ebook img

Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids PDF

161 Pages·2022·1.894 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids

Lecture Notes in Mathematics 2306 Ruy Exel David R. Pitts Characterizing Groupoid C*-algebras of Non-Hausdorff Etale Groupoids Lecture Notes in Mathematics Volume 2306 Editors-in-Chief Jean-MichelMorel,CMLA,ENS,Cachan,France BernardTeissier,IMJ-PRG,Paris,France SeriesEditors KarinBaur,UniversityofLeeds,Leeds,UK MichelBrion,UGA,Grenoble,France AlessioFigalli,ETHZurich,Zurich,Switzerland AnnetteHuber,AlbertLudwigUniversity,Freiburg,Germany DavarKhoshnevisan,TheUniversityofUtah,SaltLakeCity,UT,USA IoannisKontoyiannis,UniversityofCambridge,Cambridge,UK AngelaKunoth,UniversityofCologne,Cologne,Germany ArianeMézard,IMJ-PRG,Paris,France MarkPodolskij,UniversityofLuxembourg,Esch-sur-Alzette,Luxembourg MarkPolicott,MathematicsInstitute,UniversityofWarwick,Coventry,UK SylviaSerfaty,NYUCourant,NewYork,NY,USA LászlóSzékelyhidi , Institute of Mathematics, LeipzigUniversity, Leipzig, Germany GabrieleVezzosi,UniFI,Florence,Italy AnnaWienhard,RuprechtKarlUniversity,Heidelberg,Germany This series reports on new developments in all areas of mathematics and their applications-quickly,informallyandatahighlevel.Mathematicaltextsanalysing newdevelopmentsinmodellingandnumericalsimulationarewelcome.Thetypeof materialconsideredforpublicationincludes: 1. Researchmonographs 2. Lecturesonanewfieldorpresentationsofanewangleinaclassicalfield 3. Summerschoolsandintensivecoursesontopicsofcurrentresearch. Textswhichareoutofprintbutstillindemandmayalsobeconsiderediftheyfall withinthesecategories.Thetimelinessofamanuscriptissometimesmoreimportant thanitsform,whichmaybepreliminaryortentative. Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews,andzbMATH. Ruy Exel (cid:129) David R. Pitts Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids RuyExel DavidR.Pitts DepartamentodeMatemática DepartmentofMathematics UniversidadeFederaldeSantaCatarina UniversityofNebraska Florianópolis,SC,Brazil Lincoln,NE,USA This work was supported by CNPq to Ruy Exel, Simons Foundation (http://dx.doi.org/10.13039/ 100000893),#316952(forDavidR.Pitts). ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-031-05512-6 ISBN978-3-031-05513-3 (eBook) https://doi.org/10.1007/978-3-031-05513-3 MathematicsSubjectClassification:46L05,46L45,22A22,46L55 ©SpringerNatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Abstract Given a not-necessarily Hausdorff, topologically free, twisted étale groupoid (G,L), we consider its essential groupoid C*-algebra, denoted C∗ (G,L), ess obtained by completing C (G,L) with the smallest among all C*-seminorms c coincidingwiththeuniformnormonC (G(0)).TheinclusionofC*-algebras c (cid:2) (cid:3) C (G(0)),C∗ (G,L) 0 ess is then proven to satisfy a list of properties characterizing it as what we call a weak Cartan inclusion. We then prove that every weak Cartan inclusion (cid:3)A,B(cid:4), with B separable, is modeled by a topologically free, twisted étale groupoid, as above.In oursecondmain result,we givea necessary andsufficientconditionfor aninclusionofC*-algebras(cid:3)A,B(cid:4)tobemodeledbyatwistedétalegroupoidbased on the notion of canonicalstates. A simplicity criterion for C∗ (G,L) is proven ess andmanyexamplesareprovided. v Contents 1 Introduction .................................................................. 1 2 Inclusions ..................................................................... 7 2.1 LocalModules......................................................... 7 2.2 RegularIdealsandtheLocalizingProjection ........................ 14 2.3 RegularInclusions..................................................... 20 2.4 InvariantIdeals......................................................... 24 2.5 ExtendedMultiplicationforNormalizers ............................ 25 2.6 RegularityofMaximalIdealsinRegularInclusions................. 28 2.7 Extension of Pure States, Relative Free Points andSmoothNormalizers.............................................. 33 2.8 FreePoints............................................................. 37 2.9 FourierCoefficients.................................................... 39 2.10 OpaqueandGrayIdeals............................................... 46 2.11 TopologicallyFreeInclusions......................................... 52 2.12 Pseudo-Expectations................................................... 63 3 Groupoids..................................................................... 67 3.1 ÉtaleGroupoids........................................................ 67 3.2 TwistsandLineBundles .............................................. 70 3.3 TheC*-AlgebraofaTwistedGroupoid.............................. 72 3.4 TopologicallyFreeGroupoids ........................................ 75 3.5 TheEssentialGroupoidC*-Algebra.................................. 84 3.6 Kwasniewski and Meyer’sVersion of the Essential GroupoidC*-Algebra ................................................. 89 3.7 TheRelativeWeylGroupoid.......................................... 95 3.8 FellBundlesOverInverseSemigroups............................... 102 3.9 TopologicalFreenessoftheWeylGroupoid andtheMainTheorem ................................................ 111 3.10 Semi-Masas............................................................ 115 3.11 CanonicalStates ....................................................... 119 vii viii Contents 4 ExamplesandOpenQuestions............................................. 127 4.1 Example:Non-SmoothNormalizers.................................. 127 4.2 Example:PeriodicFunctionsontheInterval......................... 131 4.3 Example:TheGrayIdealofTwistedGroupoid C*-Algebras............................................................ 134 4.4 SomeOpenQuestions................................................. 139 5 Appendix:IsotropyProjection ............................................. 143 References......................................................................... 151 SymbolIndex..................................................................... 153 ConceptIndex .................................................................... 155 Chapter 1 Introduction In their landmark paper [14], Feldman and Moore gave methods for describing certainvonNeumannalgebrasusingtwistedmeasuredequivalencerelationsarising from a Cartan MASA. Their result may be thought of as a deep and far-reaching generalizationof the processof describingall linear mapson a finite dimensional Hilbertspaceusingafixedorthonormalbasis.Nearlyadecadelater,Kumjian[21] defined the notion of a diagonal A in a C*-algebra B, and provided a theory of twisted topological equivalence relations which allowed him to classify the inclusion A ⊆ B in terms of such twisted topological equivalence relations. However, because Kumjian’s results require that each pure state of A uniquely extendto a purestate on B, there are naturalsettings for which his results do not apply. In a 2007 paper, Renault [32] introduced a notion of Cartan MASA in a C*-algebra,andgave anelegantclassification theoremforC*-algebrascontaining a Cartan MASA completely analagous to the Feldman-Moore results for von Neumann algebras. Renault’s result replaces the measured equivalence relations found in the von Neumann algebra setting with an appropriate class of twisted locallycompactgroupoidswhichareHausdorffandétale. This is a satisfying state of affairs. However, there still are desirable settings where one has an inclusion of C*-algebras A ⊆ B (which we write as (cid:3)A,B(cid:4)) whichsatisfiesthesameregularityconditionasaCartansubalgebra,butwhichmay notsatisfyotherconditionsfoundinthedefinitionofaCartanMASA.Forexample, the crossed product constructions found in [28, Section 6.1] give a large class of examples where A is a regular MASA in B, but which do not have a conditional expectation E : B → A. In such settings, it is possible to use the constructions ofKumjianandRenaulttoproduceatwistedgroupoid(G,L),buttheunderlying groupoidG isnecessarilynon-Hausdorff(see[29,Theorem4.4]).Itisnotpossible todescribesuchinclusions(cid:3)A,B(cid:4)usingthemethodsofRenaultandKumjian. Thepresentworkhasseveralmaingoals.Thefirstistogiveagroupoidmodelfor inclusionsof C*-algebrassatisfying certain propertiesinspired by,althoughmuch weakerthan,thepropertiescharacterizingCartaninclusions,asdefinedbyRenault ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 1 R.Exel,D.R.Pitts,CharacterizingGroupoidC*-algebrasofNon-Hausdorff ÉtaleGroupoids,LectureNotesinMathematics2306, https://doi.org/10.1007/978-3-031-05513-3_1 2 1 Introduction in[32].Thesecondmaingoalisintimatelyrelatedtothefirst:wedefinetheessential groupoidC*-algebraassociatedto anotnecessarilyHausdorff,topologicallyfree, étale groupoid G, equipped with a Fell line bundle L. Taken together, these two results provide a classification for weak Cartan inclusions in the spirit of Renault andKumjianusingtwisted,butpossiblynotHausdorff,étalegroupoids.Ourresults applyinconsiderablegenerality,andincludetheregularMASAinclusions(cid:3)A,B(cid:4) mentionedinthepreviousparagraph,buttheyalsoapplytomanyregularinclusions whereAisanabeliansubalgebraofBwhichisnotmaximalabelian.Letusbemore specific. LetGbeatopologicallyfree,étalegroupoid,equippedwithaFelllinebundleL. WhilewedonotassumeG isHausdorff,wedoassumeitsunitspaceisHausdorff. Well-knownconstructionsassociatetwonormsonthe∗-algebraC (G,L)formed c bythecontinuouslocalcross-sectionsofL:themaximumandthereducednorms, respectively(see(3.3.3)fortheprecisedefinition).Theircompletionsyieldthefull andthereducedtwistedgroupoidC*-algebrasofG,usuallydenotedbyC∗(G,L) andC∗ (G,L). red When G is topologically free, that is, when the units of G with trivial isotropy form a dense set, we show in Theorem 3.5.6 that there is a very canonical third choice, namely the smallest (cid:4)amon(cid:5)g all C*-seminorms on Cc(G,L) coinciding with the uniform norm on C G(0) . The completion of C (G,L) under this C*- c c seminormistheessentialgroupoidC*-algebrareferredtoabove,whichwedenote by C∗ (G,L). ess Inspiredbyanearlierversionofthepresentwork,KwasniewskiandMeyer[23] introduced a different notion of essential C*-algebra which applies to groupoids whicharenotnecessarilytopologicallyfree.Theirconstructionisdescribedindetail inSect.3.6. In case G is Hausdorff, C∗ (G,L) turns out to be isomorphic to C∗ (G,L), ess red butotherwisethisisnotnecessarilyso.Infactweshowin(2.10.11.iii)that,inthe generalcase,thereexistsalargestideal (cid:2) (cid:2)C∗ (G,L), red red (cid:4) (cid:5) havinga trivialintersectionwithC G(0) , whichwecallthegrayideal,andsuch 0 that C∗ (G,L)(cid:7)C∗ (G,L)/(cid:2) . ess red red ThepairofC*-algebras (cid:2) (cid:4) (cid:5) (cid:3) C G(0) ,C∗ (G,L) (1.1) 0 ess

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.