RESEARCHARTICLE Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses AntoniettaStango1,KamyaYekehYazdandoost2,FrancescoNegro3,DarioFarina1* 1 InstituteofNeurorehabilitationSystems,BernsteinFocusNeurotechnologyGoettingen,BernsteinCenter forComputationalNeuroscience,UniversityMedicalCenterGoettingen,Georg-AugustUniversity,37075, Goettingen,Germany,2 CentreforWirelessCommunications,DepartmentofCommunications Engineering,UniversityofOulu,P.O.Box4500,90014,Oulu,Finland,3 DepartmentofClinicaland ExperimentalSciences,UniversityofBrescia,25123,Brescia,Italy *[email protected] a11111 Abstract Wirelessimplanteddevicescanbeusedtointerfacepatientswithdisabilitieswiththeaim ofrestoringimpairedmotorfunctions.Implanteddevicesthatrecordandtransmitelectro- OPENACCESS myographic(EMG)signalshavebeenappliedforthecontrolofactiveprostheses.Thissim- Citation:StangoA,YazdandoostKY,NegroF, ulationstudyinvestigatesthepropagationlossesandtheabsorptionrateofawirelessradio FarinaD(2016)CharacterizationofIn-BodytoOn- frequencylinkforin-to-onbodycommunicationinthemedicalimplantcommunicationser- BodyWirelessRadioFrequencyLinkforUpper vice(MICS)frequencybandtocontrolmyoelectricupperlimbprostheses.Theimplanted LimbProstheses.PLoSONE11(10):e0164987. antennaisselectedandasuitableexternalantennaisdesigned.Thecharacterizationof doi:10.1371/journal.pone.0164987 bothantennasisdonebynumericalsimulations.Aheterogeneous3Dbodymodelanda Editor:DingguoZhang,ShanghaiJiaoTong 3Delectromagneticsolverhavebeenusedtomodelthepathlossandtocharacterizethe University,CHINA specificabsorptionrate(SAR).ThepathlossparameterswereextractedandtheSARwas Received:February1,2016 characterized,verifyingthecompliancewiththeguidelinelimits.Thepathlossmodelhas Accepted:October4,2016 beenalsousedforapreliminarylinkbudgetanalysistodeterminethefeasibilityofsuch Published:October20,2016 systemcompliantwiththeIEEE802.15.6standard.Theresultinglinkmarginof11dBcon- Copyright:©2016Stangoetal.Thisisanopen firmsthefeasibilityofthesystemproposed. accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevant Introduction parametersandsimulationresultswillbeavailable athttps://dx.doi.org/10.6084/m9.figshare. Inthelastdecade,therehasbeenanincreasingneedofacquiringbiometricsignalsformoni- 3408223.v1. toringvitalsignsandsupportingchronicallyillpatients.Inparticular,implanteddevicescan beusedtomonitoranddiagnosecardiacpathologies,cancer,asthmaandneurologicaldisor- Funding:ThisworkwassupportedbytheGerman MinistryforEducationandResearch(BMBF)via ders[1].Morerecentapplicationsofwirelessimplantedsystemsfocusalsoonhelpingpeople theBernsteinFocusNeurotechnology(BFNT) withphysicaldisabilities[2],e.g.cochlearandretinaimplants,oractivelimbprostheses[3]. Go¨ttingenundergrantnumber1GQ0810. Thisstudyinvestigatesthepossibilitytouseimplanteddevicesabletorecordandtransmit CompetingInterests:Theauthorshavedeclared electromyogram(EMG)signalsinordertoallowamputeestocontrolactivemyoelectric thatnocompetinginterestsexist. prostheses. PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 1/19 In-BodyRFWirelessLink TheactiveprosthesescurrentlyavailableinthemarkethavemultipleDegreesofFreedom (DoFs)andareusuallydrivenbysurfaceEMGsignals.SurfaceEMGcanbeeasilydetected non-invasivelywitharelativelylargepickuparea[4].However,duetothedonning/doffingof theprosthesis,thesurfaceEMGelectrodesinthesocketmaychangepositionwithrespectto theunderlyingmusclescompromisingthereliabilityofthesystem.Moreover,surfaceEMG canonlyberecordedfromsuperficialmusclesandtheycanbepronetochangesinskinimped- anceandbreakageofthewires[5].Intramuscularelectrodesmaylimittheseproblemswhen coupledwithwirelesstransmission.Therefore,recently,theuseofimplanteddeviceswhich canwirelesslytransmittheEMGsignalstoacontrollerembeddedinthesocketoftheprosthe- sishasbeenproposed[5,6].ImplantedEMGsensorscanprovideinformationfromdeepmus- clesthatarenoteasilyaccessiblewithstandardsurfaceEMGelectrodes,andthereforeitcan helptoimprovethecontroloftheprosthesis. In[6]theauthorsproposeasystemwithtwoimplantedelectrodes,whichuseatransmission protocoltailoredforrecordingphysiologicalsignals.TheRFlinkisbasedonIEEE802.15.4[7] inthe2.4GHzfrequencyband,whilethepowertransferisdonebyaninductivelink.Inthe mostdetailedstudyinthisfield[5],theauthorspresentamultichannelsystemthatcanreceive andprocesssignalsfromEMGimplantedsensors.Thesystemalsocomprisesalargeexternal powercoil,placedaroundthelimb,areceivingantenna,andatelemetrydevicewhichpasses thedatatotheprosthesiscontroller.Thissystemhasbeenrecentlyimplantedinapatient[8] andimproved[9],butithassomelimitations:thelargeinductivepowerfieldlowersitsoverall efficiencyandthereisnoflexibilityinthelocationoftheimplantssincetheymustbewithin theinductiveareaandparalleltotheexternalcoil.Furthermorethepresenceofacircularcoil limitstheuseofsuchsystemtoamputeeswitharoundstump[10]. Theradiocommunicationbetweenimplantedbiosensorandexternalbiomedicalsystems hasspecificissuesduetothefactthatthehumanbodyisaheterogeneouspropagationenviron- ment.Thehumanbodyischaracterizedbymultiplelayersoftissueswithdifferentthicknesses anddielectricproperties.Furthermore,everyapplicationdemandsdeviceswithappropriate shapesandrequirements,dependingontheplacewheretheyhavetobeimplantedandonthe tissuesinvolvedinthetransmission[11].Theantennashapeanddimensionsdependonthe applicationandonthebandofoperation[11].ThebandassignedbytheFederalCommunica- tionCommission(FCC)andacceptedinmostCountriesforimplantedcommunicationis 402–405MHz[12,13].Thisbandiscalledmedicalimplantcommunicationservice(MICS).It allowslowpowertransmission(outputpowermaximum25μWEIRP)satisfyingantennaper- formancecompatiblewiththehumanbody,assuringnointerferencewithotherradiooperat- inginthesamefrequencyband.Forthesereasons,industriesareveryinterestedtodevelop implanteddevicesoperatinginthisband[14].CompaniessuchasMedtronic,Biotronicand St.Jude,havealreadymadecommerciallyavailabledevicesworkinginthisband[14].The MICSbandhasalsobeenadoptedbythestandardIEEE802.15.6[15]forimplantedapplica- tions.ThestandardIEEE802.15.6supportsmedicalcommunicationbetweennon-invasive devicesplacedonthebodyandimplanteddevicesplacedinthebody,aswellasexternaldevices thatarearoundthebody.However,thisstandarddoesnotprovideinformationontheabsolute performanceofthechannelmodels.Aspecifictaskgrouprecommendeddifferentchannel models,basedonsevenrepresentativescenarios[16],threeofthemrelatedtoimplantedappli- cations.However,in[16]ithasbeenstatedthatthechannelmodelsdescribedinthedocument arenotintendedtoprovideinformationofabsoluteperformanceandthateachapplicationcan havespecificrequirements. ThereareonlyfewstudiesonimplantedapplicationswithintheMICSband,sinceoftenthe ISM(IndustrialScientificandMedical)bandwasusedinstead.Infact,thedesignofanantenna whichoperatesintheMICSbandischallenging,mainlyduetolimitationsinthedimensions. PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 2/19 In-BodyRFWirelessLink IntheMICSbandthewavelengthinsidethehumanbodyis~9cm,whileintheairis~74cm. Nevertheless,theISMbandisusedforalmostallthedevicesthatweuseineverydaylife,such asradio-frequencyidentifications(RFID),BluetoothandZigBee,thereforetheriskofinterfer- enceisveryhigh.OnthecontrarytheMICSbandhasbeenreservedforhumanimplantable devices,sharingthefrequencyonlywithweatherballoons(400–406MHz).In[17,18]artificial cardiacpacemakerswithimplantedantennasoperatingintheMICSbandareconsidered.In bothstudiestheperformanceoftheantennashasbeenanalyzedbysimulationswithsimplified phantoms.In[18]anexperimentonporcinetissueispresentedwhereitwasobservedthatthe performancewasdifferentwithrespecttothesimulatedmodelbecauseofthethickfatlayer andtheabsenceofbonesinthepigtissues.Additionalstudieshavebeenconductedoningested implants,suchasacapsuleendoscope[19,20],anddemonstratedthattheMICSbandisideal forwirelessimplant[17].In[20]thepathlossmodelandtheSARlevelhavebeeninvestigated foraspiralantennainMICSfrequencieswithnumericalsimulationsina3Dhumanmodel.It hasbeendemonstratedthatforanendoscopycapsulethepathlossexponentcanvarydepend- ingonthesubject(adultorchild)andonthedeepnessinthebody,i.e.,onthelayersoftissues betweenthetransmittingandthereceivingantenna.Therefore,itisnotpossibletoprovidea singlepathlossmodelforwirelesscommunicationforin-bodytoon-bodyandeachapplica- tionneedstobespecificallyinvestigated.InthecaseofwirelessimplantsforrecordingEMG signalstodrivehandprostheses,therearenostudiesonpathloss,exceptourpreliminary report[21]. Inthepresentwork,weproposeasystembasedontheIEEE802.15.6standard[15]com- posedbytwoimplanteddevicesthatrecordandtransmitwirelessEMGsignalstoanon-body devicepositionedinsidethesocketofahandprosthesis.Thesystemcanbeusedforeachtype ofamputee,includingsubjectwithtargetmusclereinnervation(TMR),sincetherearenocon- straintsfortheplacementoftheimplants.Moreoveritusesafrequencybanddedicatedto implanteddevices. ThepathlossmodelhasbeeninvestigatedbyFDTD(FiniteDifferenceTimeDomain)sim- ulations,witha3Dhumanbodymodelforthesystemproposed.Furthermore,theSARvalues areinvestigatedtodemonstratethatthesystemisnotexceedingthelimitationsimposedby regulations,andconsequentlyisnotharmfultohumans.Finally,apreliminaryevaluationof thelinkbudgethasbeendonetakingintoaccounttheresultsobtained. MaterialsandMethods Theproposedsystem(Fig1)consistsoftwoEMGsensorsimplantedintheforearmofan amputeeandanexternaldevicethatcontrolstheprosthesis.Theimplantedsensorsrecordand processtheEMGsignals,whicharewirelesslytransmittedtoanexternalantenna,placedon thesocketprosthesis.Theprocessedsignalsarethenusedtodrivethehandprosthesis.The communicationlinkbetweenthedevicesfollowsthestandardforWirelessBodyAreaNetwork (WBAN)[15]. HumanModelandElectromagneticSimulationTool Thedesignofwirelessimplantcommunicationsystemsrequiresknowledgeonthemultiple layersoftissuesofthehumanbodyandtherespectivedielectricproperties.Propagationlosses andSARmeasurementsofimplanteddevicescannotbeinvestigatedwithin-vivoexperiments. Forthisreason,numericalsimulationsandflatphantomsfilledwithmuscletissuesimulating fluidarecommonlyused.Phantomsarenon-standardizedyetandtheyrepresentasimplified versionofthehumanbody[3]andnotalltheinterfacesbetweenthetissuelayerscanbe PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 3/19 In-BodyRFWirelessLink Fig1.Systemoverview. doi:10.1371/journal.pone.0164987.g001 PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 4/19 In-BodyRFWirelessLink represented.Moreovermimickingthelimbsitismorechallengingthanotherpartsofthe humanbody[14].Forthesereasonsinthisstudyanumericalsimulationhasbeenpreferred. TheEMnumericalevaluationshavebeencarriedoutbyFDTDsimulationswiththe3D solverSEMCAD-X[22]andwitha3Dhumanbodymodel.Thehumanbodymodelhasbeen obtainedfrommagneticresonanceimages(MRI)ofhealthyvolunteersandisprovidedby SPEAG[23].Themodelrepresentsamanof34yearsold(denotedDuke)anditispartofthe VirtualFamily,whichhasfouranatomicalmodels(twoadultsandtwochildren).Thesemodels include80bodytissueswithdielectricpropertiesbasedonthedatabasegeneratedbyGabriel [24].Themaximumgridstepofthehumanmodelis2mm. ImplantedAntennas TheimplantedantennaselectedinthisworkisthesameusedbytheIEEE802.15.TG6commit- teetodefinethechannelmodelsforthestandardIEEE802.15.6andisextensivelydescribedin [16,25],and[26].Thedimensionsandshapeofthisantennafitwellinadeviceimplanted insideaphantomlimbofatransradialamputee.Theantennaiscomposedofasinglemetallic layerofcopper.ThemetalliclayerisprintedonasideofaD51(NTK)substratewithdielectric constantε =30,losstangenttanθ=3.8e-05,thicknessof1mm,andcoveredbyRH-5sub- r stratewithdielectricconstantε =1.0006,losstangenttanθ=0andthicknessof1mm(Fig r 2a).TheantennahasbeendesignedtooperateinthehumanbodywithintheMICSfrequency band(402–405MHz)[25].Twoantennashavebeenimplantedintheleftarmofthehuman model,approximatelyinthewristextensorandflexormuscles.Fig2bshowstheimplanted antennasinsidethearmofDuke.AsectionofthearmwiththeimplantisdepictedinFig2c. To verifythattheoperatingfrequencyinthehumanbodyisintherangeofMICSband,the reflectioncoefficient(S )oftheantennahasbeensimulated.Thereturnlosshasbeencalcu- 11 latedafterpositioningtheantennainsidethehumanbodyfixingthecentralfrequencyto403.5 MHz,withtheFDTDsimulationplatformSEMCADX[22].TheS valuewasabout-10dBat 11 403.5MHzasshowninFig3,whichconfirmsagoodimpedancematch.Fig4ashowsa3D polarplotofthegainoftheimplantedantenna.Thegainisnotisotropicbutvarieswiththe direction.Themaximumgain,takingintoaccountalsothelossesofthebodyphantom,is -55.37dBi.Fig4bshowsthesimulatedradiationpatternnormalizedto1V/m.Theradiation patternhasbeencomputedtakingintoaccounttheimpactofthehumanbody,asrecom- mendedby[27].Theoriginofthecoordinatesystemisplacedontheborderoftheimplanted Fig2.MICSimplantedantennaandantennapositioning.a)frontviewoftheimplantedantenna;b)humanmodelwiththeimplantedantennasinthe redsquaresandtheexternaldipole;c)crosssectionofthearmwiththeimplantedantennas. doi:10.1371/journal.pone.0164987.g002 PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 5/19 In-BodyRFWirelessLink Fig3.ReturnLossoftheimplantedantenna.S isabout-10dBat403.5MHz. 11 doi:10.1371/journal.pone.0164987.g003 antenna.Themaximumdirectivityisobservedinthedirectionoppositetothexaxis(intheXZ plane),butitispossibletoobserve(Fig4c)thattheE andE componentsaresimilar. θ ϕ On-bodyAntenna Asafirststep,tosimplifytheanalysisandreducethesimulationtime,ahalf-wavedipole antennahasbeenselectedasareceivingantenna.Amorerealisticantennahasalsobeeninves- tigatedasarefinementstep(seebelow).Thehalf-wavedipolehasbeenmodeledandtunedto operateat403.5MHz.Consideringthatthewavelengthinfreespaceat403.5MHzis~74cm, thelengthofeacharmofthehalf-wavedipolehasbeensetto180mm,withthicknessof2mm andagapbetweenthearmsof1mm.Fig2bshowsthelocationoftheexternalantenna,close tothehumanbody.Thereturnlossofthedipolehasbeensimulatedinfreespace(withoutthe presenceofthehumanmodel)andat1cmfromthearmsurfaceofthehumanmodel(Fig2b), inthenearfieldregion[28].Fig5reporttheS11inbothconditions.Thegraphsaresimilarand showagoodimpedancematchintheMICSbandfrequency(S11at403.5MHzis~-10dBin freespaceand~-12dBnearthehumanmodel). Thegainandtheradiationpatternhavebeencomputedfortheexternalantennainthe samewayandwiththesamecoordinatesystemastheimplantedantenna.The3Dpolarplotof thegainisshowninFig6aandthemaximumvalueis-3.20dBi.Theradiationpatternnormal- izedto1V/misdescribedintheFig6band6c.Ithasbeencomputedtakingintoaccountthe presenceofthehumanbodymodel.Indeed,Fig6cshowsthattheE andE componentshave φ θ smallervaluesinthedirectionsofthehumanbody. PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 6/19 In-BodyRFWirelessLink Fig4.3DGainpolarandradiationpatternplotsoftheimplantedantenna.a)3Dgainpolarplot,maximumgainequalto-55.37dBi;b)3D normalizedradiationpatternpolarplot;c)valuesofE (dB)andE (dB)inthreedifferentplanes.Thecoordinatesystemisshowninfigure.Maximum φ θ value-41.04dB. doi:10.1371/journal.pone.0164987.g004 Ahalf-wavedipoleasdescribedbeforeisveryusefultoanalyzetheelectromagneticcharac- teristicsofthecommunicationsystembetweentheimplantsandtheexternalcontrollerofthe prosthetichand.However,consideringitslength,suchantennaisnotagoodcandidatetobe embeddedinthesocketofahandprosthesis.Forthispurpose,ahelicaldipoleantenna[29] (Fig7)withconstantradiusandfeedatthemidpointhasbeendesigned.Thehelicalantenna hasbeenoptimizedwiththeFDTDsimulatorSEMCAD[22]tooperateintheMICSfre- quencybandwhenpositionednearthehumanbody.Theconductorwirehasaradiusof 1.433mm,thedistancebetweentheturnhasbeenfixedto180mm,andthetotalheightof theantennais152.4mm(Fig7a).Thediameterofthehelicalis101mm,andthearmofthe humanmodelhasapproximatelyadiameterof80mm(wheretheimplantsispositioned). TheantennacanbepositionedaroundthearmasdepictedinFig7b.Thereturnloss(Fig8) hasbeensimulatedinfreespaceandnearthe3Dhumanbody(asinFig7b).FromFig8,itis possibletonoticethatthereisade-tuningoftheantennawhenpositionedinfreespace.The PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 7/19 In-BodyRFWirelessLink Fig5.ReturnLossofthedipoleantenna.S is~-12dBat403.5MHznearthehumanbody. 11 doi:10.1371/journal.pone.0164987.g005 S valueat403.5MHzis-11dBwhentheantennaisaroundthearmofthehumanbody 11 (orangecurve),whileS is~-3dBinfreespaceat403.5MHz(bluecurve).Thisshapeallows 11 theantennatobeembeddedintothesocketofahandprosthesis,withgainandradiationpat- tern(Fig9)similartothehalf-wavedipole. Channelmodelingforbodyimplanteddevices ThecharacteristicsofaRFsignalchangeduringtransmissionbetweentransmittingandreceiv- ingantennas.Thechangesdependontheenvironmentandthedistancebetweenthetransmit- terandthereceiver.Inthecasestudyofthiswork,themediumisthehumanbody,whichisa lossyheterogeneousmediumwithhighpermittivity.In-bodyEMGsensorscontrollingapros- thetichandshouldrelyonagoodcommunicationlink,whichguaranteeslowlatencyandhigh reliability.Thefirststepforagoodcommunicationlinkisthedefinitionofthechannelmodel- ing.Achannelmodelallowstoobtaintheprofileofthetransmittedsignalfromthereceived signal. Channelmodelsareoftenobtainedbyphysicalmeasurementsinexperimentalenviron- ments,butforpracticalreasonsandethicalissuesinthecaseofimplanteddevicesthiscannot bedone.Thesimulationsareinthiscasethemeansforbuildingchannelmodelssincethis allowstotakeintoaccountthelossesduetohumanbody.Incaseofbodyareanetworks,the propagationpathcanbesubjecttofadingduetoshadowingbybodyposture,reflection,dif- fractionorenergyabsorption.Thepathlossrepresentstheattenuationofthetransmittedsig- nalandinthecaseofbodyareanetworksitdependsonthedistanceandfrequency[16].For PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 8/19 In-BodyRFWirelessLink Fig6.3DGainpolarandradiationpatternplotsofthedipoleantenna.a)3Dgainpolarplot,maximumgainequalto-3.20dBi;b)3Dnormalized radiationpatternplot;c)ValuesofE (dB)andE (dB)inthreedifferentplanes.Thecoordinatesystemisshowninfigure.Maximumvalue11.35dB. φ θ doi:10.1371/journal.pone.0164987.g006 implantedwirelesscommunications,thepathlossintermsofdistancedisgivenbythefollow- ingrelation: G P PLðdÞ¼ R T ð1Þ P ðdÞ R WhereP isthetransmittedpower,P isthereceivedpower,andG isthegainofthereceiving T R R antenna.Thetransmittingantennaisconsideredpartofthechannel[3,26,31].To statistically modelthepathlossindBasafunctionofthedistance,thefollowingformula,basedonthe Friisformula[26,30,31],canbeused: d PL ðdÞ¼PL þ10(cid:3)n(cid:3)log ð2Þ dB 0 10d 0 WherePL isthepathlossindBatareferencedistanced expressedinmm,d[mm]isthe 0 0 antennaseparation,andnisthepathlossexponent,whichdependsontheenvironmentwhere PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 9/19 In-BodyRFWirelessLink Fig7.Helicalantenna.a)helicalantennadimensions.b)positionofthehelicalantennanearthehumanbody. doi:10.1371/journal.pone.0164987.g007 theRFsignalpropagates.Thepathlossexponentisequalto2infreespace.Eq2doesnottake intoaccounttheshadowingcomponentduetodifferentbodytissuesandtheantennagainin differentdirections.Shadowingisdefinedasthevariationofthelocalmeanaroundthepath loss.Inparticulartheshadowingcomponenttakesintoaccountthefactthattherearedifferent valuesofthepathlossforsamedistancebetweentransmitterandreceiver.To takeintoaccount theselosses,thepathlosscanbeexpressedas[30],[26]: d PL ðdÞ¼PL þ10(cid:3)n(cid:3)log þS ð3Þ dB 0 10d 0 whereSisarandomvariablewithnormaldistributionandstandarddeviationσ.Indeedhas s beensohwnthatthevariationofthepathlossaroundtheaveragefollowalog-normaldistribu- tioninmanymeasurements[19].S~N(0,σ 2)representstheshadowingcomponentwhich S takeintoaccountthepresenceofthehumantissuesandtheantennagainindiffererent directions. SpecificAbsorptionRate(SAR) ThespecificabsorptionrateistheratethatquantifiestheRFenergyabsorbedinbiologicaltis- sue.ItisexpressedinWatt perkilogram(W/kg)anditisthemeasureoftheamountofheat generatedintheantennasurrounding.Sincethisparameterisofextremeimportanceforthe healthoftheimplantscarrier,therearelimitsandregulationsthatneedtobefulfilled.In Europeandseveralcountriesintheworld,suchasJapanandKorea,theguidelinesareprovided byICNIRP(InternationalCommissiononNon-IonizingRadiationProtection)[32]which PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 10/19
Description: