KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT DER TOEGEPASTE WETENSCHAPPEN DEPARTEMENT ELEKTROTECHNIEK Kardinaal Mercierlaan 94, 3001 Leuven (Heverlee) C HARACTERIZATION OF MOS T M RANSISTOR ISMATCH FOR A D NALOG ESIGN Promotor: Proefschrift voorgedragen tot het behalen van het doctoraat in de Prof. Dr. Ir. W. SANSEN toegepaste wetenschappen Prof. Dr. Ir. M. STEYAERT door Jose Manuel A. T. Bastos May 1998 A CKNOWLEDGMENTS This thesis is the result of the research work that I realized at the ESAT-MICAS group of the Katholieke Universiteit Leuven. I would like to thank all the people that directly or indirectly made it possible. In particular, I would like to thank: • Prof. W. Sansen. Under his leadership, the ESAT-MICAS group became a place of excellence in Analog Circuit Design. I wish to express my deepest gratitude for having accepted me in his group, providing me the conditions, both material and social, that made this work possible. In particular, I am grateful for the freedom of research, for his ever present cordiality and support, and for the care put in the revisions of this text. • Prof. M. Steyaert, for having offered me the possibility of cooperating in the Mismatch Characterization Project, and for his insight and suggestions in crucial moments of the research. • Prof. G. Declerck, of the reading committee, Prof. H. De Man, Prof. J. Franca (IST, Portugal), Ir. E. Laes (Alcatel-Mietec), members of the jury, and Prof. J. Berlamont, chairman of the jury, for their valuable time spent in the evaluation of this work • Benny Graindourze and Anelia Pergoot from Alcatel-Mietec, and my colleagues Raf Roovers and Peter Kinget, for the many fruitful discussions and contributions to this work on the mismatch characterization. • My colleague Augusto Marques, for the careful reading of the manuscript, and especially, for the perfect team-work that made the design of the segmented-architecture DAC a reality in a record time. On this project, I wish also to acknowledge the fruitful cooperation with my colleague Jan Vandenbussche and with Anelia Pergoot. • All my friends at ESAT and in Leuven that have given me a very good social atmosphere and made my stay here memorable. In particular, I would like to mention a few: Luis, João, Dorin, Geert, Koenraad, Anca, Enzo, Jan, Ben, Saulo, Igor, Erik, Francky, Marc, Paulo, and Augusto. • The people that make the work at the MICAS group to run smoothly: Chris Van Grieken, Albert Boon, Michel De Cooman, Camille Evers, Piet Vanderwegen, for the technical support, Wim Eyckmans and Eric Olemans, for the software support, Danielle Vermetten and Erika Scheltens, for the secretarial support. • The Portuguese Research Board (JNICT) and the University of Porto (UP), for the financial support that made my stay at ESAT possible. Prof. M. De Barros and Prof. A. Leite (UP) for all the support that eventually brought me to ESAT. • And finally, I thank Quina for her love, and patience with me all these years. José Bastos Leuven, April 1998. v vi A BSTRACT The performance of many precision analog integrated circuits is limited by the device matching properties of the technology in which the circuits are fabricated. With the present trend of integration of digital and analog building blocks in a single-chip design, standard digital CMOS technologies are often used to design precision analog circuits. However, when a standard digital CMOS technology is used there are no precision devices available and the circuit designer can rely only on the matching properties of the MOS transistors. For this reason, the characterization and modeling of mismatch in MOS transistors has become an important research topic. In this work, the characterization of MOS transistor mismatch in two modern technologies of 1.2 m m and 0.7 m m minimum feature size is presented. All steps of the mismatch characterization are described in detail: design of a test chip, extraction of mismatch parameters, validation of the mismatch parameter statistics and of the parameter statistical models. It is shown that the standard way of defining mismatch parameters—the difference in the absolute parameters of two nominally equal transistors—is not appropriate to extract mismatch parameters of sub-micron transistors. In this work, an alternative method is proposed: to extract the mismatch parameters by fitting a current mismatch model to the measured current mismatch curve. It is shown theoretically and experimentally that the mismatch parameters extracted in this way are more accurate than in the standard way. Short and narrow channel effects on the matching of the threshold voltage model parameter are observed: the inverse proportionality law between the variance of the threshold voltage parameter and the transistor channel area no longer holds for the minimum feature- size devices. A new threshold voltage parameter statistical model valid for sub-micron transistors is proposed and experimentally validated in this work. When attempting to match devices over large distances, systematic errors across the die become increasingly important. It is shown in this work both theoretically and experimentally that die gradients due to die-stress originating in the bonding technique are far more important than those attributed to process steps. To demonstrate the utility of the characterization of the transistor mismatch for analog design, a current-steering architecture digital-to-analog converter (DAC) is chosen. The main characteristic of the architecture, that a large number of transistors must match over relatively large distances, makes it ideal as a test circuit. The first realized DAC proves the feasibility of designing with high yield (> 90 %) a 12-bit intrinsic accuracy (no trimming, calibration, or dynamic averaging) all MOS transistor DAC. The second realized DAC proves that this accuracy specification can be reached without compromising the dynamic performance of the DAC. By optimizing all the building blocks, and by using a new architecture, it is shown that the DAC can work at update rates in excess of 300 MS/s, with state-of-the-art dynamic specifications. vii viii C ONTENTS ACKNOWLEDGMENTS....................................................................................................v ABSTRACT .................................................................................................................vii CONTENTS..................................................................................................................ix 1 Introduction............................................................................................................1 1.1 Historical Perspective....................................................................................................1 1.2 The Impact of Mismatch on Analog Circuit Design......................................................2 1.3 Research Objectives.......................................................................................................3 1.4 Thesis Organization.......................................................................................................4 1.5 Research Contribution...................................................................................................4 PART I CHARACTERIZATION OF MOS TRANSISTOR MISMATCH.........................................7 2 Extraction of Transistor Mismatch Parameters................................................11 2.1 Design of a Test Chip for Mismatch Studies...............................................................12 2.2 Measurement Set-up....................................................................................................16 2.3 Measurement Procedure..............................................................................................17 2.4 Choice of Transistor Models for Mismatch Studies....................................................19 2.4.1 Linear Region.....................................................................................................20 2.4.2 Saturation Region...............................................................................................21 2.4.3 Weak Inversion...................................................................................................22 2.4.4 A General Mismatch Model...............................................................................23 2.5 Extraction of Mismatch Parameters.............................................................................23 2.5.1 Extraction of the D V , Db/b , and Dq Mismatch Parameters in the Linear and T0 Saturation Regions.......................................................................................................24 2.5.2 Extraction of the Dg Mismatch Parameter..........................................................30 2.5.3 Extraction of the D V Mismatch Parameter in the Weak Inversion Region.....32 T0 2.6 Sensitivity Analysis.....................................................................................................34 2.7 Accuracy of the Mismatch Parameters........................................................................35 2.7.1 Temperature Effect.............................................................................................35 2.7.2 Repeatability Study.............................................................................................36 2.8 Conclusion...................................................................................................................37 3 Current Mismatch Statistical Models.................................................................39 3.1 Mismatch Parameter Statistics.....................................................................................39 3.2 Statistical Results in the Saturation Region.................................................................42 3.2.1 D V , Db/b , and Dq Results...............................................................................42 T0 3.2.2 Dg Results...........................................................................................................44 ix X CONTENTS 3.3 Validation of the Extraction Methods..........................................................................44 3.3.2 Model Reduction................................................................................................51 3.4 Towards a general parameter mismatch model...........................................................55 3.4.1 Measurement Results in the Linear Region........................................................55 3.4.2 Measurement Results in Weak Inversion...........................................................58 3.5 Conclusion...................................................................................................................59 4 Random Mismatch...............................................................................................61 4.1 A General Parameter Mismatch Model.......................................................................62 4.2 Mismatch in the Threshold Voltage.............................................................................63 4.2.1 Importance of the Charge Terms........................................................................65 4.2.2 Theoretical Expression for A ...........................................................................66 VT 4.3 Short and Narrow Channel Effects on V ....................................................................67 T 4.3.1 Short-Channel Devices.......................................................................................68 4.3.2 Narrow-Channel devices.....................................................................................69 4.4 Extended Threshold Voltage Mismatch Model...........................................................70 4.5 Threshold Voltage Mismatch Technology Parameters................................................71 4.5.1 C12 Technology..................................................................................................71 4.5.2 C07 Technology..................................................................................................75 4.5.3 Summary.............................................................................................................77 4.6 Mismatch in the Body Effect Factor............................................................................77 4.6.1 Technology Parameters.......................................................................................79 4.6.2 Summary.............................................................................................................83 4.7 Mismatch in the Current Factor...................................................................................84 4.7.2 Technology Parameters.......................................................................................86 4.7.3 Summary.............................................................................................................91 4.8 Limits of Validity of the Mismatch Models................................................................92 4.9 Mismatch Scaling with the Technology......................................................................93 4.9.1 Threshold Voltage...............................................................................................93 4.9.2 Current Factor.....................................................................................................95 4.10 Conclusion.................................................................................................................96 5 Systematic Mismatch..........................................................................................99 5.1 Mismatch due to Wafer Gradients.............................................................................100 5.2 Measurement Results.................................................................................................102 5.2.1 C12 Technology................................................................................................102 5.2.2 C07 Technology................................................................................................105 5.3 Mismatch due to Die Stress.......................................................................................110 5.4 Source-Drain Asymmetry..........................................................................................115 5.5 Mismatch in Large W/L Transistors..........................................................................117 5.5.1 Test Chip with Large W/L Transistor Pairs.......................................................117 5.5.2 Measurement Results........................................................................................119 5.6 A Statistical Mismatch Model...................................................................................123 5.7 Conclusion.................................................................................................................124 Part II A 12-Bit Accuracy D/A Converter.............................................................127 6 Design for High Accuracy and High Yield.......................................................129 6.1 Current Steering Architectures..................................................................................130 CONTENTS xi 6.1.1 Binary Weighted Architecture..........................................................................131 6.1.2 Unit Element Architecture................................................................................134 6.1.3 Segmented Architecture....................................................................................136 6.1.4 Summary...........................................................................................................138 6.2 DAC Accuracy and Yield..........................................................................................138 6.3 Estimation of the Total Current Source Area............................................................140 6.4 Systematic Errors.......................................................................................................141 6.4.1 Graded and Symmetrical Errors........................................................................141 6.4.2 Ground Line Voltage Drop...............................................................................146 6.4.3 Output Impedance.............................................................................................149 6.5 DAC Specifications...................................................................................................150 6.6 Layout Considerations...............................................................................................152 6.6.1 Sizing the Unit Current Source.........................................................................152 6.6.2 Layout of the Current Source Matrix................................................................154 6.6.3 Centroid Layout................................................................................................156 6.7 Non-Linearity Errors..................................................................................................157 6.7.1 Process and Die-Stress Errors...........................................................................158 6.7.2 Voltage Drop in the Ground Line.....................................................................158 6.7.3 Output Resistance Compliance.........................................................................160 6.7.4 Voltage Drop in the Drain Lines.......................................................................161 6.7.5 Temperature Gradient.......................................................................................162 6.8 Random Noise...........................................................................................................163 6.9 Conclusion.................................................................................................................164 7 Design for Speed...............................................................................................165 7.1 DAC Settling Time....................................................................................................165 7.1.1 Optimizing For Maximum Speed And Minimum Area...................................166 7.1.2 Bonding Wire Inductance.................................................................................169 7.1.3 Current Source Output Voltage Fluctuation.....................................................171 7.1.4 Asymmetric and Delayed Control Signals........................................................175 7.1.5 Summary...........................................................................................................181 7.2 DAC glitch energy.....................................................................................................181 7.2.1 Harmonic distortion..........................................................................................181 7.2.2 Asymmetry in the Unit Cell Output Currents...................................................182 7.2.3 Charge Feedthrough..........................................................................................185 7.2.4 Synchronization of the Control Signals............................................................190 7.3 Conclusion.................................................................................................................191 8 Practical Realizations........................................................................................193 8.1 A 12-bit binary weighted DAC..................................................................................193 8.1.1 Layout...............................................................................................................194 8.1.2 Experimental results.........................................................................................196 8.2 A 12-Bit segmented architecture DAC......................................................................202 8.2.1 Decoding Logic.................................................................................................202 8.2.2 DAC Architecture.............................................................................................204 8.2.3 Layout...............................................................................................................208 8.2.4 Experimental Results........................................................................................210 8.3 Conclusion.................................................................................................................214 xi XII CONTENTS 9 General Conclusions.........................................................................................217 9.1 Future Research.........................................................................................................219 A TABLES................................................................................................................221 B STATISTICS FOR MATCHING....................................................................................227 C REGRESSION ANALYSIS.........................................................................................231 PUBLICATIONS..........................................................................................................241 BIBLIOGRAPHY.........................................................................................................243 Chapter I NTRODUCTION Precision analog integrated circuit design is based on matched devices: while the absolute accuracy of the devices on a chip is poor, about 10% or worse, the characteristics of matched devices can be made to track each other with up to 100 times better relative accuracy [Laker94, p. 150]. Of several technology alternatives, the preferred technology for precision analog design has been bipolar. Indeed, it is in bipolar technologies that the best matched devices are obtained, irrespective of being resistors, capacitors or transistors. However, nowadays the drive towards digital signal processing has made CMOS by far the most popular of all integrated circuit technologies, because of the higher device density, the lower power consumption, and the lower cost when compared with, for example, bipolar, BiCMOS and GaAs technologies. The evolution in the CMOS technologies is totally driven by the requirements of digital circuits: in a standard CMOS technology, precision passive devices (i.e., resistors and capacitors) are not available. In a mixed analog-digital circuit design in a standard CMOS technology, the design of the analog part of the circuit is typically made with only two precision devices: NMOS and PMOS transistors. 1.1 Historical Perspective The first matching studies of MOS technologies presented in the open literature were done on capacitors [McCreary81, Shyu82]. It was then established that the causes of random device mismatch are characterized by mismatch sources with short correlation distances (compared with the device dimensions). Mismatch sources identified at the time were random edge variations, and random fluctuations of the thickness and permittivity of the oxide insulator. Shyu et al. [Shyu84] extended the previous work to the matching study of current sources. Random mismatch sources are now qualified in two categories: local (with short correlation distances), and global (with long correlation distances). Mismatch sources influencing the 1
Description: