesis directed by Assistant Professor Gordana Dukovic The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This dissertation describes research efforts to understand the photoexcited charge transfer kinetics in complexes of colloidal CdS nanorods coupled with either a water oxidation or reduction catalyst. The first project focuses on the charge transfer interactions between photoexcited CdS nanorods and a mononuclear water oxidation catalyst derived from the [Ru(bpy)(tpy)Cl]+ parent structure. Upon excitation, hole transfer from CdS oxidizes the catalyst (Ru2+→Ru3+) on a 100 ps – 1 ns timescale. This is followed by a 10 – 100 ns electron transfer that reduces the Ru3+ center. The relatively slow electron transfer dynamics may provide opportunities for accumulation of the multiple holes at the catalyst, which is necessary for water oxidation. The second project details the electron transfer kinetics in complexes of CdS nanorods coupled with [FeFe]-hydrogenase, which catalyzes H+ reduction. These complexes photochemically produce H with quantum yields of up to 20%. The kinetics of electron transfer 2 from CdS nanorods to hydrogenase play a critical role in the overall photochemical reactivity, as the quantum efficiency of electron transfer defines the upper limit on the quantum yield of H 2 generation. For optimized complexes, the electron transfer rate constant and the electron iv relaxation rate constant in CdS nanorods are comparable, with values of ≈107 s−1, resulting in a quantum efficiency of electron transfer of 42%. Insights from these time-resolved spectroscopic studies are used to discuss the intricate kinetic pathways involved in photochemical H 2 generation in photocatalytic complexes. Finally, experimental results from photodriven H 2 generation and measurements of nanocrystal excited state lifetimes when the length of the nanocrystal-surface ligand was varied provide a deeper understanding into the mechanism for electron transfer from photoexcited nanorods to hydrogenase. v Acknowledgements The work in this dissertation would not have been possible without for the assistance and support of many people. I would like to acknowledge the funding sources that have supported this work: the Renewable and Sustainable Energy Institute (RASEI), the National Science Foundation CAREER grant (CHE-1151151), the U.S. Department of Energy Office of Basic Energy Sciences Division of Materials Sciences and Engineering grant (DE-SC0010334), and lab startup funds from the University of Colorado. I would like to thank the people at CU who contributed to and supported this work, especially my graduate advisor, Gordana Dukovic. In addition, a huge thanks to the present and former members of the Dukovic group including: Kyle Schnitzenbaumer, Amanda Grennell, Katherine Shinopoulos, Bryan Tienes, Kim See, Kyureon Lee, Hiroko Nakao, Tais Labrador, Hayden Hamby, James Utterback, Orion Pearce, Chi-Hung Chuang, and Yinggang Lu. And thanks to the undergraduate students who contributed to this work: Sophie Greene, David Garfield, and Russell Perkins. I would also like to thank my collaborators who were instrumental in making this work possible including, from NREL: Paul King, Kate Brown, David Mulder, and Mike Ratzloff, and from CU: Huan-Wei Tseng, Niels Damrauer, Jennifer Ellis, Dan Hickstein, Wei Xiong, Margaret Murnane, Henry Kapteyn, and Joel Eaves. In my personal life, my thanks go to my family and friends for their love and support that has helped me to get to this place in my life. A special thank you to my parents, Scott and Gloria, my grandmother, Phyllis, and my brother, Sam for always believing in me and encouraging me to strive for greatness. My thanks go to my husband, Brett, for his patience and support. I would vi also like to thank my friends who have been incredible confidants over the years, especially Liz, Rebecca, Jen, Kyle, Jamie, Katherine, Carly, Amanda, and Katie. Beyond my family and friends, I would also like to thank those who have helped guide my education and upbringing as a scientist. Thank you to my undergraduate research mentors: Jonathan Smith (Gustavus), Andreas Stein (U of MN), Jeffrey Hartgerink (Rice U), and Steven Miller (Gustavus). vii Contents Chapter  1   Introduction  ...................................................................................................................................  1   1.1   Motivation  ....................................................................................................................................................................  1   1.1.1   Solar  Energy  Harvesting  ...............................................................................................................................  1   1.2   Background  ..................................................................................................................................................................  2   1.2.1   Semiconductor  Nanocrystals  as  Photosensitizers  .............................................................................  2   1.2.2   Nanocrystal-­‐Catalyst  Heterostructures  ..................................................................................................  4   1.2.3   Photoexcited  Charge  Carrier  Dynamics  .................................................................................................  5   1.2.4   Biomimetic  Nanocrystal-­‐Catalyst  Assemblies  .....................................................................................  6   1.2.5   Considerations  for  Photogenerated  Holes  .........................................................................................  11   1.3   Summary  ....................................................................................................................................................................  12   Chapter  2   Charge  Transfer  Dynamics  between  Photoexcited  CdS  Nanorods  and   Mononuclear  Ruthenium  Water-­‐Oxidation  Catalysts  ...........................................................................  14   2.1   Introduction  .............................................................................................................................................................  14   2.2   Experimental  ............................................................................................................................................................  16   2.2.1   Synthesis  of  CdS  Nanorods  .......................................................................................................................  16   2.2.2   Transmission  Electron  Microscopy  (TEM)  ........................................................................................  18   2.2.3   Synthesis  of  Ru(II)  Complexes  ................................................................................................................  18   2.2.4   Coupling  of  CdS  NR  to  Complex  1  ..........................................................................................................  18   2.2.5   Photoluminescence  Spectroscopy  .........................................................................................................  19   2.2.6   Ultrafast  Transient  Absorption  (TA)  Spectroscopy  .......................................................................  20   2.2.7   Nanosecond-­‐Microsecond  Transient  Absorption  Spectroscopy  ..............................................  21   2.3   Results  and  Discussion  ........................................................................................................................................  21   2.3.1   Design  of  the  CdS  NR-­‐Complex  1  System  ............................................................................................  21 viii 2.3.2   Analysis  of  the  PL  quenching  mechanism  ..........................................................................................  27   2.3.3   Transient  Absorption  Spectroscopy  of  CdS  NR-­‐Complex  1  system  ........................................  30   2.3.4   Assignment  of  Charge  Transfer  Decay  Kinetics  ...............................................................................  36   2.3.5   Electron  Decay  Kinetics  for  Varying  CdS  NR:  Complex  1  Molar  Ratios  .................................  39   2.3.6   Model  for  Analysis  of  TA  Decay  Kinetics  .............................................................................................  40   2.3.7   Charge  Transfer  Dynamics  for  Varied  CdS  NR  Sizes  ......................................................................  44   2.4   Conclusions  ...............................................................................................................................................................  46   Chapter  3   Characterization  of  Electron  Transfer  Kinetics  in  CdS  Nanorod-­‐[FeFe]-­‐ hydrogenase  Complexes  and  Implications  for  Photochemical  H  Generation  .............................  47   2 3.1   Introduction  .............................................................................................................................................................  47   3.2   Experimental  ............................................................................................................................................................  52   3.2.1   Sample  Preparation  ......................................................................................................................................  52   3.2.1.1   CdS  Nanorods  ..................................................................................................................................................................................  52   3.2.1.2   CaI  and  CaIIm  Purification,  Characterization,  and  Coupling  to  CdS  NRs  ................................................................  54   3.2.1.3   Determination  of  reduction  potential  of  CdS  nanorods  ...............................................................................................  55   3.2.2   Sample  Characterization  ............................................................................................................................  56   3.2.2.1   Steady-­‐state  Absorption  Spectroscopy  ................................................................................................................................  56   3.2.2.2   Transmission  Electron  Microscopy  (TEM)  ........................................................................................................................  56   3.2.2.3   Transient  Absorption  Spectroscopy  .....................................................................................................................................  56   3.2.2.4   Photodriven  H2  Production  .......................................................................................................................................................  57   3.3   Results  .........................................................................................................................................................................  58   3.3.1   Electron  decay  kinetics  in  CdS  NRs  .......................................................................................................  58   3.3.2   ET  kinetics  in  CdS-­‐CaI  complexes  ..........................................................................................................  64   3.3.3   ET  kinetics  for  varying  CaI:CdS  molar  ratios  ....................................................................................  67   3.3.4   TA  kinetics  in  CdS  NR  complexes  with  inactivated  CaI  ................................................................  71   3.4   Discussion  .................................................................................................................................................................  75 ix 3.4.1   Competition  between  ET  and  electron  relaxation  in  CdS-­‐CaI  complexes  ............................  75   3.4.2   Electron  pathways  in  H  production  ....................................................................................................  79   2 3.4.3   The  value  of  k  in  CdS-­‐CaI  complexes  .................................................................................................  81   ET 3.4.4   Comparison  of  CdS-­‐CaI  with  CdS-­‐Pt  Nanoheterostructures  ......................................................  83   3.5   Conclusions  ...............................................................................................................................................................  85   Chapter  4   Relationship  between  surface  ligand  length,  electron  transfer,  and  hydrogen   production  in  CdS  nanorod-­‐  [FeFe]-­‐hydrogenase  complexes  ............................................................  87   4.1   Introduction  .............................................................................................................................................................  87   4.2   Experimental  ............................................................................................................................................................  89   4.2.1   Sample  Preparation  ......................................................................................................................................  89   4.2.1.1   CdS  Nanorods  ..................................................................................................................................................................................  89   4.2.1.2   CaI  Purification,  Characterization,  and  Coupling  to  CdS  NRs  .....................................................................................  91   4.2.2   Sample  Characterization  ............................................................................................................................  91   4.2.2.1   Steady-­‐state  Absorption  Spectroscopy  ................................................................................................................................  91   4.2.2.2   Photoluminescence  Spectroscopy  ..........................................................................................................................................  92   4.2.2.3   Transmission  Electron  Microscopy  (TEM)  ........................................................................................................................  92   4.2.2.4   Transient  Absorption  Spectroscopy  .....................................................................................................................................  92   4.2.2.5   Light-­‐Driven  H2  Production  ......................................................................................................................................................  93   4.3   Results  and  Discussion  ........................................................................................................................................  93   4.3.1   Characterization  of  Ligand  Exchanged  CdS  NRs  ..............................................................................  93   4.3.2   H  Production  using  CdS  with  varied  ligand  lengths  .....................................................................  96   2 4.3.3   TA  Spectroscopy  of  CdS  NRs  ....................................................................................................................  99   4.3.4   Electron  Decay  Kinetics  in  CdS  NRs  ...................................................................................................  105   4.3.5   Predicted  ET  Kinetics  for  CdS-­‐CaI  Complexes  ...............................................................................  112   4.3.6   TA  Kinetics  of  CdS-­‐CaI  Complexes  ......................................................................................................  114   4.4   Conclusions  ............................................................................................................................................................  119

Description:
Wilker, Molly Bea (Ph.D., Chemistry and Biochemistry). Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.