CHARACTERIZATION OF THE ACCURACY IN A REVERSE ENGINEERING PROCESS EMPLOYING WHITE LIGHT SCANNED DATA TO DEVELOP CONSTRAINT-BASED THREE DIMENSIONAL COMPUTER MODELS By Christopher W. Rhoades A Thesis Submitted to the Faculty of the Graduate School of Western Carolina University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology Committee: _____________________________________________ Director _____________________________________________ _____________________________________________ _____________________________________________ Dean of the Graduate School Date: ________________________________________ Spring 2011 Western Carolina University Cullowhee, North Carolina CHARACTERIZATION OF THE ACCURACY IN A REVERSE ENGINEERING PROCESS EMPLOYING WHITE LIGHT SCANNED DATA TO DEVELOP CONSTRAINT-BASED THREE DIMENSIONAL COMPUTER MODELS A thesis presented to the faculty of the Graduate School of Western Carolina University in partial fulfillment of the requirements for the degree of Master of Science in Technology By Christopher W. Rhoades Director: Dr. Chip Ferguson Associate Professor Department of Engineering Technology Committee Members: Dr Wesley Stone, Engineering Technology Dr. Aaron Ball, Engineering Technology March 2011 Acknowledgements I would like to thank my committee members, Dr. Chip Ferguson, Dr. Aaron Ball, and Dr. Wes Stone for their guidance and assistance during the time of my research. I would also like to t show appreciation to my fellow graduate students Jason Proffitt, Josh Ellis, Tyler Bennett, Andrew J. Punch, and Matthew Proffitt for their support and encouragement throughout my graduate studies. I would also like to express thanks to my sister Andrea Still for her help and suggestions while writing my thesis, and the rest of my family for their help and support during my research. TABLE OF CONTENTS ACKNOLOGEMENTS ........................................................................................................ ii TABLE OF CONTENTS ................................................................................................... iii LIST OF FIGURES ............................................................................................................ v LIST OF TABLES ............................................................................................................ vii ABSTRACT ..................................................................................................................... viii CHAPTER 1: Introduction ................................................................................................. 9 Purpose and Objective ................................................................................................... 9 Problem Statement ....................................................................................................... 10 Background .................................................................................................................. 11 The ATOS system. .................................................................................................. 11 Methodology ................................................................................................................ 12 Overview of Measurement Procedure. ................................................................... 13 Analysis of measurements. ..................................................................................... 14 Terms and Definitions.................................................................................................. 15 Limitations and Delimitations ...................................................................................... 16 CHAPTER 2: Literature Review ...................................................................................... 18 Metrology & Reverse Engineering .............................................................................. 18 Computer Aided Design (CAD) .................................................................................. 19 Solid models............................................................................................................ 20 Contact Metrology ....................................................................................................... 21 Coordinate measuring machine. .............................................................................. 21 Non-Contact metrology ............................................................................................... 23 Interferometry. ........................................................................................................ 23 Photogrammetry. ..................................................................................................... 24 Moiré metrology. .................................................................................................... 26 Structured Light Scanning ........................................................................................... 28 Projection patterns. ................................................................................................. 31 Gray coding ........................................................................................................ 32 ATOS System .............................................................................................................. 34 Reference points. ..................................................................................................... 35 Calibration............................................................................................................... 37 Gage Blocks ................................................................................................................. 39 Post-Processing ............................................................................................................ 39 CHAPTER 3: Methodology .............................................................................................. 44 Overview of Testing Procedure .................................................................................. 44 Equipment Used ........................................................................................................... 46 ATOS system. ......................................................................................................... 46 Sensor configurations ......................................................................................... 47 Calibration.......................................................................................................... 48 Gage block selection & preparation. ....................................................................... 49 Point Cloud Acquisition ............................................................................................... 53 Post-Processing ............................................................................................................ 56 Polygonization using ATOS software. ................................................................... 57 Developing constraint based solid 3D models. ....................................................... 59 Measurement Method .................................................................................................. 64 Procedure for Analyzing Data ..................................................................................... 65 CHAPTER 4: Analyisis and Results................................................................................. 68 Normal Probability Test ............................................................................................... 68 One Sample t-test ......................................................................................................... 71 F-test ............................................................................................................................ 74 Two Sample t-test ........................................................................................................ 76 General Linear Model .................................................................................................. 79 Analysis of Variance (ANOVA) .................................................................................. 84 Chapter 5: Conclusion and Future Work .......................................................................... 87 Analysis of Statistical Results ...................................................................................... 87 Discussion of Results of t-tests .................................................................................... 88 One sample t-test..................................................................................................... 88 Two sample t-test. ................................................................................................... 90 GLM Discussion of Results ......................................................................................... 91 Conclusion ................................................................................................................... 92 Future Work ................................................................................................................. 93 REFERENCES ................................................................................................................. 96 APPENDIX A: Deviations Within Polygonization ........................................................ 101 APPENDIX B: Data Collected ....................................................................................... 102 APPENDIX C: One Sample t-test .................................................................................. 105 APPENDIX D: F-test ...................................................................................................... 108 APPENDIX E: Two Sample t-test Results ..................................................................... 114 APPENDIX F: General Linear Model ............................................................................ 120 APPENDIX G: ANOVA Results.................................................................................... 130 LIST OF FIGURES Figure 2.1: Coordinate Measuring Machine .................................................................. 22 Figure 2.2: Simple diagram for interferometry ............................................................. 24 Figure 2.3: Diagram of photogrammetry center of projection principle ....................... 25 Figure 2.4: Coded target ................................................................................................ 26 Figure 2.5: Moiré pattern of two identical line patterns superimposed at an angle on a flat surface .................................................................................................. 28 Figure 2.6: Out-of-plane Moiré pattern ......................................................................... 26 Figure 2.7: Triangulation of point P .............................................................................. 30 Figure 2.8: Distortion of coded light when projected onto an object ............................ 30 Figure 2.9: Gray code using four projection patterns . .................................................. 33 Figure 2.10: Gray code + phase shift .............................................................................. 34 Figure 2.11: Reference points, five 5mm on top, 3mm in the middle, and .8mm on the bottom ................................................................................................... 36 Figure 2.12: Measured point cloud around a reference point .......................................... 37 Figure 2.13: Calibration object for the 120mm measurement volume ............................ 38 Figure 2.14: Transformation of a point cloud into a parametric solid model .................. 40 Figure 2.15: Polygon mesh abnormalities ....................................................................... 41 Figure 2.16: Repaired polygon mesh .............................................................................. 42 Figure 3.1: Lenses for the 90mm, 500mm, and, 250mm for the projector and left and right cameras ........................................................................................ 46 Figure 3.2: ATOS IIe SO (left) and ATOS IIe 400 (right) ............................................ 47 Figure 3.3: False color mode for left and right cameras during aperture adjustment ... 48 Figure 3.4: Mitutoyo ceramic square gage blocks, sizes 1 inch, 0.5 inch, and 2 inch, certified by NIST used during data collection ............................................ 50 Figure 3.5: 3mm reference points placed on the surface of the three gage blocks ........ 51 Figure 3.6: Front surface of polygon mesh ................................................................... 52 Figure 3.7: Two inch gage block inside the 120mm measurement volume .................. 54 Figure 3.8: Gage block orientation for each scan (left) and local point clouds of the five corresponding scans (right) ................................................................. 55 Figure 3.9: Change in point density in curved regions, image created using scan data from a gear acquired using the ATOS system ............................................ 59 Figure 3.10: Three planes used to locate the CAD data in 3D space ............................. 60 Figure 3.11: Readjusted position of the gage block within the Cartesian coordinate system ......................................................................................................... 61 Figure 3.12: Polygon mesh after data were removed from the edges ............................. 63 Figure 3.13: Parametric model measured in Pro/Engineer .............................................. 64 Figure 3.14: Position of the four measurements taken from gage block scan data ......... 65 Figure 4.1: Normal probability plot for 90mm measurement volume .......................... 69 Figure 4.2: Normal probability plot for 120mm measurement volume ........................ 69 Figure 4.3: Normal probability plot for 250mm measurement volume ........................ 70 Figure 4.4: Normal probability plot for 500mm measurement volume ........................ 70 Figure 4.5: Interactions plot for measurement volume, object size and measurement location ....................................................................................................... 80 Figure 4.6: Main effects plot from the GLM on the main effects ................................. 82 Figure 4.7: Box plot for measurement volume .............................................................. 85 Figure 4.8: Box plot for object size ................................................................................ 86 Figure 5.1: Normal distributions for the one inch object size ....................................... 89 Figure 5.2: Normal distributions for the two inch object size ....................................... 90 Figure 5.3: Normal distributions for the half inch object size ....................................... 90 LIST OF TABLES Table 2.1: Measurement uncertainty of Geomagic’s algorithm based on the ASME B89.4.10-2000 Standard Default Test ............................................. 43 Table 4.1: Descriptive statistics ..................................................................................... 71 Table 4.2: Results from one sample t-test using an alpha of 0.01 ................................. 73 Table 4.3: F-test results .................................................................................................. 76 Table 4.4: Results from t-tests ....................................................................................... 78 Table 4.5: Results of ANOVA for general linear model of main effects and Interactions .................................................................................................... 80 Table 4.6: Results of ANOVA for general linear model of main effects only .............. 81 Table 4.7: Results from Tukey post hoc comparison test .............................................. 83 Table 4.8: Results from ANOVA on measurement volume .......................................... 84 Table 5.1: Accuracy table .............................................................................................. 93 ABSTRACT The statistical accuracy of constraint-based three-dimensional (3D) models created using reverse engineering software to post process scan data collected by an Advanced Topometric Sensor (ATOS) system is currently unpublished information useful to the end-user. Throughout the process of scanning an object and converting the scanned data into a constraint-based 3D model, error can be introduced into the final model. The error introduced into the constraint-based 3D model is difficult to calculate due to a large number of variables and factors. The current study sought to characterize the accuracy of this process based on different measurement volumes and object sizes. Optical 3D metrology techniques have become an accepted method in the field of reverse engineering. The popularity of optical 3D metrology is due in large part to the non-contact approach, which can quickly produce a dense point cloud. Using post- processing software, these point clouds can be converted into a constraint-based 3D model and used in much the same manners as 3D models created using CAD software. To simulate a variety of measurement conditions, four measurement volumes and three object sizes were selected generating a total of 36-point clouds. The 36-point clouds were converted into constraint-based 3D models. Four measurements were collected from each 3D model. To analyze the data collected, hypothesis testing was conducted to compare the data and inferential statistics were applied. The statistical tests include one- sample t-tests, two-sample t-tests, a General Linear Model (GLM), and multiple 1-way ANOVA. The statistical test found that a difference existed between the measured values and the actual values for both the object size and measurement volume. 9 CHAPTER 1: INTRODUCTION The purpose of the current thesis was to characterize the accuracy of a reverse engineering process to develop constraint-based three-dimensional (3D) models. These 3D models were created using scan data collected by an Advanced Topometric Sensor (ATOS) system and Geomagic Studio reverse engineering software. Throughout the process of scanning an object and converting the scanned data into a constraint-based 3D model, error was introduced into the final 3D model. Error within the reverse engineering process is difficult to calculate due to a large number of variables. The current study seeks to characterize the accuracy of the reverse engineering process contingent on varying measurement volumes and object sizes. With the growing popularity in commercial scanners used for applications such as reverse engineering and industrial inspection, the demand for a greater understanding of the accuracy and precision of reverse engineered 3D models is increasing. Purpose and Objective Optical 3D metrology using structured light scanning techniques has become an accepted method in the field of reverse engineering, due in large part to the non-contact approach, which can quickly produce a dense point cloud (Gesellschaft für Optische Messtechnik [GOM mbH], 2006). Optical 3D measurement devices, such as the ATOS system, generate 3D computer models that contain dimensional measurement information of real world objects. According to V. Raja (2008), the ATOS system and other similar systems convert the geometry of a physical object into a digital 3D point cloud for use in computer-aided design (CAD) and computer-aided manufacturing (CAM) software
Description: