ebook img

Characterization of C. debilis GB1 a Thermophilic Facultative Anaerobe Capable of Lending PDF

438 Pages·2017·6.67 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterization of C. debilis GB1 a Thermophilic Facultative Anaerobe Capable of Lending

Characterization of C. debilis GB1 a Thermophilic Facultative Anaerobe Capable of Lending Aerotolerance in Co-culture with C. thermocellum by Scott Wushke A Thesis Submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirments of degree of DOCTOR OF PHILOSOPHY Faculty of Science/Department of Microbiology University of Manitoba Winnipeg Copyright © 2017 by Scott Wushke i Characterization of C. debilis GB1 a Thermophilic Facultative Anaerobe Capable of Lending Aerotolerance in Co-culture with C. thermocellum by Scott Wushke Ph.D., University of Manitoba, 2016 Supervisory Committee Dr. Richard Sparling (Department of Microbiology, University of Manitoba) Supervisor Dr. Nazim Cicek (Department of Biosystems Engineering, University of Manitoba) Committee member Dr. Karen Brassinga (Department of Microbiology, University of Manitoba) Committee member ii Abstract Cellulosic ethanol production is mainly described as an anaerobic process. Through use of aerobic selective pressure, using inoculate from samples taken from a farm in South-Eastern Saskatchewan, Canada, we were able to create highly cellulolytic aerotolerant enrichments which produced both hydrogen and ethanol. We were able to recreate this highly cellulolytic aerotolerant phenotype using C. thermocellum DSM 1237 and one of the Caldibacillus debilis strains isolated from the aerotolerant enrichments, strain GB1. Caldibacillus debilis GB1 is a thermophilic facultative anaerobe. C. debilis GB1 displayed a physiology distinct from that of the type strain Tf which is an obligate aerobe. Under oxygen limiting conditions, both GB1 and Tf produce end-products lactate, acetate, formate and CO ;however, GB1 alone produces ethanol. 2 A key feature necessary for aerotolerant growth of the co-culture with C. thermocellum was the capacity of C. debilis GB1 to grow both aerobically and anaerobically. In order to characterize GB1, we sequenced and annotated the genome then used high throughput proteomics to characterise the protein expression changes between aerobic and anaerobic metabolism. We found C. debilis GB1 has typical mixed fermentation pathways and aerobic/anaerobic regulation similar to those found in E. coli K-12 and B. cereus. In order to explain the lack of ethanol production in the type strain, C. debilis Tf, we did a genomic comparison of both strains Tf and GB1, focusing on the genes concerning pyruvate metabolism. In particular, there were amino acid changes in the iii aldehyde-alcohol dehydrogenase ADHE that could lead to inactivity in strain Tf. This genomic evidence, plus Tf having physiology consistent with an adhE deletion mutant in the closely related Geobacillus thermoglucosidasius, leads us to propose that the adhE gene is either differently regulated or inactive in C. debilis Tf. From our work, we showed that C. debilis GB1 allowed us to further define and characterize the physiology of the genus Caldibacillus, find a new aerotolerant mode of mode of Consolidated bioprocessing using C. thermocellum, and further understanding of aerobic/anaerobic regulation in thermophilic facultative anaerobes. iv Acknowledgements Thank you to my advisor and mentor Dr. Sparling for giving me guidance, support, and the opportunity to do this research. Thank you to my supervisory committee members: Dr. Brassinga and Dr. Cicek Thank you to collaborators who offered guidance and support: Dr. Levin, Dr. Stott, and Dr. Fristensky. Thank you to those guided and helped me with the Omics work: Peyman Ezzati, Xiang Li Zhang, Vic Spicer and Dr. Krokhin Thank you to my friends and lab mates: Tobin Verbeke, Tom Rydzak, Marcel Taillefer, Alan Froese, Charushi Panditharatne Carlo Carere, Umesh Ramachandran, Rumana Islam, Nathan Wrana, Valery Agbor, Jilagamazhi Fu, Ryan Sestric, Riffat Munir, Tatiana Kozlova, Parveen Sharma, Maryam Mirzaie, Chris Dartiailh, Warren Blunt and Elsie Jordaan, as well as many others that are too numerous to mention. Thank you to Ariadne Valadares who suffered through so much proof reading for me. v Dedication To my parents, who never stopped believing in me. vi Table of Contents Abstract ........................................................................................................................ iii Acknowledgements ........................................................................................................ v Dedication ..................................................................................................................... vi Table of Figures ...........................................................................................................xii Table of Tables ............................................................................................................ xiv Table of Appendix Figures........................................................................................... xv Table of Appendix Tables ........................................................................................... xvi List of Materials for Which Copyright Permission was Obtained .............................xvii Chapter 2: ...................................................................................................................xvii Chapter 1: Developing Consortia for Ethanol Production from Consolidated Bioprocessing ................................................................................................................. 1 1.1. Introduction and Justification for Use of Consolidated Bioprocessing ........... 1 1.2. The Need for Biofuels in 2016 ........................................................................ 2 1.3. Ethanol and Hydrogen ..................................................................................... 5 1.4. First, Second, and Third Generation Biofuels ................................................. 7 1.4.1. Feedstock for Consolidated Bioprocessing .............................................. 8 1.4.2. Lignocellulosic Composition ................................................................... 9 1.5. Typical Mixed Acid Fermentation of Bacteria and Ethanol Production ....... 11 1.6. Organisms for Potential Use in Consolidated Bioprocessing ....................... 13 1.6.1. C. thermocellum Role in Consolidated Bioprocessing .......................... 13 1.6.2. Caldicellulosiruptor Role in Consolidated Bioprocessing .................... 16 1.6.3. C. phytofermentans Role in Consolidated Bioprocessing ...................... 17 1.6.4. C. cellulolyticum Role in Consolidated Bioprocessing .......................... 18 1.7. Designed Co-cultures for CBP ...................................................................... 20 1.7.1. Co-cultures of C. thermocellum with Thermoanaerobacter sp. or Thermoanaerobacterium sp. ................................................................................. 20 1.7.2. C. besci and T. maritma Co-Cultures ..................................................... 22 1.7.3. Co-cultures under Aerobic Conditions................................................... 22 1.8. Bioprospecting for Consolidated Bioprocessing ........................................... 23 1.9. Oxygen Removal/Oxygen Tolerance ............................................................ 24 1.10. Geobacillus and Caldibacillus in CBP ...................................................... 26 1.11. Omics for Microbial Characterization and Predictive Leverage ............... 27 vii 1.12. Conclusion ................................................................................................. 30 1.13. Thesis Objectives: ...................................................................................... 31 1.14. Work not Included in the Thesis Chapters................................................. 33 Chapter 2: Characterization of Enriched Aero-tolerant Cellulose Degrading Communities for Biofuels Production Using Differing Selection Pressures and Inoculum Sources ......................................................................................................... 34 2.1. Abstract ......................................................................................................... 34 2.2. Introduction ................................................................................................... 35 2.3. Materials and Methods .................................................................................. 37 2.3.1. Inocula and Enrichment Conditions ....................................................... 37 2.3.2. Variation in Growth Medium and Selection Conditions........................ 37 2.3.3. Experimental Setup ................................................................................ 38 2.3.4. Sugar and End-Product Analyses ........................................................... 40 2.3.5. DNA extraction and PCR Amplification ............................................... 40 2.3.6. Denaturing Gradient Gel Electrophoresis (DGGE) ............................... 41 2.3.7. DNA Sequencing and Phylogenetic Analyses ....................................... 41 2.4. Results and Discussion .................................................................................. 42 2.4.1. Culture Enrichment ................................................................................ 42 2.4.2. Analysis of Microbial Community......................................................... 42 2.5. Conclusion ..................................................................................................... 51 Chapter 3: Characterization of the Facultative Anaerobe Caldibacillus debilis GB1 and its use in a Designed Aerotolerant, Cellulose Degrading, Co-Culture with Clostridium thermocellum ............................................................................................ 53 3.1. Abstract ......................................................................................................... 53 3.2. Introduction ................................................................................................... 54 3.3. Materials and Methods .................................................................................. 56 3.3.1. Culturing Method ................................................................................... 56 3.3.2. Cell Growth ............................................................................................ 57 3.3.3. Physiological Characterization............................................................... 57 3.3.4. Sugar and End-Product Analysis ........................................................... 58 3.3.5. Bioinformatic Analyses .......................................................................... 59 3.3.6. Culture Purity Confirmation .................................................................. 59 3.4. Results ........................................................................................................... 60 3.4.1. Caldibacillus Strain Comparison ........................................................... 60 viii 3.5. Caldibacillus debilis Plus Clostridium thermocellum Co-Culture ................ 66 3.6. Discussion ..................................................................................................... 67 3.6.1. Caldibacillus Strain Comparison ........................................................... 67 3.6.2. Caldibacillus debilis Plus Clostridium thermocellum Co-Culture ........ 69 3.7. Conclusion ..................................................................................................... 75 Chapter 4: Genome and proteome characterization of Caldibacillus debilis GB1 core metabolism under aerobic and anaerobic conditions ................................................... 76 4.1. Abstract ......................................................................................................... 76 4.2. Introduction ................................................................................................... 77 4.3. Materials and Methods .................................................................................. 80 4.3.1. Cell Culturing and Harvesting ............................................................... 80 4.3.2. DNA Isolation and Processing ............................................................... 81 4.3.3. Preparation of Cells for Protein Extraction ............................................ 82 4.3.4. Mass Spectrometry ................................................................................. 84 4.3.5. Database Search, Protein Identification, and Statistical Analysis .......... 84 4.3.6. Comparison of C. debilis GB1 Proteome with E. coli K-12 Transcriptome ....................................................................................................... 87 4.4. Results and Discussion .................................................................................. 88 4.4.1. General Genome Features ...................................................................... 88 4.4.2. Growth Characteristics at the Proteomic Sampling Point ...................... 89 4.4.3. General Features of the Proteomes ........................................................ 91 4.4.4. Tricarboxylic Acid Cycle............................................................................ 99 4.4.5. Glycolysis ............................................................................................. 103 4.4.6. Pyruvate Metabolism and End-Product Synthesis ............................... 103 4.4.7. Oxygen Respiration .............................................................................. 105 4.4.8. Reactive Oxygen Species Protection ................................................... 106 4.4.9. Pyruvate Dehydrogenase ...................................................................... 107 4.4.10. Other Highly Differentially-Expressed Pathways ............................ 108 4.4.11. Core Metabolism Overview ............................................................. 116 4.4.12. Comparison against the E. coli K-12 data set................................... 119 4.5. Conclusion ................................................................................................... 125 Chapter 5: Genomic Comparison of a Facultatively Anaerobic and Obligately Aerobic Caldibacillus debilis Strains GB1 and Tf Helps Explain Physiological Differences 127 ix 5.1. Abstract ....................................................................................................... 127 5.2. Introduction ................................................................................................. 128 5.3. Materials and Methods ................................................................................ 129 5.3.1. Cell Culturing ....................................................................................... 129 5.3.2. Genomic Comparison........................................................................... 130 5.3.3. Protein Extraction................................................................................. 130 5.3.4. Mass Spectrometry Methods ................................................................ 131 5.3.5. Proteogenomics .................................................................................... 132 5.4. Results and Discussion ................................................................................ 133 5.4.1. GB1 and Tf Genome Comparison........................................................ 133 5.4.2. Proteogenomics .................................................................................... 145 5.4.3. Core Metabolic Genes Relative to Observed Phenotype ..................... 147 5.4.4. Pyruvate Fermentation ......................................................................... 152 5.4.5. Lactate Dehydrogenase ........................................................................ 168 5.4.6. Pyruvate Dehydrogenase ...................................................................... 168 5.4.7. Pyruvate Formate Lyase ....................................................................... 169 5.4.8. Alcohol Aldehyde Dehydrogenase ...................................................... 170 5.4.9. Cellobiose Phosphotransferase Systems .............................................. 179 5.4.10. Respirofermentative Metabolism ..................................................... 181 5.5. Conclusion ................................................................................................... 183 Chapter 6: General Discussion and Conclusions ....................................................... 185 6.1. Core Objectives ........................................................................................... 185 6.2. Thesis Work in the Context of 2016 ........................................................... 188 6.3. Future Work ................................................................................................ 190 6.4. Conclusion ................................................................................................... 191 6.5. Future Perspectives ...................................................................................... 193 Appendices ................................................................................................................. 195 Appendix A: Physiological and Genomic Characterization of Fervidobacterium pennivorans strain DYC in Relation to the Type Strain ............................................ 195 A.1. Abstract ....................................................................................................... 195 A.2. Introduction ................................................................................................. 196 A.3. Materials and Methods ................................................................................ 198 A.3.1. Isolation of DYC and Cell Culturing ................................................... 198 x

Description:
evaluation of its taxonomic classification, it was renamed as Caldibacillus debilis, becoming the type strain for showed a high degree of down- regulation (
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.