molecules Article Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana) WalaaKamelMousa1,2,AdrianL.Schwan3andManishN.Raizada1,* 1 DepartmentofPlantAgriculture,UniversityofGuelph,Guelph,ONN1G2W1,Canada; [email protected] 2 DepartmentofPharmacognosy,MansouraUniversity,Mansoura35516,Egypt 3 DepartmentofChemistry,UniversityofGuelph,Guelph,ONN1G2W1,Canada;[email protected] * Correspondence:[email protected];Tel.:+1-519-824-4120(ext.53396);Fax:+1-519-763-8933 AcademicEditor:DerekJ.McPhee Received:13July2016;Accepted:27August2016;Published:3September2016 Abstract:FingermilletisanancientAfrican-Indiancropthatisresistanttomanypathogensincluding the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytesfromfingermilletandshowedthatthecrudeextractsoffourstrainshadanti-Fusarium activity. However,activecompoundswereisolatedfromonlyonestrain. Theobjectivesofthisstudy weretoconfirmtheendophyticlifestyleofthethreeremaininganti-Fusariumisolates, toidentify themajorunderlyingantifungalcompounds,andtoinitiallycharacterizethemode(s)ofactionof eachcompound. Resultsofconfocalmicroscopyandaplantdiseaseassaywereconsistentwiththe threefungalstrainsbehavingasendophytes. Usingbio-assayguidedfractionationandspectroscopic structuralelucidation,threeanti-Fusariumsecondarymetaboliteswerepurifiedandcharacterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. Thepurifiedantifungalcompoundswere: 5-hydroxy2(3H)-benzofuranone,dehydrocostuslactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy andvitalitystainingwereusedtovisualizetheinvitrointeractionsbetweeneachcompoundand Fusarium; theresultssuggestedamixedfungicidal/fungistaticmodeofaction. Weconcludethat fingermilletpossessesfungalendophytesthatcansynthesizeanti-fungalcompoundsnotpreviously reportedasbio-fungicidesagainstF.graminearum. Keywords: finger millet; Fusarium sp.; endophyte; fungus; Penicillium sp.; 5-hydroxy 2(3H)-benzofuranone;dehydrocostuslactone;harpagoside 1. Introduction Fingermillet(Eleusinecoracana)isanancientcerealcropwidelygrownbysubsistencefarmersin AfricaandIndia. FingermilletwasdomesticatedinEthiopiaandUgandaat5000BCandthenreached Indiaby3000BC[1]. Unlikeotherrelatedcereals,fingermilletiswellknownforitsabilitytotolerate stressconditionsandtoresistmanypathogens,includingFusariumgraminearum[2–5]. F.graminearum isaseriousfungalpathogenthatcausesFusariumHeadBlight(FHB)inwheatandGibberellaEarRot (GER)incorn[6]. Bothdiseasesresultincatastrophiclossesingrainyieldandareassociatedwith mycotoxinaccumulationingrains[7]. Fusariumsp. areancientfungithathavebeendatedto8.8mya inAfrica[8],thesamecontinentwherefingermilletwasdomesticated. Wehypothesizedthatthepotentiallong-termco-evolutionbetweenfingermilletandFusariumsp. maynotonlyhaveplacedselectionpressureonthegenomeoffingermilletbutalsoonitsassociated microbiome. Specifically, we hypothesized that finger millet may host endophytes that confer Molecules2016,21,1171;doi:10.3390/molecules21091171 www.mdpi.com/journal/molecules MoMlecoulelecsul2e0s 1260,1261, ,211,1 171171 2 of2 1o4f 14 associated microbiome. Specifically, we hypothesized that finger millet may host endophytes that resistance to F. graminearum. Endophytes have been reported to help their host plants to combat confer resistance to F. graminearum. Endophytes have been reported to help their host plants to pathogens[2,9,10]. combat pathogens [2,9,10]. Figure 1. Characterization of the putative fungal endophytes previously isolated from finger millet Figure1. Characterizationoftheputativefungalendophytespreviouslyisolatedfromfingermillet and the antifungal activity of their extracts. (a) Picture of a finger millet plant; (b–d) Pictures of and the antifungal activity of their extracts. (a) Picture of a finger millet plant; (b–d) Pictures of fungal endophytes WF4, WF5 and WF7 isolated from finger millet, respectively; (e) Predicted fungal fungalendophytesWF4,WF5andWF7isolatedfromfingermillet,respectively;(e)Predictedfungal endophyte nomenclatures, alongside the corresponding plant tissue from which they were isolated endophytenomenclatures,alongsidethecorrespondingplanttissuefromwhichtheywereisolated and best BLAST match taxonomic identification based on 18S rDNA sequencing; (f–h) Example of andbestBLASTmatchtaxonomicidentificationbasedon18SrDNAsequencing;(f–h)Exampleofeach each endophyte fermented on rice medium as indicated; (i) Quantification of the effects of each endophytefermentedonricemediumasindicated;(i)Quantificationoftheeffectsofeachendophyte endophyte extract (250 mg/mL) on the growth of F. graminearum compared to the fungicide nystatin extract(250mg/mL)onthegrowthofF.graminearumcomparedtothefungicidenystatin(10µg/mL) (10 µg/mL) (diameter of inhibition zone in mm, n = 3); (j–l) Representative images illustrating the (diameter of inhibition zone in mm, n = 3); (j–l) Representative images illustrating the results of results of co-incubation of each endophytic fungus with F. graminearum in vitro. co-incubationofeachendophyticfunguswithF.graminearuminvitro. Consistent with our hypothesis, in a previous study, we reported the isolation of four putative funCgoanl seinsdteonpthwytietsh (osturraihnys pWoFth4e-7s)i sf,roinma fipnrgeevri omuilslestt uanddy, swhoewreepd othrtaetd ththeier iesxotlraatcitosn haodf faonutir-fpuuntgaatli ve fungalendophytes(strainsWF4-7)fromfingermilletandshowedthattheirextractshadanti-fungal Molecules2016,21,1171 3of14 Molecules 2016, 21, 1171 3 of 14 activity against F. graminearum [2]. Only one of these endophytes, Phoma sp. strain WF4, was activityagainstF.graminearum[2]. Onlyoneoftheseendophytes,Phomasp. strainWF4,wasanalyzed analyzed in detail including isolation of the underlying anti-Fusarium compounds. Of the remaining indetailincludingisolationoftheunderlyinganti-Fusariumcompounds. Oftheremainingstrains, strains, WF6 and WF7 (Penicillium sp.) were isolated from finger millet roots, while WF5 (Fusarium WF6andWF7(Penicilliumsp.) wereisolatedfromfingermilletroots,whileWF5(Fusariumsp.) was sp.) was isolated from shoots (Figure 1) [2]. The crude culture extracts of each strain inhibited the isolatedfromshoots(Figure1)[2]. Thecrudecultureextractsofeachstraininhibitedthegrowthof growth of F. graminearum (Figure 1) [2]. The objectives of this study were to confirm the endophytic F.graminearum(Figure1)[2]. Theobjectivesofthisstudyweretoconfirmtheendophyticbehaviour behaviour of the three remaining, putative, anti-Fusarium fungal endophytes, to identify the ofthethreeremaining,putative,anti-Fusariumfungalendophytes,toidentifytheunderlyingmajor underlying major antifungal compounds and to study the mode of action of each pure compound. antifungalcompoundsandtostudythemodeofactionofeachpurecompound. 2. Results 2. Results 22..11.. CCoonnffiirrmmiinngg tthhee EEnnddoopphhyyttiicc BBeehhaavviioouurr ooff tthhee PPuuttaattiivvee FFuunnggaall EEnnddoopphhyytteess TToo ccoonnffiirrmm tthhee eennddoopphhyytitci cbebheahvaivoiuoru orf othfet hiseoliasoteldat efidngfienr gmerillmet iflulentgfiu, ntwgio, etxwpoereimxpeenrtism wenertes wunedreerutnakdeenrt.a ken. 22..11..11.. PPllaanntt PPaatthhooggeenniicciittyy AAssssaayy SSeeeeddlliinnggss ooff fifinnggeerr mmiilllleett wweerree ccoo--iinnccuubbaatteedd wwiitthh eeaacchh ppuuttaattiivvee ffuunnggaall eennddoopphhyyttee oorr wwiitthh aa kknnoowwnn ppaatthhooggeenn ooff fifinnggeerr mmiilllleett,, AAlltteerrnnaarriiaa aalltteerrnnaattaa.. TThhee sseeeeddlliinnggss iinnooccuullaatteedd wwiitthh tthhee ppaatthhooggeenn ddeevveellooppeedd ddiisseeaassee ssyymmppttoommss iinncclluuddiinngg bbllaacckk rroooottss aanndd lleeaaff ssppoottss aanndd rreedduuccttiioonn iinn ppllaanntt lleennggtthh ((FFiigguurree 22aa)),, ccoommppaarreedd ttoo ccoonnttrrooll sseeeeddlliinnggss tthhaatt rreecceeiivveedd tthhee bbuuffffeerr oonnllyy ((FFiigguurree 22bb)).. HHoowweevveerr,, nnoonnee ooff tthhee ppuuttaattiivvee ffuunnggaall eennddoopphhyytteess sshhoowweedd ssttaattiissttiiccaallllyy ssiiggnniiffiiccaanntt ddiisseeaassee ssyymmppttoommss oonn ffiinnggeerr mmiilllleett sseeeeddlliinnggss ccoommppaarreedd ttoo tthhee ppaatthhooggeenn ccoonnttrrooll ((FFiigguurree 22cc––gg)).. FFiigguurree 22.. CCoonntt.. Molecules2016,21,1171 4of14 Molecules 2016, 21, 1171 4 of 14 Molecules 2016, 21, 1171 4 of 14 Figure2.Plantpathogenicityassayofeachputativeendophytefollowinginoculationontofingermillet. Figure 2. Plant pathogenicity assay of each putative endophyte following inoculation onto finger Fig(uar)eR e2p. rPelsaenntt aptiavtehopgicetnuirceitsyh oawssianyg othf eeeafcfhe cptuoftatthievek neonwdonpphaythteo gfoenlloAwltienrgna irniaoaclutelarntiaotna oonnfiton gfienrgmeril let millet. (a) Representative picture showing the effect of the known pathogen Alternaria alternata on milsleeet.d (lain) gRse(pproessietnivtaeticvoen tprioclt)u;r(eb )shRoewpriensge nthtaet ievfefepcti cotuf rtehes hkonwowinng pthaetheoffgeecnt oAfltbeurnffaerriao anltfiernngaetra monil let finger millet seedlings (positive control); (b) Representative picture showing the effect of buffer on fingseeerd mlinilglest (sneeegdaltiinvgesc o(pnotrsoitl)iv;(ec –ceo)nRtreoplr);e s(ben) tRateipvreepsiecntutarteisvesh poiwctiunrge tshheoewffeincgto tfhteh eefefaeccht opfu btautfivfeerf ounn gal finger millet seedlings (negative control); (c–e) Representative pictures showing the effect of the each fingenerd mopihllyett eseoendfilinnggesr (mneigllaettisveee cdolinntgrsola)s; (icn–dei)c aRteepdr;e(sf)enQtuatainvtei fipciacttiuorneso fshthoewpinergc ethneta egfefeocft loefs itohnes ecaacuhs ed putative fungal endophyte on finger millet seedlings as indicated; (f) Quantification of the putbaytiveaec hfufnugnaglu senodrotphehyptaet hoong efninAgletre rnmarililaeta ltseerendatliancgosm apsa riendditcoattehde; co(fn)t rQoluuasnitnifgicAatsisoens sosfo ftthwea re; percentage of lesions caused by each fungus or the pathogen Alternaria alternata compared to the per(cge)nQtaugaen toifif cleastiioonnso fctahuesetodt ablyl eenagcthh ofufnfignugse romr itlhleet pseaethdolignegns iAnlotceurnlaatreiad awltietrhneataac hcoemndpoaprhedy titco ftuhneg us control using Assess software; (g) Quantification of the total length of finger millet seedlings conotrrothl eupsainthgo gAesnsAeslste rsnoafrtiwaaalrtee;r n(agt)a cQoumapnatrifeidcattoiothne ocof ntthroe l.toFtoarl bloetnhg(tfh) aonfd f(ign)g,leert temrsiltlheta tsaereeddliinffgesre nt inoculated with each endophytic fungus or the pathogen Alternaria alternata compared to the control. inofcruolmateodn ewaitnho ethaecrh iennddicoaptheytthiac tfuthnegirusm oera tnhsea praetshtoagtiesnti cAalltleyrndairffiae raelntetrn(Mataa ncno-mWphairtende ytot -tthees tc,opn≤tro0l..0 5). For both (f) and (g), letters that are different from one another indicate that their means are statistically ForT bhodetihwff e(hfri)es naktne (drMs (iagnn)d,n li-ecWtatteheristtn hteheyas ttt -aatneresd tda, rpidf f≤e e0rre.r0no5tr) .fo rTofhmteh ewonmheies akanneor.st hinedr iicnadteic tahtee sthtaant dtharedir emrreoarn osf athree smtaetaisnt.i cally different (Mann-Whitney t-test, p ≤ 0.05). The whiskers indicate the standard error of the mean. 2.1.2. RootColonizationAssay 2.1.2. Root Colonization Assay 2.1.2. RoToot tCesotltohneizaabtiiloitny Aofsseaaych endophytetocolonizetheinternaltissuesoffingermilletroots,confocal To test the ability of each endophyte to colonize the internal tissues of finger millet roots, miTccoorno ftsoeccsoatp l tyhmiemi caraobgsiilcniotgyp ywo ifam seacagocihnn dgeu nwcdtaeosdp c.hoSynetdeeud tcloitne dcgo.s lSioneneoidczulei nlatghtsee d iniwnotcieutrhlnatatheld et ibwsusiuftfhee srt hooenf lbyfuin(fcfgeoernr otrmnolilyl)l es(cht oornwotoreotdsl), no conofbosscheaorlvw maebdicl ernofosu conobgpsaeylr vgimarobalwge itfnhugni ngwsailad sge rcotohwnetdhtui sicnstsueideds.e (StFheieegd utlirisnesug3esa s,i bn(F)o.icgAuultraett he3dea, ebwa).ri tlAhyt ptthhoees teb-iaunrflofyce urp looasntti-loiynn o(tccioumnlaettripoolon)i nt shouwsteeidmd, enm poo oosintbtso eufrstvehadeb, flmeu nofusgtna oglfah lty hgperh ofauwentgwha eli nrhesyiopdbhesa teehr wev eetdirseso uonebssth e(reFvireghdui zroeon p 3tlaha,enb )er.h, Aihzoto wpthleaevn eeea,r rheloyaw cpheovosetfr-it nehaoecchfuu lonafgt itiohwne as timvei sfpuuoanilgniizt ewudsaetsod v,i inmsuitoaiaslittz eoedcf o tthlooe n infiuzitanitagitoaeln chooylfoptnhhiaezeae twpioiendr eeor fmo tbhaslee arevnpedidds euormnb -atehlp eai dnrdehr imzsuoabpl-lealapnyiede, erhrsmoowaflefi vlnaeygree errsa mcohfi l lofeifnt tgrheoero ts, funpgriom vwiildlaesitn rvgoisofuutsra,t lhpizereordvs iudtopin pigon rfiuttiratththeae trct oshuleopynpiaozrraett ietohnnadt o otphf ehtyhy etae rseep oeifnddfieonrpmghearylt measni lodlef tfsi(unFbgig-eerup mriedi3lelcre–mt h(aF)l.i gluaryee r3sc –ohf) .f inger millet roots, providing further support that they are endophytes of finger millet (Figure 3c–h). FFiigguurree 33.. CCoonntt.. Figure 3. Cont. Molecules2016,21,1171 5of14 Molecules 2016, 21, 1171 5 of 14 FigFuigreur3e. 3T.e Tstesfto frotrh tehea baibliitliytyo foft htheep puutatattiivvee ffuunnggaall eennddoopphhyytteess ttoo ccoololonniziez efifingnegre mrmillieltl ertorootso tussuinsgin g concofoncfoaclaslc sacnanninninggl alasseerr mmiiccrroossccooppyy.. (a(a––bb) )RReperperseesnetnattiavteiv peicptuicrteus roefs roooftr toisostuteiss siunoecsuilnaotecdu lwatitehd thwei th thebubfuffefre rcocnotnrtorlo; l(;c(–ch–)h )RReperperseesnetnattiavteiv peipctiuctruesr eosf orforooto ttistsisuseuse isnioncouclautleadte wdiwthi tehaechac phuptauttiavtei vfeunfugnalg al endenodpohpyhtyetae saisn idnidciactaetded..F Fuunnggii flfuluoorreessccee ppuurrppllee--bblluuee dduuee ttoo ssttaainininingg wwitihth caclaclocfoluflouro. rP.lPanlat nttistsiusseus es appapeaprearer dreddu deutoe atou taou-tflou-folureosrceesncecne.ceW. Whitheitaer raorrwoswps opinoitntto tfou fnugnigini sinidsiedteh tehtei stsiusseuse.sA. Abbbrberveivaitaiotinosn:sP: R, priPmRa, rpyrirmooatr;yR rHoo,tr; oRoHt,h raoior.t hair. 2.22..B2.i oB-iAo-sAsasysaGy uGiudieddedP uPruirfiicfiactaitoinona annddS Sttrruuccttuurraall EElluucciiddaattiioonn ooff AAnnttii--FFuussaarriuiumm CComompopuonudnsd s Bio-assay guided purification was conducted to isolate the active anti-fungal compounds from Bio-assayguidedpurificationwasconductedtoisolatetheactiveanti-fungalcompoundsfrom each endophyte extract. Three active anti-Fusarium compounds were purified (Figure 4). The eachendophyteextract. Threeactiveanti-Fusariumcompoundswerepurified(Figure4). Thediameter diameter of zones of growth inhibition of F. graminearum were 2, 2.5 and 1.5 cm for compounds 1, 2 of zones of growth inhibition of F. graminearum were 2, 2.5 and 1.5 cm for compounds 1, 2 and 3, and 3, respectively. The minimum inhibitory concentration (MIC) for compounds 1–3 were 31.25, respectively. Theminimuminhibitoryconcentration(MIC)forcompounds1–3were31.25,250.00and 250.00 and 31.25 µg/mL, respectively. The three compounds were subjected to further spectroscopic 31.25µg/mL,respectively. Thethreecompoundsweresubjectedtofurtherspectroscopicstructure structure elucidation. Results corresponding to each compound are shown separately below. 1D- elucidation. Resultscorrespondingtoeachcompoundareshownseparatelybelow. 1D-and2D-NMR and 2D-NMR spectra for these three compounds are presented (Figures S1–S15). spectraforthesethreecompoundsarepresented(FiguresS1–S15). 2.3. Structural Elucidation of the Isolated Antifungal Compounds 2.3. StructuralElucidationoftheIsolatedAntifungalCompounds 2.3.1. Compound 1 (Isolated from Fungus WF5) 2.3.1. Compound1(IsolatedfromFungusWF5) Compound 1 (molecular formula C8H6O3) was eluted with hexane-ethyl acetate (90:10) as a Compound1(molecularformulaC H O )waselutedwithhexane-ethylacetate(90:10)asawhite white amorphous powder, with an 8Rf 6va3lue of 0.46, and further moved as a single band in amorphouspowder, withanRfvalueof0.46, andfurthermovedasasinglebandinhexane-ethyl hexane-ethyl acetate (85:15), with an Rf of 0.58. The yield of compound 1 was 50 mg from 3 g of total acetate(85:15),withanRfof0.58.Theyieldofcompound1was50mgfrom3goftotalextract.IR:3320, extract. IR: 3320, 1762, 1604, 1241, 1077, 948 cm−1. 1H-NMR (600 MHz, DMSO): 3.83 (2H, s, H-3), 6.65 1762,1604,1241,1077,948cm−1. 1H-NMR(600MHz,DMSO):3.83(2H,s,H-3),6.65(1H,dd,J=8.6, (1H, dd, J = 8.6, 1.6 Hz, H-6), 6.75 (1H, d, J = 1.6 Hz, H-4), 6.95 (1H, d, J = 8.6 Hz, H-7), 9.32 (1H, s, 1.6Hz,H-6),6.75(1H,d,J=1.6Hz,H-4),6.95(1H,d,J=8.6Hz,H-7),9.32(1H,s,Ar–OH).13C-NMR Ar–OH). 13C-NMR (150 MHz, DMSO): 175 (C-2), 153.9 (C-8), 146.7 (C-5), 125.1 (C-9), 114.2 (C-4), (15101M1.8H (zC,-D6)M, S1O10).:51 7(C5-(7C),- 23)3,.135 3(C.9-3(C). -8C)o,m14p6a.7rin(Cg- 5s)p,e1c2t5ra.1l (dCa-t9a) ,(1F1ig4u.2re(Cs -S41),–1S15)1 .8w(iCth- 6a), 1p1re0v.5io(uCs- 7), 33.r3ef(eCr-e3n)c.eC [o1m1]p, tahrein cgomsppeocutrnadl dwaatsa c(oFnigfiurrmesedS 1a–sS 55-)hwyditrhoxayp 2r(e3vHio)-ubsenrezfoefruernacneo[n1e1 (]F,itghuerceo 4ma)p. oundwas confirmedas5-hydroxy2(3H)-benzofuranone(Figure4a). 2.3.2. Compound 2 (Isolated from Fungus WF6) 2.3.2. Compound2(IsolatedfromFungusWF6) Compound 2 (molecular formula C15H18O2) was eluted from the hexane-ethyl acetate (50:50) fraCctoiomnp aosu an cdol2o(rmlesosl escoulilda.r Tfhoer mcoumlapCou15nHd 1w8Oas2 )thweans peulruitfeiedd fbroym prtehpearhaetixvaen Te-LeCth uyslinagce ata stoelv(5e0n:t5 0) framctiixotnuraes oaf hcoexloarnlee-sesthsyoll iadc.etTahtee (3co0:m70p),o wunitdh awna Rsft vhaelnuep oufr 0ifi.7e3d. Tbhye pyrieelpda orfa tciovmepToLuCndu 2si wngasa 1s0o mlvge nt mixtureofhexane-ethylacetate(30:70),withanRfvalueof0.73. Theyieldofcompound2was10mg Molecules2016,21,1171 6of14 from3gtotalextract. TheIRand1D-NMRdatawereasfollows: IR:2934,1765,1257,1146,998cm−1. 1H-NMR(600MHz,CDCl ): δ2.91(1H,m,H-1),1.91(1H,m,H-2α),1.85(1H,m,H-2β),2.14(1H,m, 3 H-3α),2.5(2H,m,H-3),2.87(1H,m,H-5),3.95(1H,t,J=10Hz,H6),2.90(1H,m,H-7),2.24(1H,m, H-8α),1.42(1H,m,H-8β),2.48(1H,m,H-9α),2.19(1H,m,H-9β),6.22(1H,d,J=3.6Hz,H-13α),5.47 (1H,d,J=3.6,H-13β),4.87(1H,s,H-14α),4,79(1H,s,H-14β),5.25(1H,d,J=2.4Hz,H-15α),5.04 (1H,d,J=2.4Hz,H-15β). 13C-NMR(150MHz,CDCl ): δ30.2(C-3),30.9(C-8),32.4(C-2),36.2(C-9), 3 45.09(C-1),47.5(C-7),52.0(C-5),85.2(C-6),109.59(C-14),112.6(C-15),120.19(C-13),139.7(C-11),149.2 (C-10),151.2(C-4),170.27(C-12). Comparingspectraldata(FiguresS6–S10)withreferencedata[12],the Molecules 2016, 21, 1171x 10 of 19 compoundwasconfirmedasdehydrocostuslactone,anguaianolidesesquiterpenelactone(Figure4c). Figure 4. StruFicgtuurer e4s. Satnrudctuirnes vaintdro ina vcittirvo iatcytivoitfy tohf ethep upurriififieedd aantni-tFiu-sFaruiusmar icuommpocuonmds pfrooumn fdusngfarl om fungalCommented [t1]: Please replace Fig 4 endophyte streanidnosphWyteF s5tr,aiWns FW6F5a, WndF6 WandF W7.F7.( (aa)) SStrturcutucrteu orfe coomfpocuonmd 1p,5o-huynddrox1y ,b5e-nhzyofdurraonxoyne b(freonmz ofuranone strain WF5); (b) Representative picture of the disc diffusion assay showing the anti-Fusarium activity (fromstrainWF5);(b)Representativepictureofthediscdiffusionassayshowingtheanti-Fusarium of compound 1; (c) Structure of compound 2, dehydrocostus lactone (from strain WF6); (d) activity of comRepporeusenndtati1v;e p(cic)tuSret rouf tchteu driesc doifffucsoiomn apsosauy nshdow2i,ngd teheh ayndtir-Foucsoarsiutmu sactliavcittyo onf ecom(fprooumnd s2;t rain WF6); (d)Representat(iev) eStrpuiccttuurer eofo cfomthpeoudnids c3,d hiafrfpuasgioosnidea s(fsraomy ssthraoiwn WinFg7)t; h(fe) Raenptrie-sFeuntsaatirvieu mpicatucrtei vofi ttyheo dfiscco mpound2; diffusion assay showing the anti-Fusarium activity of compound 3. Numbers (1–9) denote a (e) Structure of compound 3, harpagoside (from strain WF7); (f) Representative picture of the concentration gradient of 4000, 2000, 1000, 500, 250, 125, 62.5, 31.25, 15.62 and 7.8 µg/mL while C disc diffusiondaesnsoateys thseh soowlveinntg cotnhtreol.a nti-Fusarium activity of compound 3. Numbers (1–9) denote a concentrationgradientof4000,2000,1000,500,250,125,62.5,31.25,15.62and7.8µg/mLwhileC 2.3.3. Compound 3 (Isolated from Fungus WF7) denotesthesolventcontrol. Compound 3 (molecular formula C24H30O11) was eluted from the 100% methanol fraction as an amorphous powder. The compound was further purified using preparative TLC with a mobile phase 2.3.3. Compound3(IsolatedfromFungusWF7) mixture of methanol-water (95:5), with an Rf value of 0.12. The yield of compound 3 was 5 mg from 3 g total extract. The IR and 1D-NMR data were as follows: IR: 3392, 2884, 1334, 1283, 989, 770 cm−1. Compound3(molecularformulaC H O )waselutedfromthe100%methanolfractionasan 1H-NMR (600 MHz, CDCl3): 1.33 (32H4, s,3 H0-101)1, 1.74 (1H, dd, J = 14.5 and 4 Hz, H-7α), 2.15 (1H, d, J = Formatted: Font: Not Italic amorphouspo1w4,5d Herz., HT-h7βe),c 2o.9m3 (p1oHu, sn, Hd-w9), a3s.36f-u3r.8t4h (eGrlcp-2u-6r)i, fi4.e6 d(Gulcs-1in), g3.9p8 r(e1Hp,a dr,a Jt =iv =e4 HTzL, CH-6w), i4t.h83 a(1mH, obilepFhoramsaetted: Font: Not Italic mixtureofmedth, Ja =n =o8 lH-wz, aHt-e4)r, 6(.915 (1:5H),, sw, Hi-t1h), 6a.3n6 R(1fHv, da, lJu =e =6o.4f H0z.1, H2.-3T), h6.e38y (1ieHl,d d, oJ f= =c1o6m Hpz, oHu-αn)d, 7.347w (3aHs, 5mgFforrommatted: Font: Not Italic 3gtotalextracmt., HT3h′-e5′)I,R 7.5a5n (2dH1, mD,- HN-2M′ aRndd 6a′),t a7.5w8 (e1rHe, da,s J f=o =l1l6o Hwzs, :HI-R β):. 3133C9-N2M,2R8 (81540,M1H33z,4 C,D1C2l83)3: 9,49(C89-,770cFmorm−a1tt.ed: Font: Not Italic 1), 143.4 (C-3), 104.7 (C-4), 72.7 (C- 5), 76.5 (C-6), 45.0 (C-7), 87.3 (C-8), 53.4 (C-9), 22.4 (C-10), 119 (C- 1H-NMR(600αM), 1H44z.9, (CCD- βC), l136)7:.31 (.C3=3O)(,3 1H34,.2s (,CH-1′-),1 102)8,.81 (.C7-42′)(, 11H28.,2 d(Cd-3,′)J, 1=301.34 (.C5-4a′)n, d1284.2H (Cz-5,′)H, 1-278α.8()C,-2.15(1FHor,mdatt,ed: Font: Not Italic J=14.5Hz,H-67′)β, 9)9,.21 .(9G3lc-(11′)H,), ,7s2.,7H (G-l9c-)2,),3 7.53.69 -(3G.l8c-43)(, G71l.7c0- 2(G-6lc)-,4)4, .765.(9G (Glclc--15)),, 631..89 8(G(lc1-H6)., Cdo,mJp=ari4ngH spze,cHtra-l6 ),4.83Fo(r1mHatt,ed: Font: Not Italic data (Figures S11–S15) results to the literature [13], the compound was identified as harpagoside, an Formatted: Font: Not Italic d,J=8Hz,H-4),6.1(1H,s,H-1),6.36(1H,d,J=6.4Hz,H-3),6.38(1H,d,J=16Hz,H-α),7.47(3H,m, iridoide glycoside (Figure 4e). H3(cid:48)-5(cid:48)),7.55(2H,m,H-2(cid:48) and6(cid:48)),7.58(1H,d,J=16Hz,H-β). 13C-NMR(150MHz,CDCl ): 94(CCom-1m)e,nted [t2]: 3 143.4(C-3),10 4.7(C-4),72.7(C-5),76.5(C-6),45.0(C-7),87.3(C-8),53.4(C-9),22.4(C-10),119(C-α), 144.9(C-β),167.3(C=O),134.2(C-1(cid:48)),128.8(C-2(cid:48)),128.2(C-3(cid:48)),130.3(C-4(cid:48)),128.2(C-5(cid:48)),128.8(C-6(cid:48)), Molecules 2016, 21, 1171 7 of 14 (1H, d, J = 8 Hz, H-4), 6.1 (1H, s, H-1), 6.36 (1H, d, J = 6.4 Hz, H-3), 6.38 (1H, d, J = 16 Hz, H-α), 7.47 Mol(e3cuHle,s m20,1 6H,231′-,51′1)7, 17.55 (2H, m, H-2′ and 6′), 7.58 (1H, d, J = 16 Hz, H- β). 13C-NMR (150MHz, CDC7l3o):f 14 94(C-1), 143.4 (C-3), 104.7 (C-4), 72.7 (C- 5), 76.5 (C-6), 45.0 (C-7), 87.3 (C-8), 53.4 (C-9), 22.4 (C-10), 119 (C-α), 144.9 (C-β), 167.3 (C=O), 134.2 (C-1′), 128.8 (C-2′), 128.2 (C-3′), 130.3 (C-4′), 128.2 (C-5′), 99.112(8G.8l(cC-1-(cid:48)6)′,),7 929.7.1( G(Glclc--21)′,),7 752.9.7( G(Glclc-3-2)),,7 715.7.90 ((GGlclc-3-4),) ,7715.7.90 ((GGllcc--45)),, 7651..98 ((GGllcc--56)),. 6C1.o8m (Gplacr-i6n)g. Cspomecptraarlindga ta (FigspuercetsraSl1 1d–aSt1a5 )(Freigsuurltess toS1th1–eSl1it5e)r arteusruelt[s1 3t]o, ththeec olimtepraotuunred w[1a3s], idtheen ticfioemdpaosuhnadr pwagaos siiddeen,atinfieirdid aosid e glyhcaorspidageo(sFiidgeu, raen4 ieri)d.oide glycoside (Figure 4e). 2.42..M4. iMcroicsrcoospciocpEicx Eamxaimnaintiaotnioonf otfh tehIen ItnetrearcatciotinonB BetewtweeenenE EacahchP PuurereA AnntitfiufunnggaallC Coommppoouunndd aanndd FF.. graminearum inVgriatrmoinearum in Vitro ToTvoi svuiasuliazleizteh tehein itnetrearcatcitoionnb beetwtweeeenn eeaacchh ppuurree ccoommppoouunndd aanndd FF. .ggrarmaminienaeraurmu min invivtriotr, ol,iglhigt ht micmroicsrcoospcoypwy awsauss uesded(F (iFgiugruere5 )5.). Figure 5. The effects of the purified endophyte-derived anti-fungal compounds on F. graminearum in Figure5. Theeffectsofthepurifiedendophyte-derivedanti-fungalcompoundsonF.graminearum vitro using neutral red staining. (a) Cartoon of the experimental methodology used to examine the in invitrousingneutralredstaining.(a)Cartoonoftheexperimentalmethodologyusedtoexaminethe vitro interactions between F. graminearum (pink) and each compound (orange) or the buffer control invitrointeractionsbetweenF.graminearum(pink)andeachcompound(orange)orthebuffercontrol (respective compound solvent). Microscope slides were pre-coated with PDA and incubated for 24 h. (respectivecompoundsolvent).Microscopeslideswerepre-coatedwithPDAandincubatedfor24h. F. graminearum hyphae were then stained with neutral red. Shown are representative microscope F.graminearumhyphaewerethenstainedwithneutralred.Shownarerepresentativemicroscopeslide slide pictures (n = 3) of the interactions of F. graminearum with: (b) 5-hydroxy benzofuranone (5 pictures(n=3)oftheinteractionsofF.graminearumwith:(b)5-hydroxybenzofuranone(5mg/mL) mg/mL) compared to (c) the buffer control; (d) dehydrocostus lactone (5 mg/mL) compared to (e) the comparedto(c)thebuffercontrol;(d)dehydrocostuslactone(5mg/mL)comparedto(e)thebuffer buffer control; (f) harpagoside (5 mg/mL) compared to (g) the buffer control. The blue arrows point control;(f)harpagoside(5mg/mL)comparedto(g)thebuffercontrol.Thebluearrowspointtoareas to areas of apparent breakage of F. graminearum hyphae. Each scale bar equals 25 µm. ofapparentbreakageofF.graminearumhyphae.Eachscalebarequals25µm. Allcompoundsresultedinreducedhyphalgrowthassociatedwithfrequenthyphalbreakage (Figure5b,d,f),comparedtothecontrol(Figure5c,e,g),suggestiveofamixedfungistatic/fungicidal modeofaction. Interestingly,thehyphaeofF.graminearumappearedtobendawayfromthecontact zone with compounds 2 and 3 (Figure 5d,f). However, the effect of all purified compounds on Molecules2016,21,1171 8of14 F.graminearumhyphaewasweak/moderatewhencomparedtootherantifungalcompoundspreviously isolatedfromfingermillerfungalendophytes[2]. 3. Discussion Endophytesaredefinedasmicrobesthatareabletocolonizetheinternaltissuesoftheirhost plantswithoutcausingdisease[14]. Wehypothesizedthatfingermilletmayhostendophyteswith anti-fungalactivity,includingagainstthepathogenFusariumgraminearum,becausethiscropisknown to be resistant to many pathogens including F. graminearum [2,3,5], and its endophytes may have co-evolvedwithFusariumpathogensinAfrica[15,16]andSouthAsia[17,18]. Inapreviousstudy[2], weidentifiedfourdistinct,putative,fungalendophytespeciesfromfingermillet(WF4-7). Theputative endophyteswereisolatedfromplantsoffirstgenerationseeds,andthengrownonTurfaceclayrock usinghydroponicsratherthanonsoil.Thisgrowthsystemmayhavecontributedtothelowabundance andbiodiversityoftheisolatedendophytes. In our earlier study [2], we showed that extracts of the putative endophytes have antifungal activitiesincludingagainstF.graminearum. OnlytheextractfromWF4,aPhomasp. wascharacterized in detail, and revealed four anti-Fusarium compounds (viridicatol, tenuazonic acid, alteraniol and alteraniol methyl ether). Here, we confirmed that these fungal strains are able to re-colonize the internal tissues of the host without causing pathogenic symptoms, when compared to the known pathogen Alternaria alternate, consistent with their classification as endophytes. We identified the compounds underlying the antifungal activity of these endophytes alongside a suggested mode ofaction. Thecurrentanti-Fusariumcompoundsaredifferentthanthosepreviouslyidentifiedand broadentherangeofbio-fungicidesidentifiedfromthefingermilletmicrobiomeagainstthisimportant croppathogen. 3.1. PreviousReportsofNon-PathogenicFusariumandPenicilliumsp. asEndophytes One fungal strain reported in this study was predicted to be a Fusarium sp. (WF5). Previous studiesinvolvingFusariumandAspergillussp. haveshownthatnon-pathogenicfungalstrainsthat belong to the same species as a pathogen can, in some cases, control the ability of the pathogen tocausediseaseandproducemycotoxins[19,20]. Severalcompetitiveexclusionmechanismshave beensuggestedthatexplainthebiologicalcontrolability[21]. Thesemechanismsincludeblockage ofinfectionsites,competitionforlimitednutrientsinthesoil,inhibitionofsporegerminationand inductionofhostresistance[22,23]. Inthecurrentstudy,weshowedthattheabilityofnon-pathogenic Fusariumsp. tocontrolpathogenicFusariumsp. mayalsobemediatedbyproductionofantifungal secondarymetabolites. Thetwootherfungalstrains(WF6andWF7)characterizedinthisstudywerecloselyrelatedto Penicilliumsp.,includingonethatmostcloselyresembledPenicilliumchrysogenum(WF6)taxonomically. P. chrysogenum was previously isolated as an endophyte of marine red algal species of the genus Laurencia, and was reported to have antifungal activity against the fungus Alternaria brassicae. The antifungal metabolite was identified to be a mono-terpene derivative [24]. This observation isofinterestbecausetheanti-FusariumcompoundthatwepurifiedfromtheapparentP.chrysogenum isolate from finger millet is a sesquiterpene lactone, suggesting that the terpenoid pathway may playanimportantroleintheanti-pathogenesisofP.chrysogenumendophytes. OtherPenicilliumsp. wereisolatedfromdiversehostsincludingtheSouthAsianmedicinalplantOcimumtenuiflorum[25], theMoroccanplantCeratoniasiliqua[26], CannabissativaL.[27]andPanaxginseng[28]. Anextract fromthePenicilliumisolateofPanaxginsengshowedanti-fungalactivityagainstPyriculariaoryzae[28]. WeemphasizethislastobservationbecauseP.oryzaeisthemostimportantfungalpathogenoffinger millet,thecausalagentofblastdisease[29]. Molecules2016,21,1171 9of14 3.2. Anti-FusariumCompoundsPurifiedfromFingerMilletEndophytes Here, we have elucidated the structures of three active anti-Fusarium compounds: 5-hydroxy benzofuranone,dehydrocostuslactone,andaniridoideglycoside(harpagoside)(Figure4). 3.2.1. 4-Hydroxybenzofuranone(IsolatedfromFusariumsp. StrainWF5) Simple benzofuranone derivatives have previously been isolated from fungi including Coniothyriumminitans[30]. Otherconjugatedbenzofuranoneshavebeenreportedfromendophytic fungisuchasPestalotiopsisphotiniae,anendophytethatinhabitstheChineseplant,Roystonearegia[31]. Somebenzofuranonederivativeswerereportedtohavealgicidal,hypotensiveandanti-inflammatory activities[32,33]. Tothebestofourknowledge,thisisthefirstreportof4-hydroxy-benzofuranone havinganti-Fusariumactivity. 3.2.2. DehydrocostusLactone(IsolatedfromPenicilliumsp. StrainWF6) Dehydrocostus lactone derivatives were previously isolated from plant species including Inularacemosa,CentaureapannonicaandSaussureacostus[34–36]. Thecompoundwasreportedtohave antimicrobialactivityincludingagainstMycobacteriumsp.,Propionibacteriumacnes,Staphylococcusaureus, andMalasseziafurfur[36,37]. Dehydrocostuslactonewasreportedtohavemultiplebiologicalactivities includingsuppressionofmelaninproduction,inductionofapoptosisinsofttissuesarcomacelllines, inhibitionofmigrationofprostatecancercellsandanti-trypanosomaactivity[35,36,38,39]. Tothebest ofourknowledge,thisisthefirstreportofdehydrocostuslactonefromafungalsourceandthefirst reportofithavinganti-Fusariumactivity. 3.2.3. Harpagoside(IsolatedfromPenicilliumsp. StrainWF7) HarpagosidewasfirstisolatedfromHarpagophytumprocumbens(Devil’sclaw),aplantwidelyused infolkmedicineforitsanti-microbial,anti-inflammatoryandanalgesicproperties[40]. Subsequently, harpagosidewasidentifiedindiverseplantsincludingRadixscrophulariae,aplantusedasanherbal medicinefortreatmentofcongestion,constipationandsorethroats[41]. Harpagosidewasreported tohaveanti-inflammatory,antioxidantandanalgesicproperties[42]Tothebestofourknowledge, thisisthefirstreportofdehydrocostuslactonefromafungalsourceandthefirstreportofithaving anti-Fusariumactivity. 4. ExperimentalSection 4.1. SourceofBiologicalMaterials PutativefungalendophytestrainWF5(Fusariumsp.) waspreviouslyfromfingermilletshoots (Genbank: KF957640)usingapreviouslydescribedprotocol(Figure1)[2]. Putativefungalendophyte strainsWF6andWF7(Penicilliumsp.) werepreviouslyisolatedfromfingermilletroots(Genbank: KF957641andKF957642)(Figure1)[2]. Inbrief,commercialfingermilletseedsoriginatingfromIndia weregerminatedandgrowninpailsofTurfaceclayplacedinthefield(ArkellFieldStation,Arkell, ON,Canada,GPS:43◦39(cid:48) N,80◦25(cid:48) W,and375mabovesealevel). Atthepre-floweringstage,five sampleswerecollectedfromseeds,intactrootsandshoots. Theentiresamplingwasrepeatedthree timesindependently. Samplesweresurfacesterilizedaccordingtoastandardprotocol[2]. Sterilized tissuesweregroundinLBliquidmediumandtheextractswereplatedontoPotatoDextroseAgar (PDA).Fungiwithuniquemorphologywerecollectedandre-culturedonfreshmediaforpurity. TheF.graminearumstrainusedinthisstudy(15AcetylDONProducer)wasobtainedfromthe Agriculture and Agrifood Canada Fungal Type Culture Collection (AAFC Food Research Centre, Guelph, ON, Canada). The effect of the crude culture extract of each fungus on the growth of F.graminearumwaspreviouslyshown(Figure1)[2]. Molecules2016,21,1171 10of14 4.2. CompetitiveInhibitionExperiment TotesttheabilityofeachendophyticstraintocompetitivelyinhibitthegrowthofF.graminearum, co-incubationexperimentswereconducted. EachfunguswasgrownonPDAplatesat25◦Cforone week. Thereafter,5mmagarplugsfromeachendophyticfunguswereinoculatedneartheedgeof freshPDAplates,and5mmagarplugsofF.graminearumwereinoculatedontheotheredge. Both F.graminearumandeachendophyticfunguswereco-incubatedat25◦Cfortwoweeks. Therewere threereplicatesforeachendophyticstrain. 4.3. PlantPathogenicityAssay Toconfirmthattheputativefungalendophytesarenotpathogens,aplantpathogenesisassay was conducted. Seeds of finger millet were surface sterilized by washing in 0.1% Triton X-100 detergent (10 min), followed by 3% sodium hypochlorite (20 min, twice). Seeds were planted on sterile Phytagel based medium consisted of: 1 package Murashige and Skoog modified basal salt mixture(Catalog#M571,PhytoTechnologyLaboratories,ShawneeMission,KS,USA),4gPhytagel, 1mLpyridoxineHCl(0.5mg/mL),500µLnicotinicacid(1mg/mL),0.332gCaCl , 1mLglycine 2 (2mg/mL),10mLthiamineHCl(100mg/L),and1mLMgSO (18g/100mL),perliter. Themedium 4 wasdistributedintosterileglasstubes. Sevenseedsweretransferredtoeachtubeandallowedto germinate in the dark for seven days, then transferred to light shelves (25 ◦C, 16 h light). When seedlingswereoneweekold,eachendophyte(orcontrol)wasappliedontothegelsurface(11mm diameteragardiscs),intriplicate. Seedlingsthatwerenotinoculatedwithanyfungiservedasthe negative control. Seedlings that were infected with the fungal pathogen Alternaria alternata were thepositivecontrol[43]. Plantswerethenassessedvisuallyfordiseasesymptomsat10daysafter inoculationwitheachendophyteorcontrolpathogen. Then,thepercentagesurfaceareathatshowed lesionswasquantifiedusingAssessSoftware(Version2.0,AmericanPhytopathologicalSociety,St.Paul, MN,USA)incomparisontocontrols.ResultswerestatisticallyanalyzedusingPrismsoftwareversion5 (GraphPadSoftwareInc.,LaJolla,CA,USA). 4.4. RootColonizationAssay Totestiftheputativeendophytesareabletocolonizetherootsoffingermillet,confocalmicroscopy imaging was conducted. Finger millet seeds were surface sterilized and planted in glass tubes containingsterilePhytagelbasedmedium(asdescribedabove). Eachfungalendophytewasapplied, intriplicate(100µLofa48holdculturegrowninpotatodextrosemedium)tofingermilletseedlings (17daysaftergermination)andco-incubatedwiththeseedlingsatroomtemperature. Thecontrol consistedoffingermilletseedlingsincubatedwithpotatodextrosemediumonly. Calcofluorwhite stainwasusedtostainfungi(catalogue#18909,SigmaAldrich,St. Louis,MO,USA),followingthe manufacturer’sprotocol. Thereafter,fingermilletrootswerescannedwithaLeicaTCSSP5confocal laser scanning microscope (Leica Microsystems, Wetzlar, Germany) at the Molecular and Cellular ImagingFacility,UniversityofGuelph. 4.5. Bio-GuidedPurificationofActiveAnti-FusariumCompounds Forlargescalefermentation,eachendophytewasfermentedin2Lflasks(fiveflaskspereach endophyte)containing50gwhitericeand100mLH O.Theflaskswereincubatedat25◦Cfor30days 2 withoutshaking(Figure1f–h). Then,eachculturewasextractedwithethylacetate,andwashedwith water to remove salts and sugars. The extract was dried under vacuum at 45 ◦C and subjected to fractionationbetweenmethanolandn-hexanephasestoremovelongchainfattyacids. Topurifythe active compounds, the dry residues were separated by flash liquid chromatography. The column wasfilledwithflashgradesilicagel(SiliaFlash® P60230-400, SiliCycle, QuebecCity, QC,Canada, Catalog#R12030B)andsaturatedwiththedesiredmobilephasejustpriortosampleloading. Foreach endophyte,3gofthedryresidueextractwasdissolvedinchloroform,mixedwithsilicaandevaporated
Description: