ebook img

Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps PDF

103 Pages·2015·3.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY Angelo Freni · Belal Dawoud Lucio Bonaccorsi · Stefanie Chmielewski Andrea Frazzica · Luigi Calabrese Giovanni Restuccia Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps 123 SpringerBriefs in Applied Sciences and Technology More information about this series at http://www.springer.com/series/8884 Angelo Freni Belal Dawoud (cid:129) Lucio Bonaccorsi Stefanie Chmielewski (cid:129) Andrea Frazzica Luigi Calabrese (cid:129) Giovanni Restuccia Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps 123 Angelo Freni Andrea Frazzica ConsiglioNazionaledelleRicerche,Istituto ConsiglioNazionaledelleRicerche,Istituto diTecnologieAvanzate perl’Energia diTecnologieAvanzate perl’Energia “Nicola Giordano” “Nicola Giordano” Messina Messina Italy Italy Belal Dawoud LuigiCalabrese EastBavarian Technical University Department of ElectronicEngineering, (OTH-Regensburg) IndustrialChemistryand Engineering Regensburg Universityof Messina,Contrada di Dio Germany Messina Italy LucioBonaccorsi Department of ElectronicEngineering, GiovanniRestuccia IndustrialChemistryand Engineering ConsiglioNazionaledelleRicerche,Istituto Universityof Messina,Contrada di Dio diTecnologieAvanzate perl’Energia Messina “Nicola Giordano” Italy Messina Italy Stefanie Chmielewski Viessmann Werke Allendorf GmbH Allendorf (Eder) Germany ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied Sciencesand Technology ISBN 978-3-319-09326-0 ISBN 978-3-319-09327-7 (eBook) DOI 10.1007/978-3-319-09327-7 LibraryofCongressControlNumber:2015934678 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheAuthor(s)2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Contents 1 Basics of Adsorption Heat Pump Processes . . . . . . . . . . . . . . . . . . 1 1.1 Thermodynamics of Thermally Driven Heat Pumps . . . . . . . . . . 2 1.2 Working Pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Silica Gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Composite Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Activated Carbons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.4 Zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.5 New Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 The Ideal Intermittent Adsorption Heat Pump Cycle. . . . . . . . . . 15 1.4 Energetic Evaluation of the Real Intermittent Adsorption Heat Pump Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 Basic Features and Design Requirements of Intermittent Adsorption Heat Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.6 Short Overview on Advanced Cycles. . . . . . . . . . . . . . . . . . . . 28 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 Adsorption Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1 Ideal Adsorber Design Requirements . . . . . . . . . . . . . . . . . . . . 35 2.2 Overview on Adsorber Developments for Adsorption Heat Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Introduction to the Concept of Coated Adsorbers. . . . . . . . . . . . 42 2.4 Methodologies for the Experimental Characterization of Zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5 Experimental Methodologies to Verify the Performance of Adsorbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.5.1 Small Scale Large Pressure Jump (LPJ) . . . . . . . . . . . . . 47 2.5.2 Small Scale Large Temperature Jump (LTJ) . . . . . . . . . . 48 2.5.3 Full Scale Experimental Setup for Cycling Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 v vi Contents 3 Hydrothermal Stability of Adsorbent Coatings . . . . . . . . . . . . . . . 55 3.1 Hydrothermal Aging of Zeolites . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Real-Time or Long-Term Heat Pump Aging Cycling Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Description of the Set-up . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 Experimental Testing. . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Accelerated Aging Cycling Procedure. . . . . . . . . . . . . . . . . . . . 65 3.3.1 Description of the Set-up . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.2 Estimation of the Operating Conditions for AQSOA- FAMZ02 Zeolite . . . . . . . . . . . . . . . . . . . 67 3.3.3 Experimental Testing. . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 Very-Quick Aging Cycling Procedure . . . . . . . . . . . . . . . . . . . 71 3.4.1 Description of the Set-up . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.2 Experimental Testing. . . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Mechanical Stability of Adsorbent Coatings. . . . . . . . . . . . . . . . . . 81 4.1 Static Mechanical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1.1 Flexural Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1.2 Shear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.1.3 Micro-hardness Test. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.1.4 Scratch Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1.5 Pull-off Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1.6 Peel Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2 Dynamic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.1 Impact Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.2 Vibrational Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Methods Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.4 Experimental Case History: Adhesion Quality Control on a Coated Adsorber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Introduction The present book illustrates novel methods for the complete characterization of advancedcoatedadsorberstobeusedinthermallyefficientadsorptionheatpumps. It provides a deep analysis of the different procedures necessary for the evaluation oftheachievableperformanceoftheadsorberaswellasforitsstabilityagainstboth hydrothermal and mechanical stresses. InChap.1wetreatthethermodynamicfundamentalsofthebasicadsorptionheat pumpprocess.Themostcommonworkingpairs,aswellasthenewresearchtrends, are explained with emphasis on the zeolite–water pair, which is the specific adsorbent/adsorbatesystemaddressedinthisbook.Weprovidedbasicinformation about the structural characteristics of the zeolites (NaA, 13X, Y, SAPO34), which are commonly employed in adsorption heat pumps. Afterwards, the ideal and real intermittent adsorption heat pump cycles are precisely described and the corre- spondent energetic evaluations are developed. These formulations permit to investigatetheinfluenceofdesignparametersontheperformanceofanadsorption heatpumpmodule,focusingontheadsorberdesign.Thisstudyleads,inessence,to identify the adsorption heat exchanger basic design requirements, which will be treated in the following chapter. This chapter ends with a short overview of other more sophisticated adsorption heat pump processes. InChap.2,weinitiallyreporttheevolutionofadsorberconceptsovertheyears, starting from the earlier configurations employing loose adsorbent grains, to the modern concept of coated adsorber, which is the focus of this book. Then we explain the most common coating procedures that, essentially, consist of the deposition, by means of a binder or by direct crystallization, of the adsorbent material over a metallic heat exchanger, aiming at the improvement of the heat transfer efficiency. After having introduced the coated adsorber concept, we deal withthefundamentaltaskoftheexperimentalcharacterizationofcoatedadsorbers. Initially, standard methodologies for the experimental characterization of pure zeolites are given as fundamental background to better understand the more sophisticatedtechniquesdevelopedtoassesstheperformanceandstabilityofcoated adsorbers. Subsequently, we provide the description of the recent experimental methodologies for adsorber dynamic efficiency evaluation. Two main approaches vii viii Introduction are distinguished considering the scale of the tested adsorber: small scale, which allows to test small but representative piece of adsorber concepts, and full scale, where the entire adsorber can be tested under almost-realistic boundary conditions Chapters 3 and 4 are focused on the crucial subject of the verification of mechanicalandhydrothermalcyclingstabilityofadsorbentcoatings.InChap.3we initially discuss the effects of hydrothermal aging of pure zeolites due to repeated cyclic adsorption and desorption of water, which can result in reduced adsorption capacity and adsorption rate. Afterwards, we propose three original methodologies for hydrothermal aging treatment suitable for adsorbent coatings and pelletized adsorbers: (a) real-time or long-term heat pump cycling under realistic vacuum adsorptionheatpumpingconditions,(b)acceleratedagingcyclingunderwet/dryair flux, and (c) very quick aging cycling under severe hot air blow/cold liquid water treatment. Such techniques have been applied on samples of pelletized adsorbent and adsorbent coatings prepared according to different methods having different maturitylevels:fromlaboratoryscaletopre-commercialpilotscale.Foreachaging method, advantages and limits are explained and some results of aging tests are provided and compared. In Chap. 4, we address the mechanical characterization of the same adsorbent coating samples characterized in the previous chapter. In this chapter, the experi- mentalprotocolsunderstaticanddynamictestingsetupweredeveloped,inorderto ensure a broad, comprehensive, and reliable identification of the mechanical per- formance of the coatings used in the heat exchangers. In particular, the results of tests carried out on coatings at laboratory-scale level have shown a quite brittle behavior that influences its mechanical stability especially under dynamic loading. Instead, the pilot-scale coating, characterized by high hardness, showed good adhesion with the metallic substrate and very good performance in static and dynamic testing conditions. This chapter ends with an experimental case history dealing with the adhesion quality control on a coated adsorber. Combined results of the testing protocol presented in Chaps. 3 and 4 indicate that some coating techniques still at laboratory level of development need further improvement to reach sufficiently high lifetime to meet durability requirements of commercial applications. Good hydrothermal and mechanical stabilities were exhibitedbythepilot-scale coated adsorber heat exchangers.Inalarge-scale serial productionprocess, it isa fundamentalrequirementtoguarantee orevento further improvebothmechanicalandhydrothermalstabilitiesofthecoatedheatexchangers at moderate costs. Full commercial state of adsorber heat exchangers should be approved according to a quality assurance test protocol based on the experimental methods introduced in this book, which could be a subject of the future work. Wehopethatthisbookwillgiveahandtoresearchers anddevelopingteamsof adsorption heat pumps for heating and cooling applications, helping to guide and intensifybothresearchanddevelopmentactivities,mostspecificallyfordeveloping and approving novel adsorbents and novel adsorbent beds. Introduction ix Finally, the authors are highly grateful to the German Federal Ministry of Economy and Technology (BMWi) for partial funding of the research and devel- opment activities between July 2007 and March 2010 (Förderkennzeichen: 0327435A)aswellasbetweenJune2010andNovember2012(Förderkennzeichen: 0327435B).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.