ebook img

Charge-dependent correlations from event-by-event anomalous hydrodynamics PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Charge-dependent correlations from event-by-event anomalous hydrodynamics

Nuclear Physics A NuclearPhysicsA00(2016)1–4 www.elsevier.com/locate/procedia Charge-dependent correlations from event-by-event anomalous hydrodynamics 6 1 0 Yuji Hironoa, Tetsufumi Hiranob, Dmitri E. Kharzeeva,c 2 n aDepartmentofPhysicsandAstronomy,StonyBrookUniversity,StonyBrook,NewYork11794-3800,USA a bDepartmentofPhysics,SophiaUniversity,Tokyo102-8554,Japan J cDepartmentofPhysicsandRIKEN-BNLResearchCenter,BrookhavenNationalLaboratory,Upton,NewYork11973-5000,USA 5 ] h p - Abstract p e WereportonourrecentattemptofquantitativemodelingoftheChiralMagneticEffect(CME)inheavy-ioncollisions. h Weperform3+1dimensionalanomaloushydrodynamicsimulationsonanevent-by-eventbasis,withconstitutiveequa- [ tionsthat containtheanomaly-induced effects. Wealsodevelop amodel of theinitialconditionfor theaxialcharge densitythatcapturesthestatisticalnatureofrandomchiralityimbalancescreatedbythecolorfluxtubes. Basingonthe 1 event-by-eventhydrodynamicsimulationsforhundredsofthousandsofcollisions,wecalculatethecorrelationfunctions v thataremeasuredinexperiments,anddiscusshowtheanomaloustransportaffectstheseobservables. 7 8 Keywords: Chiralmagneticeffect,Chiralanomaly,Heavy-ioncollisions,Hydrodynamics 8 0 0 1. Introduction . 1 TheChiralMagneticEffect(CME)[1,2,3,4]hasreceivedconsiderableattentioninrecentyears,par- 0 ticularly in the context of heavy-ion collisions. The anomaly-inducedtransport effects like the CME are 6 1 macroscopicandareincorporatedintohydrodynamicequationsgivingriseto“anomaloushydrodynamics” : [5]. Theoretically, the CME is expected to occur in heavy-ion collision experiments. The data reported v by STAR [6, 7] and PHENIX [8] collaborationsat RHIC and ALICE collaboration [9] at the LHC show i X a behavior consistent with the CME, but the quantitative understandingis still lacking. In order to reach r a definitive conclusion, a reliable theoretical tool that can describe the charge-dependent observables is a indispensable. Inthiswork[10],we quantitativelyevaluatetheobservablesto detecttheanomaloustransport,basing on event-by-eventsimulations of anomalous hydrodynamics. The observable of interest in this talk is a charge-dependenttwo-particlecorrelation[11], γ = cos φ1 +φ2 2Ψ , (1) αβ α β− RP D (cid:16) (cid:17)E whereφi isthe azimuthalangleofi thparticle(i = 1,2)withchargeα +, , andΨ isthe reaction α − ∈ { −} RP planeangleforv . Physicalmeaningofthisobservableisevidentifwedecomposeγ as 2 αβ γ = cos φ1 Ψ cos φ2 Ψ sin φ1 Ψ sin φ2 Ψ vαvβ aαaβ , (2) αβ α− RP β− RP − α− RP β− RP ≡ 1 1 − 1 1 D (cid:16) (cid:17) (cid:16) (cid:17)E D (cid:16) (cid:17) (cid:16) (cid:17)E D E D E 2 /NuclearPhysicsA00(2016)1–4 wherevα(aα)isthedirectedflowwhichisparallel(perpendicular)toΨ ,respectively. 1 1 RP Letusseehowa ’sbehaveinthepresenceofanomalouseffects. Inoff-centralcollisions,themagnetic 1 fieldsperpendiculartoΨ (onaverage)arecreated.IftheCMEoccurs,acurrentshouldbegeneratedalong RP themagneticfield,whichwouldresultinfinitea+ anda . Thedirectionofthecurrentdependsonthesign 1 −1 of the initial axial charge, which is basically random, so the signs of a s are also random. However, the 1 signsofa+anda tendtobeopposite.Thus,theCMEexpectationsarethefollowing:(1) a+ = a =0, 1 −1 1 −1 2 D E D E becausethe signofinitialaxialchargeis random;(2) aα becomeslargerinthepresenceoftheCME 1 (cid:28)(cid:16) (cid:17) (cid:29) currents;(3) a+a <0,whichindicatestheanti-correlationbetweena+anda . 1 −1 1 −1 D E 2. Event-by-eventanomaloushydrodynamicmodelforheavy-ioncollisions The model consists of three parts: (i) anomalous-hydroevolution, (ii) hadronizationvia Cooper-Frye formula,and(iii)calculationoftheobservables. Forthehydropart, wesolvetheequationsofmotionfor a dissipationless anomalousfluid, ∂ Tµν = eFνλj , ∂ jµ = 0, ∂ jµ = CE Bµ, whereC Nc q2 is µ λ µ µ 5 − µ ≡ 2π2 f f theanomalyconstant, Eµ Fµνu , Bµ F˜µνu with F˜µν = 1ǫµναβF . Theenergy-momentumtenPsorand currentsarewrittenasTµν≡=(ε+νp)uµu≡ν pηµνν, jµ =nuµ+κ2 Bµ, jµαβ=n uµ+ξ Bµ,whereεistheenergy − B 5 5 B density, p is the hydrodynamicpressure, n and n are electric and axial charge densities, eκ Cµ [1 5 B 5 ≡ − µn/(ε+ p)]andeξ Cµ[1 µ n /(ε+ p)]aretransportcoefficientsforchiralmagnetic/separationeffects B 5 5 ≡ − (CME/CSE),andηµν diag 1, 1, 1, 1 istheMinkowskimetric.Inthiswork,theelectromagneticfields ≡ { − − − } arenotdynamicalandtreatedasbackgroundfields. Asfortheequationofstate (EOS),we use thatof an idealgasofquarksandgluons. Letusspecifytheelectromagneticfieldconfigurationsusedtogettheresultsshownlater. WetakeB to y be(x-axisischosentobethereactionplaneangleΨ ) RP b x2 y2 η2 τ eB (τ,η ,x )=eB exp s , (3) y s ⊥ 02R −σ2x − σ2y − σ2ηs − τB where σ , σ , and σ are the widths of the field in x, y, and η (space-time rapidity) directions, τ is x y ηs s B the duration time of the magnetic field, R = 6.38 fm is the radius of a gold nucleus, and b is the impact parameter. Other elementsof B and E are setto zero. The widthsare taken so thatthe fields are applied only in the region where matter exists as σ = 0.8 R b , σ = 0.8 R2 (b/2)2, and σ = √2. We x − 2 y − η set other parameters as τ = 3 fm and eB = 0.5Ge(cid:16)V2 in(cid:17)following caplculations, which is equivalentto B 0 eB (τ ,0,0) (3m )2. y in π ∼ Bysolvingthehydrodynamicequations,weobtainaparticledistributionviatheCooper-Fryeformula withfreezeouttemperatureT = 160MeV. We producethehadronsbytheMonte-Carlosamplingbased fo onthatdistribution. Thus, onerandominitialconditionresultsintheparticlesinanevent. We repeatthis proceduremanytimesandstorethedataofmanyevents,thatarelaterusedtocalculatethecharge-dependent correlationfunctions.Wecalculatefluctuationsofv anda separately,withthefollowingexpressions, 1 1 vα 2 1 cos(φα Ψ )cos(φα Ψ ) , aα 2 1 sin(φα Ψ )sin(φα Ψ ) . (cid:28)(cid:16) 1(cid:17) (cid:29)≡*MP2 <Xi,j> i − RP j − RP + (cid:28)(cid:16) 1(cid:17) (cid:29)≡*MP2 <Xi,j> i − RP j − RP + (4) for the same-chargecorrelation, where M is the number of producedparticles, P = M(M 1), M 2 − <i,j> indicatesthesum overallthepairs, andouterbracketmeansaveragingoverevents. Similar expressPionis usedfortheopposite-chargecorrelation. Itisanimportantissuetoestimatetheamountofaxialchargesatthebeginningofhydroevolutions.The majorsourcesoftheinitialchiralitiesarecolorfluxtubesinheavy-ioncollisions. Whentwonucleicollide, numerouscolorfluxtubesarespannedbetweenthem. Theanomalyequation,∂ jµ =CEa Ba,determines µ 5 · therateoftheaxialchargegeneration,sotherateisdeterminedbythevalueofEa Ba.Thereisnopreferred · signofEa Ba anditcanbepositiveornegativefordifferentcolorfluxtubes. · /NuclearPhysicsA00(2016)1–4 3 Inordertoincorporatethisfeature,wehavemadeanextensiontotheso-calledMC-Glaubermodel.For eachbinarycollision,we assign 1randomly. Eachsignindicatesto thesignof color Ea Ba ofthe flux ± · tube.Then,weinitializetheaxialchemicalpotentialas Ncoll(xT) µ (x ,η )=C f(η ) X , (5) 5 T s µ5 s j Xj=1 where X are the signs of Ea Ba randomly assigned to binary collisions, and C is a constant which j · µ5 expressesthetypicalstrengthoftheµ5,and f(ηs)=exp(cid:20)−θ(|ηs|−∆ηs)(|ηs|−σ∆2ηηs)2(cid:21). Thesumistakenoverthe binarycollisionshappeningonthatpointinthetransverseplane. Thestrengthofthecolorfieldsareofthe orderofthesaturationscale. Takingthisintoaccount,wechoseC =0.1GeV[10]. µ5 1.5 × 10-4 Non-anomalous Anomalous (v1-)2 1.0 × 10-4 (a1-)2 5.0 × 10-5 0 5.0 × 10-5 0 -5.0 × 10-5 Non-anomalous Anomalous v1+ v1- a1+ a1- -1.0 × 10-4 Fig.1. Thecorrelations v 2 , a 2 (upperfigure), v+v ,and a+a (lowerfigure)foranomalousandnon-anomalouscasesat h −1 i h −1 i h 1 −1i h 1 −1i b=7.2fm.Thosequantiti(cid:16)esa(cid:17)reca(cid:16)lcu(cid:17)latedfromthedataof10,000eventsforbothoftheanomalousandnon-anomalouscases. 3. Calculatedobservables The valuesofthe observablesareshownin Fig. 1. The datafrom10,000eventsare usedto calculate thoseobservablesforeachofanomalousandnon-anomalouscase. Impactparameterissetto7.2fm. The 2 2 upper figure of Fig. 1 shows the values of v and a . In the left figure, anomalous transport h −1 i h −1 i effectsareswitchedoff(noCMEandCSE).Th(cid:16)ep(cid:17)lotsinthe(cid:16) rig(cid:17)htfigurearefromanomaloushydrodynamic simulations. In the non-anomalouscase, the valuesofthe fluctuationsof v and a are similar. When we 1 1 2 2 switchontheanomaly(rightfigure), v goesup,and a increasesfurther.Thelargefluctuationof h −1 i h −1 i (cid:16) (cid:17) (cid:16) (cid:17) 2 2 a isinlinewiththequalitativeexpectationfromtheCME.Theorderofmagnitudeofγ = vα aα is1comparabletoexperimentallymeasuredvalues. αα (cid:28)(cid:16) 1(cid:17) (cid:29)−(cid:28)(cid:16) 1(cid:17) (cid:29) In the lower figure of Fig. 1, we show the values of v+v , and a+a . In the absence of anomaly, h 1 −1i h 1 −1i they take similar positive values, but once we turn on the anomaly, a+a becomesnegative. This is the indicationoftheanti-correlationbetweena+anda andisconsistenthw1ith−1tiheCMEexpectations. 1 −1 Ithasbeendiscussedthattheobservedvaluesofγ mightbereproducedbyothereffectsunrelatedtothe αβ CME, includingtransversemomentumconservation[12, 13], chargeconservation[14], orcluster particle correlations[15]. Sucheffectsareabsentinthecalculationshere,becausetheparticlesaresampledbased ontheCooper-Fryeformula,whichisone-particledistribution,whereasallofthebackgroundeffectsarise 4 /NuclearPhysicsA00(2016)1–4 frommulti-particlecorrelations. Thus,thedifferencebetweenanomalousandnon-anomalouscalculations purely originatesfrom the CME and CSE. The contributionfrom the transverse momentum conservation intheCMEsignalisrecentlyestimatedinRef.[16],inwhichthechargedeformationsaretreatedaslinear perturbationsonthebulkevolutionsin2+1D. 4. Conclusionsandoutlook Wereportedtheresultsofevent-by-eventsimulationsofananomaloushydrodynamicmodelforheavy- ion collisions. We solved the hydrodynamic equations including anomalous transport effects (CME and CSE) in 3+1D, and calculated the values of observables. We also developed a model of the initial axial chargescreatedfrom the color fux tubes. The caluculatedvaluesof the observablesindicate thatthis ob- servableworksasexpected,andtheorderofmagnitudeiscomparabletoexperimentallymeasuredvalues. The largest uncertainty arises from the choice of the life-time of the magnetic fields. The existence ofconductingmatter affectsthe durationofthe magneticfields. We thushaveto solvethe hydrodynamic equationstogetherwiththeMaxwellequations–thisworkisdeferredtothefuture. Acknowledgements This work was supported in part by the U.S. Department of Energy under Contracts No. DE-FG- 88ER40388andDE-AC02-98CH10886. Y.H.issupportedbyJSPSResearchFellowshipsforYoungSci- entists. TheworkofT.H.wassupportedbyJSPSKAKENHIGrantsNo. 25400269. References [1] D. Kharzeev, Parity violation in hot QCD: Why it can happen, and how to look for it, Phys. Lett. B633 (2006) 260–264. arXiv:hep-ph/0406125,doi:10.1016/j.physletb.2005.11.075. [2] D. Kharzeev, A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl.Phys. A797 (2007) 67–79. arXiv:0706.1026,doi:10.1016/j.nuclphysa.2007.10.001. [3] D.E.Kharzeev,L.D.McLerran,H.J.Warringa,TheEffectsoftopologicalchargechangeinheavyioncollisions:’Eventbyevent PandCPviolation’,Nucl.Phys.A803(2008)227–253. arXiv:0711.0950,doi:10.1016/j.nuclphysa.2008.02.298. [4] K.Fukushima,D.E.Kharzeev,H.J.Warringa,TheChiralMagneticEffect,Phys.Rev.D78(2008)074033.arXiv:0808.3382, doi:10.1103/PhysRevD.78.074033. [5] D. T. Son, P. Surowka, Hydrodynamics with Triangle Anomalies, Phys.Rev.Lett. 103 (2009) 191601. arXiv:0906.5044, doi:10.1103/PhysRevLett.103.191601. [6] B.Abelev,etal.,Observationofcharge-dependentazimuthalcorrelationsandpossiblelocalstrongparityviolationinheavyion collisions,Phys.Rev.C81(2010)054908. arXiv:0909.1717,doi:10.1103/PhysRevC.81.054908. [7] B.I.Abelev,etal.,AzimuthalCharged-Particle Correlations andPossibleLocalStrongParityViolation, Phys.Rev.Lett.103 (2009)251601. arXiv:0909.1739,doi:10.1103/PhysRevLett.103.251601. [8] N.Ajitanand,S.Esumi,R.Lacey,P.Collaboration,etal.,P-andcp-oddeffectsinhotanddensematter,in: Proc.oftheRBRC Workshops,Vol.96,2010. [9] B.Abelev, etal., Chargeseparation relative tothereaction planeinPb-Pbcollisions at √sNN = 2.76TeV,Phys.Rev.Lett. 110(1)(2013)012301. arXiv:1207.0900,doi:10.1103/PhysRevLett.110.012301. [10] Y.Hirono,T.Hirano,D.E.Kharzeev,Thechiralmagneticeffectinheavy-ioncollisionsfromevent-by-eventanomaloushydro- dynamicsarXiv:1412.0311. [11] S. A. Voloshin, Parity violation in hot QCD: How to detect it, Phys.Rev. C70 (2004) 057901. arXiv:hep-ph/0406311, doi:10.1103/PhysRevC.70.057901. [12] A.Bzdak,V.Koch,J.Liao,Azimuthalcorrelationsfromtransversemomentumconservationandpossiblelocalparityviolation, Phys.Rev.C83(2011)014905. arXiv:1008.4919,doi:10.1103/PhysRevC.83.014905. [13] S. Pratt, Alternative Contributions to the Angular Correlations Observed at RHIC Associated with Parity Fluctua- tionsarXiv:1002.1758. [14] S. Schlichting, S. Pratt, Effects of Charge Conservation and Flow on Fluctuations of parity-odd Observables ar RHICarXiv:1005.5341. [15] F. Wang, Effects of Cluster Particle Correlations on Local Parity Violation Observables, Phys.Rev. C81 (2010) 064902. arXiv:0911.1482,doi:10.1103/PhysRevC.81.064902. [16] Y. Yin, J. Liao, Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion colli- sionsarXiv:1504.06906.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.