ebook img

Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato ... PDF

19 Pages·2008·0.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato ...

MolecularMicrobiology(2008)68(4),871–889 (cid:2) doi:10.1111/j.1365-2958.2008.06209.x Firstpublishedonline8April2008 Characterization of the PvdS-regulated promoter motif in Pseudomonassyringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads BryanSwingle,1,2*DeeptiThete,2MonicaMoll,1 were used to query genomes of DC3000 and other ChristopherR.Myers,3DavidJ.Schneider1,2and fluorescent pseudomonads for similar motifs. We SamuelCartinhour1,2 conclude that the role of PvdS as a regulator of 1UnitedStatesDepartmentofAgriculture-Agricultural pyoverdine synthesis is conserved among the fluo- ResearchService,Ithaca,NY14853,USA. rescent pseudomonads, but the promoters recog- 2DepartmentofPlantPathologyandPlant-Microbe nized by PvdS orthologues may differ subtly from Biology,and3ComputationalBiologyServiceUnit, speciestospecies. CenterforAdvancedComputing,CornellUniversity, Ithaca,NY14853,USA. Introduction Bacterial survival depends on co-ordinated and system- Summary atic gene regulation in response to changing conditions. Bacteria that survive under variable conditions Thenatureandvarietyofthechangesarereflectedinthe possessanassortmentofgeneticregulatorstomeet genome, with species that are free living in the environ- these challenges. The group IV or extracytoplasmic ment tending to encode proportionally more transcrip- function (ECF) sigma factors regulate gene expres- tionalregulators(Stoveretal.,2000).Promoterselection sioninresponsetospecificenvironmentalsignalsby byalternativeformsofRNApolymeraseholoenzymecon- altering the promoter specificity of RNApolymerase. tainingdifferentsigmafactorsubunitsisaprimarymecha- We have undertaken a study of PvdS, a group IV nism for regulating transcription of collections of genes sigma factor encoded by Pseudomonas syringae pv. (Gruber and Gross, 2003). The sigma subunit confers tomato DC3000 (DC3000), a plant pathogen that is thesequence-specificDNA-bindingdeterminantstoRNA likely to encounter variations in nutrient availability polymerase allowing it to recognize and correctly bind to as well as plant host defences. The gene encoding promotersequences(Murakamietal.,2002). PvdS was previously identified by sequence similar- Most bacteria contain multiple members of the s70 ity to the Pseudomonas aeruginosa orthologue, familyofsigmafactors.Theprimarys70-typesigmafactor which directs transcription of genes encoding the is responsible for directing expression of housekeeping biosynthesisofpyoverdine,asiderophoreinvolvedin functions during exponential growth. The most diverse ironacquisition,andisresponsibleforthecharacter- group of s70-type sigma factors is the group IV or extra- istic fluorescence of the pseudomonads. We identi- cytoplasmicfunction(ECF)sigmafactors,whicharegen- fied 15 promoters regulated by PvdS in DC3000 and erally involved in regulating transcription in response characterized the promoter motif using computa- to environmental signals (Helmann, 2002; Potvin etal., tional analysis. Mutagenesis of conserved nucle- 2008).ThemodelplantpathogenPseudomonassyringae otides within the motif interfered with promoter pv. tomato DC3000 (DC3000) (Buell etal., 2003) is function and the degree of the effect was different predicted to encode 10 group IV sigma factors (Oguiza dependingonwhichregionofthemotifwasmutated. etal., 2005). Based on sequence similarity, five appear Hidden Markov models constructed from alignments to be dedicated to regulating the expression of genes ofsequencemotifsextractedfromDC3000andPAO1 whose products are involved with iron acquisition and homeostasis. Pseudomonas syringae and other fluorescent Accepted 7 March, 2008. *For correspondence. E-mail Bryan. pseudomonads are characterized by their ability to [email protected]; Tel. (+1)6072557893; Fax (+1)607255 4471. secrete pyoverdine in low-iron conditions (Meyer, 2000). Journalcompilation©2008BlackwellPublishingLtd NoclaimtooriginalUSgovernmentworks 872 B.Swingleetal. (cid:2) Pyoverdinesarechemicallydiverse,yellow-greenfluores- necessaryforpromoterfunctionandthatthetwodomains cent, high-affinity siderophores capable of chelating differintheirsensitivitytosingle-nucleotidesubstitutions. Fe(III) as a mechanism for scavenging iron from the Three hidden Markov models (HMM) were constructed environment.Pyoverdinesaretheprimaryironacquisition usingeither(i)theexperimentallyverifiedPvdS-regulated system in pseudomonads and give these organisms a promoter regions, (ii) a set of 13 IS-box promoters from competitive advantage in the environment and in their P.aeruginosa PAO1 (PAO1) based on data summarized associationwithplantoranimalhosts(PooleandMcKay, in Ravel and Cornelis (2003), or (iii) the combination of 2003; Sarkar etal., 2006). In addition to their role in iron sequences from both (i) and (ii) to yield a combined acquisition,pyoverdinesalsofunctionasextracellularsig- DC3000/PAO1-basedmodel.Thesemodelswereusedto nallingmoleculesimportantforinducingtheproductionof scanthegenomesof10fluorescentpseudomonads,each virulence factors in Pseudomonas aeruginosa (Lamont encoding PvdS orthologues sharing greater than 80% etal.,2002).Presumably,thelowironconcentrationinthe identitywiththeDC3000PvdSandinvariantwithrespect hostsignalstherequirementforpyoverdinesynthesisas totheresiduesimportantforpromoterbindinginthePAO1 well as other factors required to mount a successful orthologue (Wilson and Lamont, 2006). As expected, infection. manyofthegeneslinkedwiththemotifwerepyoverdine- The genes coding for the biosynthesis of pyoverdine related but in every species some genes were detected are organized in genomic clusters in all sequenced that were not obviously involved with pyoverdine or iron pseudomonad genomes that have been analysed metabolism. The results of the HMM scans varied from (Buell etal., 2003; Ravel and Cornelis, 2003; Feil etal., species to species, suggesting the possibility that the 2005; Joardar etal., 2005; Paulsen etal., 2005). In PvdS-boxmaynotbestrictlyconservedwithinthegenus. P.aeruginosatheexpressionofthesegenesisregulated by the group IV sigma factor PvdS (Leoni etal., 2000; Wilson and Lamont, 2000). The gene encoding PvdS in Results P.aeruginosaisregulatedinresponsetoironconcentra- Genome-widescreenidentifies tioninthegrowthmediaviatheferricuptakeregulator,Fur PvdS-regulatedpromoters (Cunliffe etal., 1995; Leoni etal., 1996). It has been hypothesized that pyoverdine synthesis is regulated by Aconventional promoter trap library screen was used to similar mechanisms in other pseudomonads (Cunliffe isolatePvdS-regulatedpromotersencodedintheDC3000 etal.,1995;Rombeletal.,1995;Leonietal.,2000;Ravel genome.Thelibrarywasconstructedusingsize-selected, and Cornelis, 2003). Lamont and co-workers identified a partially digested DC3000 genomic DNA that was sub- conserved TAAAT nucleotide motif known as the IS-box cloned in a vector (pBS29) upstream of a promoterless upstream of PvdS-regulated genes. This motif has been ′lacZa gene. In this construct, the ′lacZa gene is proposedtofunctionaspartofthe-35elementofPvdS- expressed only when the genomic insert encodes an regulated promoters (Rombel etal., 1995; Wilson etal., activepromoter.ThescreeningwascarriedoutinEscheri- 2001). A conserved CGT nucleotide triplet positioned chia coli where previous studies have shown that PvdS- 16bp downstream of the IS-box has also been noted in regulatedpromotersfromP.aeruginosaareactiveonlyin some PvdS-regulated promoters (Ochsner etal., 2002; the presence of PvdS expressed in trans (Cunliffe etal., Visca etal., 2002).The location, spacing and function of 1995).Thishelpedfocusthescreentoidentifypromoters these motifs are consistent with the hypothesis that they that were directly regulated by PvdS and to minimize are part of the -35 and -10 elements of PvdS-regulated complications due to secondary regulatory effects or promotersinP.aeruginosa. induction from other iron-regulated sigma factors that The orthologue of PvdS (PSPTO_2133) was identified couldoccurinthenativeDC3000background. in DC3000 by sequence analysis (Ravel and Cornelis, ScreeningforPvdS-regulatedpromoterswasperformed 2003;Oguizaetal.,2005)butthefunctionofthegenehas in two steps. First, E.coli cells transformed with the pro- not been demonstrated. To characterize the DC3000 motertraplibraryandaDC3000PvdSexpressionvector PvdSregulon,PvdS-responsivepromoterswereobtained werescreenedforalac+phenotypeon5-bromo-4-chloro- by screening a DC3000 genomic DNA promoter trap 3-indolyl-b-D-galactopyranoside (X-gal) indicator media, libraryandfurtheranalysedusingtranscriptionalreporter which identified clones containing active promoters. fusions, quantitative real-time (qRT)-PCR and transcrip- Second,thelac+cloneswereevaluatedtoidentifyisolates tionalstartsitemapping.ThePvdS-boxmotifwasidenti- where reporter expression was dependent on the pres- fiedusingGibbssamplingandwasanalysedbyscanning ence of the PvdS expression construct. From 116000 mutagenesis to identify conserved nucleotides whose initialtransformants,2992wereisolatedinsteponeofthe presenceisrequiredforfullpromoterfunction.Theresults screen. Of these, 97 clones were confirmed to exhibit indicatethattheputative-10and-35elementsareboth PvdS-dependent expression in step two, and the inserts Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks PvdSregulationinPseudomonassyringae 873 weresequencedandmappedontotheDC3000genome. A The 25 unique sequences from this set that contained Fold Description Relative Luminescence Difference intergenic regions (seeTableS1) were used to construct vector cntl - PvdS 2 preliminary hidden Markov models (data not shown) for P0753::lux + PvdS 23 scanningthegenometoidentifycandidatepromotersand P2137::lux 173 toguidesubsequentexperimentationasdescribedbelow. P2145::lux 467 P2146::lux 138 P2147::lux 593 P2149::lux 72 Multiplemethodsvalidatecandidatepromoters P2152::lux 111 P2156::lux 39 The candidate promoters suggested by the process P5624::lux 676 abovewerechosenforfunctionalvalidationusingreporter P2175::lux 42 100 1,000 10,000 100,000 1,000,000 fusions, qRT-PCR and transcription start site mapping. B Thisstrategyreflectsourgoalofbothassociatingfunction Fold Description Relative Induction with particular upstream sequence fragments and con- Difference - cntl 1.5 firmingPvdS-regulatedexpressionofdownstreamgenes. 0753 6 The lux reporter fusion assay was used to associate 2134 263 2136 229 promoteractivitywithsmallDNAfragmentsandtoisolate 2137 204 2145 83 promoter activity from potentially confounding effects 2146 291 suchasreadthroughfromtranscriptsinitiatedupstreamin 2147 174 2149 258 thenativegenomiccontext.Eachregionwasclonedasa 2151 5 transcriptionalfusionwitha′luxCDABEoperon.Promoter 22115526 13376 activity of these constructs was assessed in E.coli cells 5624 329 2160 124 transformed with either a PvdS expression vector or the 2161 237 2982 32 empty vector control. Ten regions showed strong PvdS- 3290 10 dependent expression, as displayed in Fig.1A. Expres- 3556 4 4923 6 sionvariedfrom23-to676-fold,comparedwithatwofold 1 10 100 1,000 10,000 change in the promoterless reporter control, confirming promoteractivityinthesefragments. Fig.1. PvdS-dependentpromoteractivity.Genomicregions assessedforPvdS-dependentpromoteractivitywereidentifiedby AqRT-PCRassaywasusedtoassessPvdS-dependent promotertrappingorbyscanningwithpreliminarybioinformatics transcriptionofgenesdownstreamofcandidatepromoters modelsconstructedusingsequencesidentifiedinthepromoter in their native context in DC3000 (see Fig.1B). Relative trappingexperiments.PromoterandgenenumbersrefertoPSPTO numbersintheannotatedDC3000genomesequenceNC_004578 expressionfor18genomiclociwasassessedbycompar- (Buelletal.,2003)hereandthroughoutthereport,exceptwhere ingtranscriptlevelsinDC3000cellstransformedwiththe noted.Errorbarsshowstandarddeviation. PvdSexpressionvectorversusDC3000cellstransformed A.RelativeluminescenceexpressedfromE.colicells(sixbiological replicas)transformedwiththepromoter::luxfusionconstructand with the empty vector. This confirmed PvdS-dependent eithertheemptyexpressionvectorcontrol(lightbars)orthe differential expression of all 18 genes, 15 of which are PvdS-expressingconstruct(darkbars).Thevectorcontrol(vector directlydownstreamofcandidatepromoters,twoofwhich cntl)wasthepromotertrapvectorwithoutapromoterinsert. B.qRT-PCRanalysisshowingPvdS-dependentdifferential (PSPTO_2136/daT and PSPTO_2151) are potentially expressioninDC3000(threebiologicalreplicas).Relativeinduction withinoperonsprecededbycandidatepromoters,andone istheratioofnormalizedtranscriptlevelinDC3000cells of which, PSPTO_3556 (glcE), is in an unconventional transformedwiththePvdSexpressionvectorversusDC3000cells transformedwiththeemptyvectorcontrol.Transcriptlevelsfor orientationrelativetothecandidatepromoter(seeFig.1B eachgenewerenormalizedtogap1.ThegyrAgene,whichisnot andbelow).Overall,differentialexpressioninthisexperi- predictedtobePvdS-regulated,wasusedasanegativecontrol ment ranged from 5- to 329-fold. The results from both (-cntl).AllgenesweredirectlydownstreamfromthePvdS-box exceptfor2136and2151,whicharepotentiallypartof transcriptional fusion assays and qRT-PCR assays were multicistronicoperonsprecededbyPvdS-boxmotifs,and3556,for consistent with these regions containing cis-acting ele- whichthePvdS-boxispositionedwithintheindicatedgeneinthe ments that function as PvdS-regulated promoters. antisenseorientation.For2175,differentialexpressionwasnot detected(datanotshown). However, in one case (PSPTO_2175, leuB), PvdS pro- moteractivitywasobservedusingthepromoterfusionbut couldnotbedetectedusingqRT-PCRatthenativelocation Thepointatwhichtranscriptioninitiatesisconstrainedby (datanotshown).Itispossiblethatexpressionatthislocus thestructureoftheRNApolymeraseholoenzymeboundat inDC3000requiresotherregulators[e.g.LrpasinE.coli thepromoter,andisgenerallynotmorethan10or11bp (NewmanandLin,1995)]. downstreamofthe-10elementfors70-dependentpromot- A 5′ RACE strategy was used to map the location of ers(Murakamietal.,2002;LewisandAdhya,2004).The transcriptionstartsitesforseveralPvdS-regulatedgenes. transcription start points for alternative sigma factors are Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks 874 B.Swingleetal. (cid:2) Fig.2. 5′RACEanalysisforseven AAGTCATGCTGAAAAATTTTGAATTAATTCTCCCGTCCGTCGTTCTCTTTCAGGTAAGCCGGT PSPTO_0753 PvdS-dependenttranscripts.TheDC3000 genomicsequencecorrespondingtothe CGCGGCGGGCATTCACGCCTAATTATTTGCAGACGCCATCCGTTCTCATTGGTGACAGGCCCG PSPTO_2134 regionupstreamoftheindicatedORFis GGAAATGGCGTAAGGCGGCTAATTTTTCAGCCGCGAAGTACGTTCAATCTGCACATGGGTGTT PSPTO_2146 shownwiththepromoterelementsofthe PvdS-boxshaded.Thedirectionof GGTTTTGTGAAAAATTCATTAAATAATCGTTAATCGCTTTCGTTCTCATTAACAGCGAACTGC PSPTO_2152 transcriptionisindicatedbyanarrow;a trianglebeneaththearrowindicatesarange TCCAAACGGTGATCGGCGCTAAATTCCGGCCTGCATTTCTCGTTTAACTGGCAGCTCTGTTTG PSPTO_2160 ofpossiblestartsitesduetoambiguitiesin thesequencechromatogramand/orthe ACCGTTTGGACGAATCAGCTAAAAATTTTCGCCCGCGCTTCGTTTAACGGGGGGCGGCCAATT PSPTO_2161 additionofhomopolymertailsduringcDNA synthesis.Theunderlinedregionsshowthe CGGTTTTTCTACTAGTCTCTCAAGAAATCAACCACTTGAACGTTTTACCTTTATCGGCAGTGC PSPTO_2982 49nucleotidesusedforGibbssampling. expected to be similar to the prototypical s70-regulated werefound.Thesequencelogosuggeststhepresenceof promoter elements (Nonaka etal., 2006; Rhodius etal., two conserved regions, separated by a less conserved 2006). Therefore the location of the start site was deter- spacer. This structure resembles promoters recognized minedinordertofocusoursearchforthepromotermotifin by s70-type sigma factors (Gross etal., 1998), where the smallest possible region. We analysed seven tran- these conserved regions are referred to as the -10 and scripts(Fig.2);fiveloci(PSPTO_2134,2146,2152,2160 -35 elements. Note that the IS-box TAAAT-(N16)-CGT and 2161) are within the pyoverdine cluster, and two foundupstreamofiron-responsivegenesinP.aeruginosa (PSPTO_0753and2982)areindifferentregionswithno PAO1(Wilsonetal.,2001;Ochsneretal.,2002)occupies apparent role in pyoverdine metabolism. Transcription positions2–25inthelogo.Giventhedegreeofsequence start sites were mapped by 5′ RACE using RNA from conservation,weadoptedthefollowingconventiontorep- DC3000cellstransformedwiththePvdSexpressioncon- resent the consensus sequence for the DC3000 PvdS- struct.Forallofthegenestested,thetranscriptionstartsite box(whichdiffersslightlyfromthatforthePAO1IS-box): wasdeterminedwithamaximaluncertaintyoffivenucle- TAAAT[A/T]-(N15)-CGTT[C/T][T/A]. For cases where otides. The relation of the transcription start site to the mapped transcription start sites are available, the 5′ end promotermotifisdiscussedbelow. of the transcript was located between 3 and 9bp down- stream of the 3′ end of the conserved CGTT[C/T][T/A] domainofthemotif(Fig.2).Thesourceofthisuncertainty IdentificationofthePvdS-boxmotifbyGibbssampling isduetothetechnicallimitationsofthetranscriptmapping Thecombinedevidencefromthepromotertraplibrary,lux method(seeExperimentalprocedures). fusions, qRT-PCR and transcription start site data was Thesedataareconsistentwiththeconservedfeatures usedtodefineasequenceinputsetforGibbssamplingto of this motif functioning as the -10 and -35 promoter identifyanalignedpromotermotifasdescribedpreviously elementsrecognizedbyPvdS,althoughcloseinspection (Ferreiraetal.,2006).Whereapplicable,sequenceswere reveals that the geometry of the motif is slightly more trimmedasfollows:(i)overlappinglibraryisolatesandlux compact than the canonical s70 promoters in E.coli fusion sequences were trimmed to the common subse- (Shultzabergeretal.,2007).Wehypothesizethatthecon- quence, (ii) sequences were trimmed at the 3′ end to served nucleotides in Fig.3 correspond to the promoter remove overlap with annotated coding regions, (iii) sequence recognized by PvdS in DC3000, and hence- sequences were limited to extend no further than 300 forthrefertothismotifasthePvdS-box. nucleotidesupstreamoftheannotatedcodingregion,and (iv) fragments for which transcription start site data were MutagenesisinthePvdS-boxreducespromoteractivity available were trimmed to 49 nucleotides as shown in Fig.2. The final set of 16 sequences used for Gibbs Typically, s70-type promoters contain nucleotides within sampling is summarized in TableS2 with experimental the-10and-35promoterelementsthatarenecessaryfor evidencevalidatingtheirPvdS-dependentregulation. specific recognition by the sigma factor (McClure etal., Gibbs sampling was conducted for a range of motif 1983; Gross etal., 1998; Murakami etal., 2002); there- window sizes. One motif was consistently found in 15 of fore, some nucleotide substitutions within the conserved theinputsequencesandhadastructureconsistentwitha elementsareexpectedtoalterpromoterfunction. promoterforanECFsigmafactor.Theresultsofatypical TheregionupstreamofPSPTO_2152,aputativeTonB- sampling run with a window size of 29 nucleotides are dependentreceptorinthepyoverdinelocus,waschosen showninFig.3alongwiththeassociatedsequencelogo; as an example of a promoter containing consensus we find this same basic structure preserved in larger sequences in the -10 and -35 elements (Fig.3).Atotal window sizes as well. Each input sequence yielded one of 23 mutant derivatives were constructed from the wild- motif except for PSPTO_2136 (daT), for which no motifs type promoter sequence using transversion mutations Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks PvdSregulationinPseudomonassyringae 875 A 2 -35 -10 Bits 1 0 B 5 10 15 20 25 Motif co-ordinates Downstream ORF 5‘ 3‘ ID Distance Evidence 5573286..5573258 T T A A T T A C T G G C C C T C G C T A A T C G T T C T T 4923 167 2322443..2322471 T T A A T T T T T C G A C G T A G C G A T A C G T T C A A 2137 56 2330474..2330502 T C T A A A T A T T T C C C C G C C A A T T C G T T C T T 2147 146 2306852..2306880 C T A A T T A T T T G C A G A C G C C A T C C G T T C T C 2134 128 3717248..3717276 A T A A A A A C A T G C C A G A C C G A G A C G T T T A T 3290 27 2374231..2374259 C T A A A A A T T T T C G C C C G C G C T T C G T T T A A 2161 50 2367722..2367694 C T A A A T T T T T C G C C C A T C C G C T C G T T C T C 2156 56 2367750..2367778 C T A A A T T T G T C A G C C G G T T T T A C G T T C T A 5624 39 2329291..2329319 C T A A T T T T T C A G C C G C G A A G T A C G T T C A A 2146 66 800053..800081 T T G A A T T A A T T C T C C C G T C C G T C G T T C T C 0753 146 2329218..2329190 C A A A A T A T T C C T A C A G G A A T C T C G T T C T C 2145 96 2362184..2362156 T T A A A T A A T C G T T A A T C G C T T T C G T T C T C 2152 152 2374204..2374176 C T A A A T T C C G G C C T G C A T T T C T C G T T T A A 2160 69 2341777..2341805 T A A A T C A C T G G A G G C A C T C A A A C G T T T A T 2149 46 3353645..3353617 C T C A A G A A A T C A A C C A C T T G A A C G T T T T A 2982 65 Consensus N T A A A T NTA N T N N N N C N N N N N N N N C G T T C T N Average = 87 Fig.3. PvdS-boxsequencemotif.ThisalignmentwasproducedbyGibbssamplinganalysisofsequencesconfirmedtocontainapromoter regulatedbyPvdS.Asummaryofthepropensityofeachnucleotidetooccupyeachpositionisrepresentedabovethealignmentasa sequencelogo. A.The-35motif(TAAAT[A/T])isontheleft-handsideandisseparatedmostoftenbya15bpspacerfromthe-10motifwhichcontainsthe invariantCGTTnucleotides. B.Individualsequencemotifsalignedandshownwithrelevantpositioninformation.ThedistanceisfromtheinvariantTatposition26andthe firstnucleotideoftheannotatedstartcodon.TheevidencecolumnsummarizestheexperimentalevidencesupportingPvdS-dependent regulation:L,promotertraplibraryisolate;F,luxfusion;R,confirmedbyqRT-PCR;T,transcriptstartsitelocated. (A↔C and T↔G) to test specific bases for a functional G163T, T164G and T165G in Table1). As expected, roleinPvdS-dependentexpression(Table1).Twenty-one similar levels were observed when the entire -10 region contained single-base substitutions and two contained wasmutated.Onepositionwithinthespacerregionadja- multiple substitutions in either the -10 or -35 regions. cent to the -10 element that was not identified as being Plasmids containing transcriptional fusions of the wild- conserved among the promoters was associated with type promoter region for PSPTO_2152 or the mutant modest reductions in expression (T160G), suggesting derivatives with the ′luxCDABE operon were introduced a role for flanking nucleotides. In contrast to the -10 into E.coli along with the PvdS expression construct element, single-base-pair mutations in the -35 element (pBS49).The effect of the mutations on reporter expres- did not have a statistically significant effect on transcrip- sion was assessed and compared with the wild-type tion,exceptinonecase(T141G;65%reduction).Multiple controltoinfertranscriptionalactivity. substitutions disrupting the -35 element eliminated pro- Severalmutationsseverelyreducedtranscription,while moter activity, confirming the essential role of this none of the mutant promoters was significantly more element. active than wild type at P(cid:2)0.05. The single-nucleotide These results indicate that both the -10 and -35 ele- mutations with the greatest impact on transcription were ments are required for promoter function and that an allinthe-10region.Substitutionofanyofthefourinvari- important difference exists between the two domains of ant nucleotides in the -10 element reduced transcription this motif in terms of their sensitivity to single-nucleotide 86% or more compared with wild type (see C162A, substitutions. The scanning mutagenesis of the con- Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks 876 B.Swingleetal. (cid:2) Table1. MutagenesisofPvdS-boxmotif. Plasmid Promotersequence LogRLU Promoteractivity pBS102(WT) TTCATTAAATAATCGTTAATCGCTTTCGTTCTCAT 5.70((cid:3)0.45) 1.00 pBS102(A139C) TTCCTTAAATAATCGTTAATCGCTTTCGTTCTCAT 5.73((cid:3)0.02) 1.06(0.87) pBS102(T140G) TTCAGTAAATAATCGTTAATCGCTTTCGTTCTCAT 5.72((cid:3)0.04) 1.05(0.91) pBS102(T141G) TTCATGAAATAATCGTTAATCGCTTTCGTTCTCAT 5.25((cid:3)0.04) 0.35(0.03) pBS102(A142C) TTCATTCAATAATCGTTAATCGCTTTCGTTCTCAT 5.42((cid:3)0.40) 0.52(0.21) pBS102(A143C) TTCATTACATAATCGTTAATCGCTTTCGTTCTCAT 5.45((cid:3)0.38) 0.57(0.26) pBS102(A144C) TTCATTAACTAATCGTTAATCGCTTTCGTTCTCAT 5.62((cid:3)0.40) 0.84(0.72) pBS102(T145G) TTCATTAAAGAATCGTTAATCGCTTTCGTTCTCAT 5.46((cid:3)0.06) 0.58(0.18) pBS102(A146C) TTCATTAAATCATCGTTAATCGCTTTCGTTCTCAT 5.78((cid:3)0.41) 1.21(0.70) pBS102(A147C) TTCATTAAATACTCGTTAATCGCTTTCGTTCTCAT 5.64((cid:3)0.05) 0.88(0.73) pBS102(T148G) TTCATTAAATAAGCGTTAATCGCTTTCGTTCTCAT 5.66((cid:3)0.06) 0.91(0.81) pBS102(C149A) TTCATTAAATAATAGTTAATCGCTTTCGTTCTCAT 5.57((cid:3)0.35) 0.77(0.52) pBS102(G150T) TTCATTAAATAATCTTTAATCGCTTTCGTTCTCAT 5.78((cid:3)0.03) 1.21(0.62) pBS102(141–145) TTCATGCCCGAATCGTTAATCGCTTTCGTTCTCAT 3.74((cid:3)0.02) 0.01(6E-6) pBS102(T160G) TTCATTAAATAATCGTTAATCGCTGTCGTTCTCAT 5.22((cid:3)0.04) 0.33(0.02) pBS102(T161G) TTCATTAAATAATCGTTAATCGCTTGCGTTCTCAT 5.43((cid:3)0.49) 0.54(0.27) pBS102(C162A) TTCATTAAATAATCGTTAATCGCTTTAGTTCTCAT 4.28((cid:3)0.07) 0.04(4E-5) pBS102(G163T) TTCATTAAATAATCGTTAATCGCTTTCTTTCTCAT 3.58((cid:3)0.08) 0.01(2E-6) pBS102(T164G) TTCATTAAATAATCGTTAATCGCTTTCGGTCTCAT 4.08((cid:3)0.24) 0.02(3E-6) pBS102(T165G) TTCATTAAATAATCGTTAATCGCTTTCGTGCTCAT 4.83((cid:3)0.35) 0.14(9E-4) pBS102(C166A) TTCATTAAATAATCGTTAATCGCTTTCGTTATCAT 5.64((cid:3)0.34) 0.88(0.78) pBS102(T167G) TTCATTAAATAATCGTTAATCGCTTTCGTTCGCAT 5.39((cid:3)0.36) 0.49(0.15) pBS102(C168A) TTCATTAAATAATCGTTAATCGCTTTCGTTCTAAT 5.39((cid:3)0.04) 0.49(0.09) pBS102(162–165) TTCATTAAATAATCGTTAATCGCTTTATGGCTCAT 3.80((cid:3)0.04) 0.01(6E-6) Theactivityofpromoterswithsingle-andmultiple-nucleotidesubstitutionswithinandflankingconservedpositionsofthePvdS-boxmotifwas assessedinvivobycomparingtherelativeluminescenceproducedfromwildtype(WT=PSPTO_2152)andmutatedPvdS-boxderivatives.Log RLUshowstheaverage(n=6)ofthelog10relativelightunitsandstandarddeviation.Promoteractivityistheratioofexpressionfromtheindicated promoterrelativetowildtypewiththeP-valueshowninparentheses.The-35and-10promoterelementsareindicatedbyunderscoringandthe mutatednucleotidesarehighlighted. servedregionsofthePvdS-box,alongwiththetranscrip- scores greater than or equal to 11.2. Of these, 11 were tionstartmapping,providesextremelystrongevidencefor located within the pyoverdine cluster, while four mapped theassociationofpromoteractivitywiththismotif. to other regions of the genome (Fig.6). This HMM scan identified one additional PvdS-box that is plausibly positioned to function as a promoter, upstream of ConstructionanduseofPvdS-box PSPTO_3172, which is predicted to encode a NorM-like hiddenMarkovmodels memberoftheMATEfamilyofeffluxtransporters.The11 The 15 DC3000 promoter sequences that were experi- implausible motifs were either positioned within genes, mentallyvalidated(Fig.3)anddetectedbyGibbssampling were located or oriented in ways that are not typically were manually realigned to optimize conservation of associated with promoter function based on existing the -10 and -35 elements, and are summarized in the annotation,andgenerallyhadlowerscores((cid:2)11.2).We sequence logo shown in Fig.4A. HMM model A was cannot,however,ruleoutthepossibilitythatoneormore trainedonthisrealignedsetandusedtoscanthegenomes are functional. For example, the PvdS-box embedded in of10fullysequencedfluorescentpseudomonads,includ- PSPTO_3556(glcE)exhibitsmodestbutsignificantdiffer- inghumanpathogens(P.aeruginosa),aninsectpathogen entialexpression(seeFig.1B)althoughitispositionedto (P.entomophila), saprophytes (P.fluorescens), bioreme- generate an antisense transcript within this gene, and diation agents (P.putida) and plant pathogens (P.syrin- in fact evidence for transcriptional activity generated gae).Theresultsofthegenomescansaresummarizedin from promoters in unconventional orientations has been Fig.5A, where we characterize the number of ‘plausible’ observed in at least one other system (Eiamphungporn and‘implausible’matchestomodelAforeachgenomeat and Helmann, 2008). In general the scanning results in twodifferentHMMscorevaluecut-offs. DC3000 suggest that model A provides a reasonably ScanningtheDC3000genomeidentified27matchesto completedescriptionofthePvdSreguloninDC3000. the motif (16 plausible and 11 implausible) at a HMM The other pseudomonads appear to group into two score cut-off of 10.0 (Table2 and Fig.5A). All 15 classes based on the tendency for sequences similar to sequencesinthemodelAtrainingsetwererecoveredwith the DC3000 PvdS-box to be located upstream of anno- Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks PvdSregulationinPseudomonassyringae 877 A Fig.4. ComparisonofPvdS-regulated promotermotifs.Sequencelogoshavebeen 2.0 scaledtoreflectaG/Cnucleotidebiasof 61%,theapproximateaverageG/Ccontentin the10genomesanalysed.ModelA(A), DC3000-based;modelB(B),PAO1-based; Bits1.0 modelC(C),DC3000andPAO1combined. Alignedsequencesrepresentedinthese sequencelogosandusedtotrainHMMs 0.0 (modelsA,BandC)areavailableinClustal 5 10 15 20 25 30 formatinSupplementarymaterialat http://www.blackwell-synergy.com/doi/abs/ B 10.1111/j.1365-2958.2008.06209.x 2.0 Bits1.0 0.0 5 10 15 20 25 C 2.0 Bits1.0 0.0 5 10 15 20 25 30 Fig.5. PvdS-boxmatchesin10pseudomonadgenomes.HMMswereusedtoscangenomesattwodifferentcut-offscores(10.0and11.0). Matcheswereconsideredplausibleiftheywereorientedcorrectlywithrespecttoadownstreamgene,andiftheir5′endswerelocatedinthe intervalbeginning300ntupstreamofanannotatedgenestartand50ntdownstreamofthisstart.Weincluded50ntoftheN-terminusto accountforthepossibilityofmisannotatedstartcodons.Bothplausible(blue)andimplausible(yellow)matchesareshownforeachgenome. Theresultsfromscansusingacut-offof11.0areshownusingthelightercolours.Themorerelaxedcut-off(10.0,withdarkercolours)was includedtodemonstratethegeneraldegradationofthemodelasthecut-offwasreduced.(A)modelA;(B)modelB;(C)modelC. Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks 878 B.Swingleetal. (cid:2) Table2. PvdS-boxHMMscanresultsinDC3000. Co-ordinates HMM 5′ 3′ PvdS-boxsequence G score Orientation 2306853..2306880 TAATTATTTGCAGACGCCATCCGTTCTC • 16.9 U/S 2134 2322444..2322471 TAATTTTTCGACGTAGCGATACGTTCAA • 16.4 U/S 2137 2374232..2374259 TAAAAATTTTCGCCCGCGCTTCGTTTAA • 16.1 U/S 2161 5573285..5573258 TAATTACTGGCCCTCGCTAATCGTTCTT • 16.0 U/S 4923 2367751..2367778 TAAATTTGTCAGCCGGTTTTACGTTCTA • 15.8 U/S 5624 2329292..2329319 TAATTTTTCAGCCGCGAAGTACGTTCAA • 15.4 U/S 2146 2330476..2330502 TAAATATTTCCCCGCCAATTCGTTCTT • 15.4 U/S 2147 3717249..3717276 TAAAAACATGCCAGACCGAGACGTTTAT • 15.2 U/S 3290 2367721..2367694 TAAATTTTTCGCCCATCCGCTCGTTCTC • 15.0 U/S 2156 4013974..4014001 AAAAGAACGGCAGACGCTGTTCGTTCAA 13.2 E/A 3556 2374203..2374176 TAAATTCCGGCCTGCATTTCTCGTTTAA • 12.4 U/S 2160 3565679..3565652 AAAATATAGCCACGCGACAGACGATCAT 12.3 U/S 3172 800054..800081 TGAATTAATTCTCCCGTCCGTCGTTCTC • 12.1 U/S 0753 2329217..2329190 AAAATATTCCTACAGGAATCTCGTTCTC • 12.1 U/S 2145 3200665..3200692 TAAATATTTCATACTGCACTCCGTTCTT 11.8 I/A 2850 5055286..5055259 TGAAGTTTTCCGAGCACAGTTCGTTTTA 11.6 E/S 4488 2341777..2341805 TAAATCACTGGAGGCACTCAAACGTTTAT • 11.3 U/S 2149 2362183..2362156 TAAATAATCGTTAATCGCTTTCGTTCTC • 11.3 U/S 2152 3353644..3353617 TCAAGAAATCAACCACTTGAACGTTTTA • 11.2 U/S 2982 646696..646723 TCGATATTCCAGCCAGCAAGACGTTCAA 11.1 E/S 0587 1209925..1209952 TAAAAAATGCTCCACAAGATACGATCAC 11.1 I/A 1098 5758588..5758561 TAAAGAAAAGCACACGCTAATCATTCTT 11.1 E/S 5056 225903..225876 TAATTAGCGGAACCACTGTTACGTTTTT 10.8 E/S 0202 3717077..3717050 TAAAAAAAGCGCCCCGAAGGACGCTTTA 10.7 I/A 3289 3244256..3244283 AAAAAACCCGCCGAAGCGGGTCGTTTTT 10.6 I/A 2881 312912..312939 TAAGATTTTGAACGCATTACACGCTCAA 10.3 U/S 0287 6224284..6224257 TGAATTTTGCGCCGAGCGATTCGATCTG 10.3 E/A 5463 Allregionsofthegenomewithsignificantmatches(score(cid:4)10.0)totheDC3000-basedPvdS-boxmodelAareshownwiththelocationindicated bygenomeco-ordinatesandarelistedindescendingorderbyHMMscore.Shadedentriesindicatedassociationwithpyoverdine.The-10and -35elementsareunderlined.AdotintheGibbscolumn(G)indicatesmembershipinboththeGibbsinputandoutput(seeTableS2andFig.3). TheHMMscorerepresentsthedegreeofsimilaritybetweenthegenomicsequenceandtheHMM.Theorientationcolumndescribesthepositioning ofthepromoterrelativetoannotatedgenes:U/S(upstream/sense),upstreamandpositionedtofunctionasapromoterinthesenseorientationfor theindicatedgene.Theremainingthreecategoriesdescribematchesthatareunlikelytofunctionasconventionalpromoters:E/S(embedded/ sense),embeddedinageneandorientedtotranscribeinthesensedirection.I/A(intergenic/antisense),intergenicbutorientedtogeneratean antisensetranscriptfortheindicatedgene.E/A(embedded/antisense),embeddedinageneandorientedtogenerateanantisensetranscript. tated reading frames (see Fig.5A). In the first class Experimental procedures). Model C is a consistently (P.syringae B728a, P.syringae 1448A, P.fluorescens aligned combination of the DC3000-based model A and Pf-5andP.fluorescensPfO-1),wefindlargernumbersof thePAO1-basedmodelB.Sequencelogosofthetraining plausible matches and a higher ratio of plausible-to- sets for modelsA, B and C are shown in Fig.4. Table3 implausible promoters; between 67% (12/18) and 88% lists the plausible promoters resulting from scanning (15/17)ofthematchestotheDC3000-basedmodelAwith pseudomonadgenomeswithmodelsA,BandC. scores(cid:4)11.0arelocatedinpositionsconsistentwiththeir Using the PAO1-based model B to scan the 10 functionaspromoters.Inthefiveremaininggenomesthat pseudomonad genomes revealed that this model identi- comprisethesecondclass,significantlysmallernumbers fiedplausiblepromotersinthetwoP.aeruginosastrains, ofplausiblematcheswereidentified,andlowerplausible- and also identified other plausible promoters associated to-implausible ratios, suggesting the possibility that the with pyoverdine in several species not found using the PvdS-regulated promoters of these organisms are mea- DC3000-based model A. However, Fig.5 reveals that surablydifferentfromthosefoundinDC3000. there are systematic differences in the performance of To understand the differences in specificity of the modelsAand B, suggesting that neither model is trans- DC3000-based model described above, we constructed ferable across the genus. This observation provided our two additional HMMs using sequences conferring PvdS- motivation for constructing the combined model C. dependentexpressioninPAO1.ModelBwasconstructed Figure5C indicates that model C generally performs using 13 sequences from PAO1 containing IS-boxes as better across the genus than either A or B separately, describedinRavelandCornelis(2003)(seeFig.S1and identifying greater numbers of plausible promoters while Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks PvdSregulationinPseudomonassyringae 879 Product/FunctionMFS transportePrvdS; SigmPav fdaGc; tTohrioPesvtseAr/aPsvedL; DNaTR; PASminoMtrbatnHs-lfiekrea speroteiAnBC transporters Hypothetical MpreotmebirnasnTae uprirnote eidnePoxvydIgenasePvdJ PvdK PvdD TonB-siddeepreonpdheornte rPevcdeEp; tAorBsC tPrvadnsO;p oHrytperoPtvhdetNi; cAalminPovtdraM;n sfDierpaePspvetiddP; asTeAT-siRgNnDa l efpfleuptxi tAdrBeaCn sefpflorutx etrRraNnD sepffolrtuxe rtPrvadnQs; pAocrtylearseTannase/ferulPooyrl ien,s tOerprasD efaAzmiluryin Chromophore Membrane proteins Peptide NRPS Rcptr. Efflux 0753 2133 2134 2135 21362137 2138-2145 2146 2147-2150 2151 2152 2153 2154 2155 2156 5624 2158 21592160 2161 2982 3290 4923 P. syringae DC3000 0657 1943 19441945 1946 1947 1948-1955 1956 1957-1960 1961 1962 1963 1964 1965 1966 1967 1968-1970 1971 2863 4807 0591 P. syringae B728a 4640 1909 19101911 1912 1913 1914-1921 1922 1923-1926 1927 1928 1929 1930 1931 1932 1933 1934-1936 1937 2381 0586 P. syringae 1448A 0713 4190 4189 4179 4178 4176-4169 4095-4093 4092 4091 4089 4088 4087 4086 4083-4081 2902 0592 P. fluorescens Pf-5 0664 3941 3940 3932 3931 3930-3923 1845-1847 1848 1849 1850 1851 1852 1853 1854 1855-1857 2563 3618 0546 P. fluorescens PfO-1 3573 24262425 2424 2413 2412 2410-2403 2402-2399 2398 2397 2395 2394 2393 2392 2391-2389 2385 2505 4922 P. aeruginosa PAO1 1809033260 3327033280 3350033510 33530-33600 33610-33650 3368033690 337103372033730 33740 33750-33770 33820 32270 65000 P. aeruginosa PA14 0628 1623 1624 1640 1642 1643 1644 1674-1677 1678 1679 1680 1681 1683-1685 1961 1965-1972 2790 0060 4748 P. putida F1 0589 4244 4243 4223 4222 4221-4219 4217 4216 4215 4214 4213 4212 4211-4209 3808 3804-3797 2901 0046 4870 P. putida KT2440 0672 18141815 3220 3221 3222 3224 3225 3229-3234 3235-3242 3329 3664-3666 3667 3669 2083 2340 4921 P. entomophila L48 Fig.6. TheDC3000PvdSregulonwithpredictedorthologuesinninepseudomonadgenomes.GenesinDC3000downstreamof experimentallyvalidatedPvdS-boxes(reddots)andpredictedoperonmembers(shaded)areshownintheirgenomiccontext.TheDC3000 pyoverdineclusterislocatedinasinglelocusthatspans70.5kb(from2133to2161).Intheotherpseudomonads,matches(scores(cid:4)10.0) toanyofthethreemodelsdetailedinTable3areshownwithgreendots.Numbersaboveeachgenerefertoannotationintherespective genomes. retaining an acceptable ratio of plausible-to-implausible results confirm the role of PvdS in the expression of matches. In addition, model C identifies PvdS-boxes pyoverdine-related genes and suggest that PvdS inte- upstreamofgenesrelatedtopyoverdinemetabolismthat grates iron status with other functions beyond pyover- were missed by the single-species models A and B. dine metabolism. Finally,othergenesareidentifiedthatappeartovaryfrom These experiments establish two important aspects organism to organism (see Table3), and the union of pertaining to the details of regulation by PvdS. First, we resultsfromscansA,BandCprovidesnovelhypotheses report a de novo identification of a PvdS-regulated pro- regarding species-specific PvdS regulation across the motermotifusingsequencesthatexhibitPvdS-dependent fluorescentpseudomonads. activityinDC3000.Theobservedsequenceconservation intheconfirmedpromoters,alongwithmutagenesisdata, suggestsimportantanddistinctrolesforthe-10and-35 Discussion elements in the interactions of PvdS with cognate Genome-wide approaches are well suited for investigat- promoters. Second, we have developed computational ing the role and scope of individual sigma factors, both models that can be used to predict regulation by PvdS. because of the essential role in transcription of these WehaveappliedthesemodelsbothtoDC3000,confirm- regulators and because of their potential for ing that our inventory of PvdS-dependent promoters in co-ordinating global organismal responses. We used a DC3000isnearlycomplete,andtootherfullysequenced combination of computational and molecular genetic pseudomonads to generate predictions about PvdS- approaches to identify the DC3000 promoter motif rec- dependent regulation in those organisms. The DC3000 ognized by PvdS, a group IV/ECF sigma factor, PvdS-box refines and extends the IS-box previously members of which regulate transcription in response to described in P.aeruginosa (Rombel etal., 1995; Wilson specific environmental signals.This work is an important etal.,2001;Ochsneretal.,2002;Viscaetal.,2002)and step towards understanding the regulation of pyoverdine supports the prediction that pyoverdine genes are regu- metabolism, which makes vital contributions to lated by similar mechanisms among the fluorescent pseudomonad fitness in environmental and host interac- pseudomonads(Rombeletal.,1995;RavelandCornelis, tions (Meyer etal., 1996; Poole and McKay, 2003). The 2003). Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks 880 B.Swingleetal. (cid:2) Table3. GenesdownstreamofHMMmatchesinDC3000andnineothersequencedpseudomonadgenomes. Co-ordinates HMM 5′ 3′ Sequence A B C ORF Product P.syringaepv.tomatoDC3000 NC_004578 2306853..2306880 TAATTATTTGCAGACGCCATCCGTTCTC 16.9 14.6 PSPTO_2134 PVDchromophorethioesterase 2322444..2322471 TAATTTTTCGACGTAGCGATACGTTCAA 16.4 15.3 PSPTO_2137 MbtH-likeprotein 2374232..2374259 TAAAAATTTTCGCCCGCGCTTCGTTTAA 16.1 15.5 PSPTO_2161 PvdQ;acylase 5573285..5573258 TAATTACTGGCCCTCGCTAATCGTTCTT 16.0 14.1 PSPTO_4923 Azurin 2367751..2367778 TAAATTTGTCAGCCGGTTTTACGTTCTA 15.8 12.5 16.4 PSPTO_5624 PvdP:TATsignal 2329292..2329319 TAATTTTTCAGCCGCGAAGTACGTTCAA 15.4 10.6 15.4 PSPTO_2146 Taurinedeoxygenase 2330476..2330502 TAAATATTTCCCCGCCAATTCGTTCTT 15.4 14.2 PSPTO_2147 PVDpeptideNRPS 3717249..3717276 TAAAAACATGCCAGACCGAGACGTTTAT 15.2 11.3 PSPTO_3290 Porin;OprDfamily 2367721..2367694 TAAATTTTTCGCCCATCCGCTCGTTCTC 15.0 15.3 PSPTO_2156 Dipeptidase 2374203..2374176 TAAATTCCGGCCTGCATTTCTCGTTTAA 12.4 11.8 14.2 PSPTO_2160 RNDeffluxtransporter,porin 3565679..3565652 AAAATATAGCCACGCGACAGACGATCAT 12.3 PSPTO_3172 Effluxtransporter 800054..800081 TGAATTAATTCTCCCGTCCGTCGTTCTC 12.1 10.7 PSPTO_0753 Drugresistancetransporter 2329217..2329190 AAAATATTCCTACAGGAATCTCGTTCTC 12.1 PSPTO_2145 Membraneprotein 2362183..2362156 TAAATAATCGTTAATCGCTTTCGTTCTC 11.3 11.1 PSPTO_2152 TonB-dependentreceptor 2341777..2341805 TAAATCACTGGAGGCACTCAAACGTTTAT 11.3 PSPTO_2149 PVDpeptideNRPS 3353644..3353617 TCAAGAAATCAACCACTTGAACGTTTTA 11.2 PSPTO_2982 Tannase/feruloylesterase 4725717..4725744 TGAATTCGACTGTCGGTGATTCGTTTCA 10.8 PSPTO_4196 Glucosedehydrogenase 4378372..4378345 TGAGTTTCAGGCGGCCAGTTACGTTCAT 10.7 10.8 PSPTO_3864 PsyI;N-acylhomoserinelactonesynthase 4131225..4131252 TAAAGCCTACCGCGCCGCCATCGTTCAC 10.0 11.3 PSPTO_3663 Ganinedeaminase 4357542..4357569 TAAATGCCTGCGCCAGAACATCGTTTCA 12.3 PSPTO_3849 RhselementVgrprotein 1925512..1925539 AAAAATTCAGGCCGAGTTGATCGTTCCC 11.1 PSPTO_1754 UDP-glucose4-epimerase 693151..693178 TAAAGTTCTGCTTGGCCCGCACGTTTCC 11.0 PSPTO_0628 50SribosomalproteinL23 2394871..2394898 TAAATTTTTTGCCGTATTCAGCGTTATA 10.5 PSPTO_2175 LeuB;3-isopropylmalatedehydrogenase P.syringaepv.syringaeB728a NC_007005 2216773..2216800 TAATTATTTGCAGACGCCATCCGTTCTC 16.9 14.5 Psyr_1944 PVDchromophorethioesterase 2232356..2232383 TAATTTTTCGACGTAGTGATACGTTCAA 16.4 15.6 Psyr_1947 MbtH-likeprotein 2239795..2239822 TAATTTTTCAGCGACGCAGTACGTTCAA 14.8 14.4 Psyr_1956 Taurinedeoxygenase 3435473..3435446 TGAATAATCGCCAGGCTTAAACGTTTTA 14.8 13.6 Psyr_2863 Tannase/feruloylesterase 2285734..2285707 TAAATTCCTGCCGGCACGCCTCGTTTAA 14.5 14.0 17.0 Psyr_1970 RNDeffluxtransporter,porin 2279024..2278997 TAAATTTATCGGCGATCCGCTCGTTCTC 13.9 10.6 15.2 Psyr_1966 Dipeptidase 2241308..2241334 TAAATATTTCCTCGCCAATTCGTTCTT 13.9 12.4 Psyr_1957 PVDpeptideNRPS 679878..679905 TAATTACCGGGTCCCGTGAATCGTTCTT 13.8 10.4 14.4 Psyr_0591 Azurin 2279054..2279081 TAAATTTGTCTGCCGGGTTTACGTTCTA 13.7 11.6 15.1 Psyr_1967 PvdP:TATsignal 744682..744709 TGAATTAATTCCCCCGTTCGTCGTTCTC 13.0 11.6 Psyr_0657 Drugresistancetransporter 2252732..2252760 TAAATCACTGGAGGCACTCAAACGTTTAT 11.4 Psyr_1959 PVDpeptideNRPS 849265..849238 GAAATCCTTCAAGACCCAAGTCGTTCAA 11.3 Psyr_0746 IS66Orf2like 3187125..3187098 TAAATACTGGGGCCAGGTGCTCTTTCTA 11.2 11.2 Psyr_2626 Hypotheticalprotein 2605313..2605340 TAAAGCTTTGGTAGCGACAGACGTTAAC 11.1 Psyr_2241 Chemotaxissensorytransducer 5703584..5703611 TAAAAAAAGCGCCCCGAAGGACGCTTAA 11.1 Psyr_4808 Hypotheticalprotein 1648899..1648926 TAAATTCAGAGCCGTGGCGCTCGTTTTT 10.3 11.8 13.3 Psyr_1462 GCN5-relatedN-acetyltransferase 1417924..1417951 TCAATAACTGGCTGGATGCGTCGTTCAC 10.1 10.9 Psyr_1261 GuaB 5017688..5017661 TGAATTTGCCCGACGGCTGCGCGTTTCA 10.7 10.0 Psyr_4211 ABCtransporter 1085896..1085923 TGAAGTTCTGGCGGGCGGGGTCGATGCA 10.5 Psyr_0950 HemK;methyltransferase 4713662..4713689 TAAAAAACAGGCGCCCGGATGCGTCTGA 10.1 Psyr_3966 Membranetransport 2086497..2086470 TAAAGCCTACCGCGCCGCCATCGTTCAC 10.0 11.3 Psyr_1812 Guaninedeaminase 1012883..1012856 TGAAGTCCTGCCTGCGCCTTGCGTTTCA 10.0 10.5 Psyr_0891 ChrR;transcriptionactivator 5401838..5401811 TAAAGTTCTGCTTGGCCCGCACGTTTCC 10.9 Psyr_4546 50SribosomalproteinL23 2285763..2285790 TAAACATCAGCGTCCGTGTTCCGTTTAA 10.3 Psyr_1971 PvdQ;acylase 2489035..2489008 TAAATTGTCGGCCCGACGGATCGTTTCG 10.3 Psyr_2129 MFStransporter 4025673..4025700 TGATTGTCGAAGGCCGCGGAACGTTCAA 10.2 Psyr_3367 IronpermeaseFTR1 2273489..2273462 TAAATAAACGTTATTCGCTTTCGTTCTC 10.1 Psyr_1962 TonB-dependentreceptor P.syringaepv.phaseolicola1448A NC_005773 2215579..2215606 TAATTATTTGCAGACGCCATCCGTTCTC 17.0 14.6 PSPPH_1910 PVDchromophorethioesterase 2231162..2231189 TAATTTTTCGACGTAGCGATACGTTCAA 16.4 15.3 PSPPH_1913 MbtH-likeprotein 2239548..2239574 TAAATATTTCCCCGCCAATTCGTTCTT 15.4 14.3 PSPPH_1923 PVDpeptideNRPS 2276764..2276737 TAAATTTTTCGCCCATCCGCTCGTTCTC 15.1 15.4 PSPPH_1932 Dipeptidase 2762672..2762699 TGAATAATTGCCTCGCTTAAACGTTTTA 14.2 12.6 PSPPH_2381 Tannase/feruloylesterase 2238138..2238165 TAATTTTCTCGTGGCGAAGTACGTTCAA 14.0 10.7 14.6 PSPPH_1922 Taurinedeoxygenase 2276794..2276821 TAAATTTGTCTGCCGGGTTTACGTTCTA 13.7 11.6 15.1 PSPPH_1933 PvdP;TATsignal 693174..693201 TAATTACCTGCTCCCGTGAATCGTTATT 12.7 12.9 PSPPH_0586 Azurin 1689357..1689330 TAAATTCATCCACACTGGATACGATCAA 11.7 11.0 PSPPH_1448 Hypotheticalprotein 5279635..5279608 TGAATTAATTACCCTGTCCTTCGTTCTC 11.6 12.0 PSPPH_4640 Drugresistancetransporter 2283545..2283518 TAAATTCCCGTCCTCATCCCTCGTTTAA 11.3 12.0 14.0 PSPPH_1936 RNDeffluxtransporter,porin 2250912..2250940 TAAATCACTGGAGGCACTCAAACGTTTAT 11.2 PSPPH_1925 PVDpeptideNRPS 2300785..2300812 TAAATTTTTCGCCGCTGCGAGCGTTATA 10.3 13.0 13.9 PSPPH_1954 LeuB;3-isopropylmalatedehydrogenase 1850987..1851014 GAAATTCCAGCGGGCGCAAGTCGTTCAT 10.2 10.6 PSPPH_1597 ISPsy18,transposase 1543459..1543486 TCAATAACTGGCTGGATGCGTCGTTCAC 10.0 10.8 PSPPH_1333 GuaB 4485522..4485549 TGAATTCGACCGTCGGTGATTCGTTTCA 12.5 11.1 PSPPH_3927 Glucosedehydrogenase 1191967..1191994 TGAAGTTCTGGCGGGCGGGGTCGATGCA 10.1 PSPPH_0998 HemK;methyltransferase 2283574..2283600 TAAATTTTGCGTCTGCGCTTCGTTTAA 11.3 PSPPH_1937 PvdQ;acylase 5225800..5225773 TAAAGTTCTGCTTGGCCCGCACGTTTCC 11.0 PSPPH_4590 50SribosomalproteinL23 593310..593337 TGATTACCCGTGCCCGCCAGACGTTCCA 10.9 PSPPH_0509 GlnE 2201685..2201658 TCAATGTCTGCGGGGGTATCTCGTTTTT 10.4 PSPPH_1897 Integrase 2271222..2271195 TAAATAAACGTTATTCGCTTTCGTTCTC 10.2 PSPPH_1928 TonB-dependentreceptor 184783..184810 TAAATCCCCGGCATACGGGACCGTTCAT 10.0 PSPPH_0157 Hypotheticalprotein P.fluorescensPf-5 NC_004129 4876034..4876007 TAATTATTTCAAGACGTCATCCGTTCTC 15.1 13.2 PFL_4189 PvdL;PVDchromophoreNRPS 4589567..4589540 TAAATTCCTCACGGGCTGTTACGTTTTA 13.8 13.5 16.2 PFL_3974 Hypotheticalprotein 4738601..4738573 TAAATCTTTGGAGGCCCTCAAACGTTTAT 13.6 11.4 PFL_4093 PVDpeptideNRPS 1032891..1032918 TAAATTGAGCATAGAGGAAAACGTTTTC 12.4 10.7 PFL_0889 AuxinEffluxCarrier Journalcompilation©2008BlackwellPublishingLtd,MolecularMicrobiology,68,871–889 NoclaimtooriginalUSgovernmentworks

Description:
tomato DC3000 (DC3000), a plant pathogen that is likely to AlgI-like protein .. liams, S.T. (eds) (1994) Bergey's Manual of Determinative.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.