ebook img

Characterization of methanogenic Archaea communities in biogas reactors by quantitative PCR PDF

187 Pages·2012·2.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterization of methanogenic Archaea communities in biogas reactors by quantitative PCR

Characterization of methanogenic Archaea communities in biogas reactors by quantitative PCR vorgelegt von Ingo Bergmann aus Parchtitz auf Rügen Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Sven-Uwe Geißen Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: PD Dr. tech. Elisabeth Grohmann Berichter: Dr. rer. nat. Michael Klocke Tag der wissenschaftlichen Aussprache: 19.09.2011 Berlin 2012 D-83 Zwei Dinge sind zu unserer Arbeit nötig: Unermüdliche Ausdauer und die Bereitschaft, etwas, in das man viel Zeit und Arbeit gesteckt hat, wieder wegzuwerfen… Albert Einstein TABLE OF CONTENTS Table of contents 1. Abbreviations .................................................................................... 6 2. Abstract ........................................................................................... 10 3. Zusammenfassung ......................................................................... 12 4. Introduction ..................................................................................... 14 4.1 The politics .................................................................................................. 14 4.2 The practice ................................................................................................. 16 4.3 The process ................................................................................................. 17 4.3.1 The four-stage pathway of anaerobic degradation of organic material to biogas ........................................................................................................... 17 4.3.2 Methanogenesis .................................................................................. 19 4.4 The producers ............................................................................................. 20 4.5 The technique ............................................................................................. 23 4.5.1 The basics of Q-PCR applications ....................................................... 24 4.5.2 Fluorescent probes and dyes ............................................................... 27 4.5.3 Application of Q-PCR in environmental microbiology .......................... 30 4.5.4 Factors for a successful Q-PCR run .................................................... 31 4.5.5 The target genes .................................................................................. 33 4.6 The aims ...................................................................................................... 35 5. Materials and Methods .................................................................... 37 5.1 Model biogas reactors ................................................................................ 37 5.1.1 System 1 .............................................................................................. 37 5.1.2 System 2 .............................................................................................. 37 5.1.3 System 3 .............................................................................................. 38 5.1.4 System 4 .............................................................................................. 38 5.2 Agricultural biogas plants .......................................................................... 42 5.3 Physical and chemical analyses of the biogas and the reactor content 44 5.3.1 Determination of the pH value ............................................................. 44 5.3.2 Calculation of the gas composition ...................................................... 44 5.3.3 Determination of the acid composition ................................................. 44 3 TABLE OF CONTENTS 5.4 DNA-based analysis of the archaeal community structure ..................... 45 5.4.1 Used strains ......................................................................................... 45 5.4.2 DNA extraction and purification ........................................................... 45 5.4.3 DNA quantification ............................................................................... 48 5.4.4 Analysis of the DNA purity ................................................................... 49 5.4.5 Quantitative real-time PCR (Q-PCR) ................................................... 49 6. Results ............................................................................................. 65 6.1 Establishment and application of a Q-PCR assay for the detection of methanogenic Archaea in biogas plants by the use of the 16S rRNA gene 65 6.1.1 Optimization of the PCR conditions of the group-specific 16S rRNA gene assays for quantitative real-time PCR .................................................. 65 6.1.2 Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters ................................................ 67 6.1.3 Accuracy of the real-time PCR assays and influence of PCR interfering substances on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters ......................................................................................... 75 6.1.4 Application of the 16S rRNA gene real-time PCR assays for analyzing the composition and development of the methanogenic Archaea in meso- and thermophilic biogas reactors ......................................................................... 84 6.2 Development of group-specific primer sets for the detection of methanogenic Archaea in biogas plants by the use of the metabolic mcrA gene ....................................................................................................... 107 7. Discussion ..................................................................................... 123 7.1 Evaluation and optimization of the PCR conditions for amplifying the 16S rRNA gene by using the real-time PCR assay of Yu et al. (2005a) ...... 123 7.2 Design and testing of group-specific Q-PCR primers based on the mcrA gene for the quantification of methanogenic communities .............. 125 7.3 The influence of different DNA isolation methods on the quantification of methanogenic Archaea in biogas reactors by real-time PCR................. 127 7.4 Influences of PCR interfering substances on Q-PCR-based quantification of methanogens in biogas reactors ...................................... 131 4 TABLE OF CONTENTS 7.5 Determination of methanogenic Archaea abundances in semi-continuous fermentation and acidification by overloading in a short-run experiment ...................................................................................... 136 7.6 Methanogenic population dynamics in semi-continuous fermentation and acidification by overloading under mesophilic and thermophilic conditions in a long-run experiment ............................................................. 139 7.7 Determination of the methanogenic community in biogas reactors with different substrates for anaerobic digestion under mesophilic and thermophilic conditions ................................................................................. 143 7.8 Determination of the methanogenic Archaea in agricultural biogas plants ............................................................................................................... 145 8. Outlook .......................................................................................... 148 References ......................................................................................... 149 List of figures .................................................................................... 168 List of tables ...................................................................................... 171 Publication list .................................................................................. 174 Funding .............................................................................................. 178 Acknowledgments ............................................................................ 179 Appendix............................................................................................ 182 5 ABBREVIATIONS 1. Abbreviations A Adenine ABI Applied Biosystems Instruments AF Anaerobic filter approx. Approximately ARC Archaea BA Biogas plant BAC Bacteria BB Brandenburg bp Base pair C Cytosine Carrez I Potassium hexacyanoferrate(II)-3-hydrate Carrez II Zinc sulphate-7-hydrate cf. Confer CSTR Continuously stirred tank reactor C Threshold cycle number T CTAB Cetyl trimethyl ammonium bromide DGGE Denaturing gradient gel electrophoresis DNA Deoxyribonucleic acid dNTP Deoxynucleoside triphosphate DOM Dry organic matter dsDNA Double-stranded deoxyribonucleic acid e.g. Exempli gratia (for example) EDTA Ethylenediaminotetraacetic acid et al. Et alii (and others) F primer Forward primer FAM 6-Carboxyfluoroscein Fig. Figure FISH Fluorescence in-situ hybridization FNR Fachagentur Nachwachsende Rohstoffe e.V. FR Hydrolysis reactor FRET Fluorescence resonance energy transfer 6 ABBREVIATIONS g Gravitational acceleration G Guanidine GC Gas chromatography gDNA genomic deoxyribonucleic acid IPTG Isopropyl β-D-1-thiogalactopyranoside JOE 2,7-Dimethoxy-4,5-dichloro-6-carboxyfluorescein LB Lysogeny broth LOD Limit of detection LOQ Limit of quantification Mb. Methanobacterium Mbb. Methanobrevibacter Mbp Mega base pair MBT Methanobacteriales Mbt. Methanothermobacter Mc. Methanococcus MCC Methanococcales Mcc. Methanococcoides Mcd. Methanocaldococcus MCR Methyl-coenzyme M reductase enzyme complex Mcr. Methanocorpusculum mcrA Methyl-coenzyme M reductase sububit α Mcu. Methanoculleus Mf. Methanofollis Mg. Methanogenium Mha. Methanohalophilus Mm. Methanomicrobium MMB Methanomicrobiales Mml. Methanomethylovorans Mpr. Methanosphaera Mpy. Methanopyrus Msa. Methanosaeta Msc Methanosarcinaceae Msp. Methanospirillum 7 ABBREVIATIONS Msr. Methanosarcina Mss. Methanosalsum Mst Methanosaetaceae Mtc. Methanothermococcus Mth. Methanothermus Mts. Methanotorris MV Mecklenburg-Vorpommern NA Not analyzed ND Not detected OLR Organic loading rate OTU Operational taxonomic unit PCR Polymerase chain reaction PET Polyethylene terephthalate Q-PCR Quantitative real-time PCR R primer Reverse primer rDNA Ribosomal deoxyribonucleic acid RFLP Restriction fragment length polymorphism RNA Ribonucleic acid rpm Revolutions per minute rRNA Ribosomal ribonucleic acid RT Retention time S Sachsen SA Sachsen-Anhalt SD Standard deviation SDS Sodium dodecyl sulphate SSD Dilution of the standard series ssp. Subspecies T Thymine TAMRA 6-Carboxytetramethylrhodamine TET Tetrachloro-6-carboxyfluorescein T Melting temperature m T-RFLP Terminal restriction fragment length polymorphism Tris Trishydroxymethylaminomethane 8 ABBREVIATIONS UV Ultraviolet VFA Volatile fatty acid X-Gal 5-bromo-4-chloro-3-indolyl- β-D-galactopyranoside 9 ABSTRACT 2. Abstract Energy production from renewable raw material is of increasing importance. Biogas is one of the major renewable energy sources ensuring an adequate energy supply for the next generations. Beside technical optimization and upgrading of biogas reactors and plants, detailed information about the diversity and composition of the participating microbial community structure is indispensable for optimizing the biogas-forming process. Furthermore, precise knowledge about the metabolic activity of the microorganisms and their optimal growth conditions are of utmost importance to ensure the maximal degradation of the substrates to biogas. The main objective of this study was the establishment of a highly sensitive and culture-independent approach for the detection and quantification of methanogenic Archaea in biogas reactors and plants at the taxonomic level of orders and families. The method of choice was the quantitative real-time PCR (Q-PCR). Initially, DNA extraction was optimized for samples taken from biogas reactors because Q-PCR results are strongly influenced by the DNA quality. Harsh DNA extraction with bead-beating cell lysis was most efficient while soft DNA extraction led to a discrimination of certain taxonomic groups like Methanosaetaceae. Hence, a combined mechanic and chemical cell lysis was used for isolating DNA from biogas reactor samples. After finding the most efficient DNA extraction protocol, primer sets which were developed for the detection of the 16S rRNA gene by Yu et al. (2005a) were optimized. Therefore, an adaptation of the PCR protocol for the ABI system was successfully conducted. Subsequently, this molecular genetic approach was used for the analysis of the quantitative distribution of methanogenic Archaea in biogas fermenters and plants. A great variability in the composition of the methanogenes was observed at mesophilic conditions. Depending on the chosen substrate hydrogenotrophic or acetotrophic methanogenes were most abundant in laboratory CSTRs. 10

Description:
methanogenic Archaea in biogas plants by the use of the 16S rRNA gene .. methyl-groups of the methylated compounds are first transferred to the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.