The Pennsylvania State University The Graduate School College of Engineering CHARACTERIZING LASER INDUCED CAVITATION: EFFECTS OF AIR CONTENT, BEAM ANGLE, AND LASER POWER A Thesis in Mechanical Engineering by Minna L. Ranjeva © 2012 Minna L. Ranjeva Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2012 The thesis of Minna L. Ranjeva was reviewed and approved* by the following: Brian R. Elbing Associate Research Faculty Thesis Adviser Dan Haworth Professor of Mechanical Engineering PIC of MNE Graduate Programs Gary Settles Professor of Mechanical Engineering Karen A. Thole Professor of Mechanical Engineering Head of the Department of Mechanical Engineering *Signatures are on file in the Graduate School. ii Abstract Laser-induced cavitation allows for cavitation bubbles to be systematically reproduced using a high power laser and focusing the laser beam to a point. This provides the opportunity to study the physics of the cavitation process under different circumstances in an experimental setting. Laser-induced cavitation has many applications. It has been used successfully to study cavitation near boundaries in an effort to understand the mechanisms of cavitation erosion. It has also found new applications in the world of medicine, as well as other areas. Previous work has largely focused on cavitation near a surface causing damage, but as new applications emerge, characterization of bubbles in a bulk fluid will be useful, permitting a high level of control over the bubble size, shape, and lifetime. With this in mind, laser-induced cavitation bubbles in a bulk fluid are characterized. The focusing angle of the lens, the air content of water, and the laser power are all varied to provide a comprehensive understanding of how these variables affect the bubbles’ development. Scaling for the bubble behavior is developed. iii Table of Contents List of Tables. .............................................................................................................................. vii List of Figures ............................................................................................................................. viii 1 Introduction ............................................................................................................................. 1 1.1 Background .................................................................................................................................... 1 1.2 Physics ............................................................................................................................................. 2 1.2.1 General ...................................................................................................................................... 2 1.2.2 Laser-induced optical breakdown ............................................................................................. 3 1.2.3 Plasma expansion and production of cavitation bubble ........................................................... 4 1.2.4 Cavitation bubble growth and collapse ..................................................................................... 4 1.3 Earlier work ................................................................................................................................... 5 1.4 Recent attempts to characterize bubbles ..................................................................................... 8 1.5 Newer applications of cavitation .................................................................................................. 9 1.5.1 Laser cleaning ......................................................................................................................... 10 1.5.2 Micro-pumps .......................................................................................................................... 10 1.5.3 Lithotripsy .............................................................................................................................. 11 1.5.4 Drug delivery .......................................................................................................................... 12 1.6 Introduction summary ................................................................................................................ 13 1.6.1 Research Objectives ............................................................................................................... 13 2 Experimental Methods ......................................................................................................... 15 2.1 Test apparatus .............................................................................................................................. 15 2.1.1 Water Tank ............................................................................................................................. 15 2.1.2 Laser Optics ............................................................................................................................ 18 2.2 Instrumentation ........................................................................................................................... 22 2.2.1 Imaging setup ......................................................................................................................... 22 2.2.2 Laser power ............................................................................................................................ 23 2.2.3 Water dissolved gas content ................................................................................................... 24 2.3 Test Matrix ................................................................................................................................... 26 2.4 Measurement Uncertainty .......................................................................................................... 26 2.4.1 Camera .................................................................................................................................... 26 2.4.2 Laser ....................................................................................................................................... 27 2.4.3 Lenses ..................................................................................................................................... 27 2.4.4 Pressure ................................................................................................................................... 28 2.4.5 Air Content ............................................................................................................................. 28 3 Experimental Results ............................................................................................................ 30 3.1 General trends and overview ...................................................................................................... 30 3.2 Repeatability ................................................................................................................................ 35 3.3 Variation of bubble topology ...................................................................................................... 38 3.4 Bubble size .................................................................................................................................... 42 3.4.1 Bubble size: sensitivity to beam angle .................................................................................... 42 iv 3.4.2 Bubble size: sensitivity to air content ..................................................................................... 49 3.5 Bubble half-life ............................................................................................................................. 54 3.5.1 Bubble half-life: sensitivity to beam angle ............................................................................. 54 3.5.2 Bubble half-life: sensitivity to air content .............................................................................. 57 3.6 Bubble diameter time history ..................................................................................................... 60 4 Scaling of Laser Induced Cavitation ................................................................................... 70 4.1 Scaling ........................................................................................................................................... 70 4.2 Comparison with non-spherical bubbles ................................................................................... 80 4.2.1 Vertical diameter .................................................................................................................... 80 4.2.2 Horizontal diameter ................................................................................................................ 82 4.2.3 Bubble half-life ....................................................................................................................... 84 4.2.4 Behavior over time ................................................................................................................. 86 4.3 Error Propagation ....................................................................................................................... 89 5 Limitations and future work ................................................................................................ 91 5.1 Limitations ................................................................................................................................... 91 5.1.1 Pulsed laser ............................................................................................................................. 91 5.1.2 Equipment setup ..................................................................................................................... 91 5.1.3 Assumptions in deriving scaling ............................................................................................. 92 5.2 Future work .................................................................................................................................. 92 5.2.1 Pressure ................................................................................................................................... 92 5.2.2 Viscosity ................................................................................................................................. 93 5.2.3 Particulate matter .................................................................................................................... 93 5.2.4 Air content .............................................................................................................................. 94 6 Conclusions ............................................................................................................................ 95 Appendix: Uncertainty ............................................................................................................... 97 Bibliography .............................................................................................................................. 100 v List of Tables Table 1 – Distances between components in experimental set up in Figure 1. ............................ 17 Table 2 – Lens specifications used to create bubbles ................................................................... 18 Table 3 – Average water-air content concentration (C) for each air content condition ............... 25 Table 4 – standard deviation for air content concentration measurements ................................... 28 Table 5 – Measured quantities and their corresponding measurement uncertainty ...................... 29 Table 6 – Lowest laser pulse energy for which bubbles could be seen for each of the test conditions, E .................................................................................................................... 43 0 Table 7 – Coefficients for second order polynomial best fit curves based on nondimensionalized lifetime profiles ................................................................................................................. 67 Table 8 – Beam waist for lenses ................................................................................................... 71 Table 9 – Variables of interest used to derive scaling rules for spherical cavitation bubbles. ..... 72 Table 10 – Results of error propagation through calculations for nondimensional variables ...... 90 vi List of Figures Figure 1 – Experimental setup used to generate laser-induced cavitation bubbles. The laser beam is expanded and then focused through a lens. A camera was used to capture the cavitation bubbles. The dashed box in the side view represents the camera’s nominal field-of-view. ........................................................................................................................................... 16 Figure 2 – This figure illustrates the relationship between beam divergence and angular spread. In this work, the convergence or focusing angle refers to the angular spread. ................. 18 Figure 3 – Snell’s law applied to a ray path passing through air (n =1.00), glass (n =1.55) and 1 2 water (n =1.33). Increasing index of refraction bends the beam towards the axis 3 perpendicular to the interface between the two mediums. ................................................ 21 Figure 4 – Energy per pulse as a function of attenuator setting for the laser used in the current study. The flash lamp was fixed at the maximum level. ................................................... 24 Figure 5 – Example of a bubble lifetime produced at relatively low laser power (7.3 mJ per pulse) with the wide-angle lens configuration and intermediate air content level. Labelled data points correspond to labeled images at the top of the figure. In image A the bright white spot is produced from plasma generated by the focused laser beam, while the remaining images show the shadow produced from the backlighted bubble. .................. 32 Figure 6 – Example of a bubble lifetime produced at relatively high laser power (42 mJ per pulse) with the wide-angle lens configuration and intermediate air content level. Labelled data points correspond to labeled images at the top of the figure. The growth, collapse and rebound of the bubble is apparent from the plot. ....................................................... 33 Figure 7 – Comparison between low and high power bubble behavior. At lower pulse energies single, spherical bubbles are produced. At higher powers the bubble shape depends on the lens angle. The smaller angle lens produces one larger bubble formed from bubble coalesence. The wider angle lenses produce smaller, more elongated bubbles. In the figure SA, MA and WA refer to the small, medium and wide-angle lens configurations, respectively. ...................................................................................................................... 35 Figure 8 – Comparing bubble diameter, there is reasonable agreement between data collected in different setups from different points in time. This indicates that comparing results between the two different setups is appropriate. ............................................................... 37 Figure 9 – Narrow angle lens bubble patterns at high power (42 mJ) in high air content water. Smaller bubbles formed along the path of the laser beam coalesce to form a single, larger, elliptical bubble. ................................................................................................................ 39 Figure 10 – Medium angle lens bubble patterns at high power (42 mJ) in intermediate air content water. On the left is the bubble formation shortly after the laser pulse, on the right is the bubble formation at the time of maximum bubble diameter. ............................................ 41 Figure 11 – Wide-angle bubble patterns at high power. On the left hand side of (A), (B), and (C) is the bubble formation shortly after the laser pulse, and on the right hand side of (A), (B) or (C) are the bubble formations at the points of maximum bubble diameter. These images illustrate the variety of bubble patterns that can be formed. ................................ 42 Figure 12 – Vertical bubble diameter as a function of laser energy per pulse for (A) low, (B) intermediate and (C) high air content conditions. The solid lines represent the best fit curves for each condition. ................................................................................................. 47 vii Figure 13 – Ratio of the horizontal to vertical bubble diameters plotted as a function of the laser pulse energy with (A) low, (B) intermediate and (C) high air content levels. .................. 49 Figure 14 – Vertical bubble diameter plotted versus the laser pulse energy for (a) narrow, (b) medium and (c) wide-angle lens configurations. Solid lines represent the best fit curves to the data. ............................................................................................................................. 52 Figure 15 – Ratio of horizontal to vertical diameter plotted versus laser pulse energy for (a) narrow (b) medium and (c) wide beam angles. ................................................................. 54 Figure 16 – Bubble half-life (time from laser pulse to achieve maximum bubble diameter) plotted versus the laser pulse energy with (a) low, (b) intermediate and (c) high or saturated air content levels. ................................................................................................................... 57 Figure 17 – Bubble half-life as a function of laser pulse energy with the (A) narrow, (B) medium and (C) wide-angle lens configuration. ............................................................................. 60 Figure 18 – Small angle, low air content lifetime curve ............................................................... 61 Figure 19 – Small angle, intermediate air content lifetime curve ................................................. 62 Figure 20 – Small angle, saturated condition lifetime curve ........................................................ 62 Figure 21 – Medium angle lens, low air content lifetime curve ................................................... 63 Figure 22 – Medium angle, intermediate air content lifetime curve ............................................. 63 Figure 23 – Medium angle, saturated air content lifetime curve .................................................. 64 Figure 24 – Wide-angle, low air content condition lifetime curve ............................................... 64 Figure 25 – Wide-angle, intermediate air content lifetime curve ................................................. 65 Figure 26 – Wide-angle, saturated lifetime curve ......................................................................... 65 Figure 27 – Comparison of lifetime polynomial fit for each condition. SA/L stands for small angle, low air content. MA stands for medium angle, WA for wide-angle, I for intermediate air condition, H for high air content. ............................................................ 66 Figure 28 – Single lifetime curve for nondimensionalized bubble diameter vs. time. This curve describes the bubble diameter’s growth over time for t ≤ 2. The different colors represent h different laser energy ranges, while the shapes indicate the air content condition (squares are low air content, circles are intermediate, and triangles are the high air content condition). ......................................................................................................................... 69 Figure 29 – An illustration of the beam profile of a Gaussian beam near the focal point. ........... 71 Figure 30 – The scaled horizontal diameter (D *) is plotted versus the scaled vertical diameter h (D *),holding Π constant. This plot shows a linear relationship between Π andΠ for the v 6 1 2 majority of bubbles. The outliers in this plot represent bubbles produced at high energies that do not maintain a spherical shape. These bubbles are indicated by open symbols and are not included when looking at the scaling relationships. ............................................. 73 Figure 31 – Relationship between t */D * and ΔE* shows a logarithmic relationship that appears h v to be only minimally affected by air content for spherical bubbles. The average ratio for each condition (lens, air content, laser power) is plotted. ................................................. 76 Figure 32 – Average th* versus Dv* for various ranges of ΔE*. The relationship appears to be linear. ................................................................................................................................ 78 Figure 33 – The relationship between beam waist and E appears to be linear. ........................... 79 o Figure 34 – Predicted D * versus actual D * when applying scaling to non-spherical bubbles. The v v solid line shows where the predicted and actual D * values are equal. The scaling v guidelines over predict the vertical diameter of the non-spherical bubbles. ..................... 81 viii Figure 35 – Predicted vertical diameter plotted against the actual vertical diameter when scaling relationships are applied to non-spherical bubbles. The black line indicates where the predicted and actual values are equal. ............................................................................... 82 Figure 36 – Predicted Dh* versus actual Dh* when applying scaling to non-spherical bubbles. The solid line shows where the predicted and actual Dh* values are equal. The horizontal bubble diameter appears to be predicted relatively well with the scaling relationships used here. ................................................................................................................................... 83 Figure 37 - Predicted horizontal diameter plotted against the actual horizontal diameter when scaling relationships are applied to non-spherical bubbles. The black line indicates where the predicted and actual values are equal. ......................................................................... 84 Figure 38 – Predicted t * versus actual t * when applying scaling to non-spherical bubbles. The h h solid line shows where the predicted and actual t * values are equal. The scaling h relationships used over predict the scaled half-life t * for non-spherical bubbles. .......... 85 h Figure 39 – Predicted half-life versus actual half-life for scaling relationships applied to non- spherical bubbles. The black line indicates where the predicted and actual values are equal. ................................................................................................................................. 86 Figure 40 – Non-spherical bubble behavior over time. Each run represents the development of a single, non-spherical bubbles. The blue curve represents the curve in Figure 28, the generic lifetime curve obtained in chapter 3. .................................................................... 88 Figure 41 – The ratio of horizontal to vertical diameter for non-spherical bubbles. This graph represents the average ratio of vertical to horizontal diameter for six non-spherical bubbles. This illustrates that non-spherical bubbles begin as more elliptical shapes and then become more spherical over time. It also shows the oscillation in size that non- spherical bubbles exhibit. .................................................................................................. 89 ix 1 Introduction 1.1 Background Cavitation is a phenomenon that occurs in nature when fluids develop areas of high speed or local pressure drops. These forces cause the rapid formation and then collapse of a cavity within a liquid, and this process is referred to as cavitation. Cavitation has traditionally been an area of interest in the scientific community due to its erosive effects on mechanical parts, such as propellers, and the fact that loud noise resulting from cavitation can cause an issue when vehicles desire to go undetected. Since people began to study cavitation for its erosive consequences, new techniques to both produce and record cavitation events have been developed. In the early stages of cavitation study, scientists had difficulty controlling the occurrence of cavitation events due to the statistical nature of this phenomenon in both space and time (Lauterborn & Bolle, 1975). Using a laser allows cavitation bubbles to be produced at a known location. Early research focused on cavitation events occurring near a boundary, since cavitation is well known for causing damage to propellers. More recently laser-induced cavitation has been used in a variety of medical applications such as lithroscopy (Kokaj et al., 2008). It is also being explored for use in other areas, for example laser cleaning of surfaces or micropump technologies (Song et al., 2004; Dijkink & Ohl, 2008). As more and more applications for laser-induced cavitation bubbles emerge, a greater understanding of how the environmental factors and controllable variables (such as laser power or beam angle) affect the growth and development of cavitation bubbles is needed. As much previous research has focused on the erosive consequences of cavitation bubble collapse, more information on bubble formation away from a boundary in an infinite medium, or how changes 1
Description: