Characterization of a tagged γ-ray beam line at the DAΦNE Beam Test Facility 2 P.W.Cattaneo,g,A.Argana,F.Boffellig,A.Bulgarellie,B.Buonomou,A.W.Chenc,d, ∗ 1 F.D’Ammandov,L.Foggetta ,d,T.Froyslandb,d,F.Fuschinoe,M.Gallih,F.Gianottie, ∗∗ 0 A.Giulianic,F.Longof,M.Marisaldie,G.Mazzitelliu,A.Pellizzonir,M.Prestl,G. 2 Pucellam,L.Quintieriu,A.Rappoldig,M.Tavania,b,M.Trifoglioe,A.Troisr,P. n Valentei,E.Vallazzaf,S.Vercellones,A.Zambrac,G.Barbiellinif,P.Caraveoc,V. a Coccoa,E.Costaa,G.DeParisa,E.DelMontea,G.DiCoccoe,I.Donnarummaa,Y. J Evangelistaa,M.Ferocia,A.Ferrarid,q,M.Fiorinic,C.Labantie,I.Lapshova,F. 9 Lazzarottoa,P.Liparii,M.Mastropietroj,S.Mereghettic,E.Morellie,E.Morettif,A. 1 Morsellik,L.Pacciania,F.Perottic,G.Pianoa,b,k,P.Picozzab,k,M.Pilial,G. ] Porrovecchioa,M.Rapisardam,A.Rubinia,S.Sabatinia,b,P.Soffittaa,E.Strianib,k,V. t e Vittorinia,b,D.Zanelloi,S.Colafrancescon,P.Giommin,C.Pittorin,P.Santolamazzan, d F.Verrecchian,L.Salottio - s n aINAF/IASF-Roma,I-00133Roma,Italy i bDip.diFisica,Univ.TorVergata,I-00133Roma,Italy s. cINAF/IASF-Milano,I-20133Milano,Italy c dCIFS-Torino,I-10133Torino,Italy i eINAF/IASF-Bologna,I-40129Bologna,Italy s fINFNTrieste,I-34127Trieste,Italy y gINFN-Pavia,I-27100Pavia,Italy h hENEA-Bologna,I-40129Bologna,Italy p iINFN-RomaLaSapienza,I-00185Roma,Italy [ jCNR-IMIP,Roma,Italy 2 kINFNRomaTorVergata,I-00133Roma,Italy lDip.diFisica,Univ.Dell’Insubria,I-22100Como,Italy v mENEAFrascati,I-00044Frascati(Roma),Italy 7 nASIScienceDataCenter,I-00044Frascati(Roma),Italy 4 oAgenziaSpazialeItaliana,I-00198Roma,Italy 1 pOsservatorioAstronomicodiTrieste,Trieste,Italy 6 qDip.Fisica,Universita´diTorino,Torino,Italy 1. rINAF-OsservatorioAstronomicodiCagliari,localita’PoggiodeiPini,strada54,I-09012Capoterra,Italy 1 sINAF-IASFPalermo,ViaUgoLaMalfa153,I-90146Palermo,Italy 1 tDip.FisicaUniv.diTrieste,I-34127Trieste,Italy uINFNLab.Naz.diFrascati,I-00044Frascati(Roma),Italy 1 vINAF-IRABologna,ViaGobetti101,I-40129Bologna,Italy : v i X r a Abstract ∗Correspondingauthor NowatLAL-CNRS,F-91898Orsay,France ∗∗ Emailaddress:[email protected] (P.W.Cattaneo) PreprintsubmittedtoElsevier January20,2012 AtthecoreoftheAGILEscientificinstrument,designedtooperateonasatellite, thereistheGammaRayImagingDetector(GRID)consistingofaSiliconTracker(ST), aCesiumIodideMini-CalorimeterandanAnti-Coincidencesystemofplasticscintil- lator bars. The ST needs an on-groundcalibrationwith a γ-ray beam to validate the simulationusedtocalculatetheenergyresponsefunctionandtheeffectiveareaversus theenergyandthedirectionoftheγrays.Ataggedγ-raybeamlinewasdesignedatthe BeamTestFacility(BTF)oftheINFNLaboratoriNazionaliofFrascati(LNF),based onanelectronbeamgeneratingγraysthroughbremsstrahlungina position-sensitive target. Theγ-rayenergyisdeducedbydifferencewith the post-bremsstrahlungelec- tronenergy[1]-[2]. Theelectronenergyismeasuredbyaspectrometerconsistingofa dipolemagnetandanarrayofpositionsensitivesiliconstripdetectors,thePhotonTag- gingSystem(PTS).TheuseofthecombinedBTF-PTSsystemastaggedphotonbeam requiresunderstandingtheefficiencyofγ-raytagging,theprobabilityoffaketagging, theenergyresolutionandtherelationofthePTShitpositionversustheγ-rayenergy. This paper describes this study comparing data taken during the AGILE calibration occurredin2005withsimulation. Keywords: Electronandpositronbeam;Photonbeam;Position-sensitivedetectors; bremsstrahlung PACS:41.75.Fr,41.85.p,29.40.Gx,41.60.-m 1. Introduction AGILE(Astro-rivelatoreGammaaImmaginiLEggero)isaSmallScientificMis- sionoftheItalianSpaceAgency(ASI),dedicatedtohigh-energyastrophysics.Itcom- binestwoco-alignedimagingdetectorsoperatingrespectivelyintheXandγ-raybands withlargeField ofViews(FoV).TheSiliconTracker(ST),atthecoreoftheAGILE satellite,isdesignedtodetectandimageγraysinthe30MeV-50GeVenergyrange [3]-[4]-[5]-[6]. Theon-groundcalibrationofanastronomicalinstrumentisimportantfortheinterpre- tationofitsresults. Thegoalistoreproduceinlaboratory,undercontrolledcondition, theresponseoftheinstrumentinflight. Thistaskrequiresataggedphotonbeamwith position, directionand energyof each photonknownwith a precision better than the instrumentresolution.Therealizationofsuchabeamturnsouttobeachallengingen- deavour. TheBeamTestFacility(BTF)intheDAΦNEcollidercomplexattheINFN LaboratoriNazionaliofFrascati(LNF)[7],wastheelectedsiteforrealizingthetagged photonbeamexploitingbremsstrahlunginathintargetandperformingthecalibration. PreliminaryresultsonthecalibrationoftheAGILESThasbeenpresentedin[8]and willbesubjectofafuturepaper. Thispaperpresentstheexperimentalsetup,adetailedMonteCarlostudyofthesystem andthecomparisonwiththeexperimentalresultscollectedduringthecalibration. 2. Theexperimentalsetup The experimentalsetup is a complex system consisting of the BTF e beam, the − targetto generate bremsstrahlungphotons, the spectrometer magnetand the detector 2 to measurethe energyof post-bremsstrahlungelectrons. The varioussubsystems are describedinthefollowingwiththeconventionthatyisthecoordinateperpendicularto theBTFlineplane,xtheonetransversetothebeamatthetargetintheBTFlineplane andzistheonealongthebeamatthetarget,thatisthedirectionofthebremsstrahlung photons. Figure1:TheinitialsectionoftheBTFtransferline. 2.1. Theelectronbeam Thee susedforgeneratingthephotonbeamaredeliveredbytheBTF.TheBTFis − fedbytheDAΦNEcomplexthatprovidese undercarefullycontrolledconditionwith ± predefinedmultiplicity. 2.1.1. TheBeamTestFacility(BTF) FortheST calibrationweusedtheBTFin theDAΦNEcollidercomplexatLNF, whichincludesaLINACathighe+/e currents,anaccumulatorofe+/e andtwostor- − − ageringsat510MeV.Thee+/e beamfromtheLINACisdirectedintotheaccumula- − tionringtobesubsequentlyextractedandinjectedintheMainRing. Whenthesystem injectordoesnottransferthebeamstotheaccumulator,thebeamfromLINACcanbe extractedand transportedin the test beam area througha dedicatedtransfer line: the BTFline(Fig.1).TheBTFcanprovideacollimatedbeamofe+/e intheenergyrange − 20-750MeVwithapulserateof50Hz. Thepulsedurationcanvaryfrom1to10ns andtheaveragenumberofe perbunchN rangesfrom1to1010[7]-[9]-[10]. − e TheBTFcanbeoperatedintwoways: LINACmode:operatingwhenDAΦNEisoff,withatunableenergybetween50 • MeVand750MeVandanefficiencyaround0.9 3 DAΦNEmode: operatingwhenDAΦNEison,withafixedenergyat510MeV • andanefficiencyaround0.6 Theextractedelectronsare transportedto the BTFhall, where the finalsection is lo- cated (Fig. 2); the experimentalequipment under test is positioned at the exit of the spectrometermagnetDHSTB02. All orpartof theequipmentcan bemountedunder vacuumcontinuingthebeamlineor,alternatively,thebeamlinecanbeterminatedwith athinwindowandtheequipmentmountedinair. In spite of some disadvantagefromthe pointof view of background,this last option wasadoptedwitha0.5mmBewindowbecauseofthedifficultiesinimplementingan extendedvacuumlineincorporatingalltherequiredequipment. Figure2:ThefinalsectionoftheBTFtransferlineincludingthelastspectrometermagnetDHSTB02. 2.1.2. e multiplicityperbunch − The calibrationof the ST should be ideallyperformedin a single-photonregime, avoidingsimultaneousmulti-photonproductionto reproducetheastrophysicalcondi- tions. Multi-photonevents should ideally identified and rejected otherwise they will biasthecountingstatistics. On the other hand, bremsstrahlungis a continuousprocessand multi-photongenera- tion(withphotonenergyE aboveagiventhreshold)ispossiblealsowhenasinglee γ − crossesthe target. Thefractionof multi-photoneventsis approximatelyproportional tothesingle-photonemissionprobability. Thatimpliestheneedofacompromisebe- tweenthephotonbeamintensityandthesingle-photonbeampurity. Considering that the targetthickness was constrained by the availability of the hard- ware, by the needto guaranteefulldetectionefficiencyofthe beamelectronsand by 4 theneedtomeasureelectronstwicebothinthexandydirectionsforstudyingthebeam sizeanddivergence,theonlyfreeparameteristhee multiplicityperbunch. − Another constraint is the limited time available for the calibration campaign and the requestofcalibratingmanydifferentSTgeometricalconfigurations.Thatputsalower limittotherequiredphotonfluxandthereforeonthee multiplicityperbunch. − In DAΦNE mode with 5 e /bunch the fraction of multi-photon events having E > − γ 20MeVcanbeestimatedtobe 10%bytheformulaeintheAppendix. Thisuncer- ≈ taintyisgreaterthantheaccuracyrequirementontheeffectiveareameasurements.On theotherhands,theDAΦNEmodewith1e /bunchisconsistentwiththeaccuracyre- − quirementsbutthetimenecessarytocollectenoughstatisticsisincompatiblewiththe timeavailableforthecalibration.TheSTcross-sectionforphotonswithE <20MeV γ is notnegligibleand thusthe fractionof interactingsecondaryphotonswill be larger than the numbers calculated in the Appendix. Taking into account the above con- siderations,thebestconfigurationforSTperformanceandcalibrationwouldbewith1 e /bunch,butthefluxrequirementforcedtoselecttheconfigurationwith 3e /bunch. − − ≈ non interacting Bremsstrahlung photon electrons bending magnet Si target impact of reduced momentum electron tagging detector BTF e− beam Figure3:Aschematicviewoftheγ-rayline:thetarget,thespectrometermagnetandthePTS. 2.2. Thebremsstrahlungtarget PhotonsintheenergyrangerelevantfortheSTareproducedbybremsstrahlungof electronsinatarget;subsequentlyamagnetbendsawaytheelectronswhiletheγrays cantraveltowardstheAGILEinstrument(seeFig.3). Thebremsstrahlungtargetconsistsoftwopairsofsiliconsinglesidedmicro-stripde- tectorsofarea8.75 8.75cm2and410µmthick,eachincluding768stripswith114µm × pitch. Onlyeveryotherstripisread,sothateachtargetdetectorhas384readoutchan- nelswith228µmreadoutpitch. Eachpairmeasuresseparatelythe xandycoordinates transverseto the beam. A spatialresolutionσ 114/√12µm 33µmis expected; ≤ ≈ 5 the cluster size is oftenlimited to one strip and thereforethe resolutionis limited by thestrippitch. Thetargethastworoles: tomeasurethecoordinateandthedirectionoftheelectrons and to cause the emission of bremsstrahlung photons. The target detectors are posi- tionedalongthebeamdirectionbetweenthelastfocusingmagnet(QATB04inFig.2) andthespectrometermagnet(DHSTB02inFig.2). The xmeasuringonesarethefirst andthethird,positionedrespectivelyat5.45cmand7.20cmdownstreamtheBewin- dow,whiletheymeasuringonesarethesecondandthefourth,positionedrespectively 6.45cmand8.20cmdownstreamtheBewindow. Attheelectronenergymostusedduringcalibration, E = 463MeV, thecontribution e tobeamdivergenceduetoCoulombMultipleScatteringineachtargetdetectoriseval- uatedundertheGaussianapproximationfrom[11]as 2.0mrad. ≈ 2.3. ThePhotonTaggingSystem(PTS) The spectrometer magnet, visible in Fig.2-Fig.3-Fig.4, generates a dipolar field alongtheydirectionoveranangularrangeof45 . Inbetweenthetwomagnetpoles, ◦ there is a pipe made of stainless steel with rectangular section. It is composed of a straight section (’photon pipe’) along which the bremsstrahlung γ rays travel to the ST and a curved section (’electron pipe’) defining the trajectory for e s bent by the − magneticfield. Thepipeis hollowwith an airfilled innersection withsize 5.50 3.50cm2, its wall × thicknessis0.35cm. Themagneticfieldinthevolumebetweenthepolesthatincludes the’electronpipe’isassumedconstantwithstrengthB=0.9TwhenE =463.0MeV, e correspondingtoacurvatureradiusR=172.0cm. Theequipmentforthedetectionofthee sthatlostenergyinthetargetwasdeveloped − andinstalledinsidethespectrometermagnetbyourteam: thePhotonTaggingSystem (PTS).Itconsistsof12micro-stripsilicondetectorspositionedontheinternalwallsof the spectrometer magnet(see Fig.2, Fig.3 and Fig.4) groupedinto two modulesof 6 detectorseach,locatedintotwohollowrectangularaluminumboxesfewmmthick. In each module, the detectorsare located along a straight segmentand thereforefollow onlyapproximatelythecurvedsectionofthe’electronpipe’.Theareaofeachdetector is11.86 2.00cm2withthickness410µmandissubdividedin1187stripswith100µm × pitch.Onlyeverythirdstripisreadresultingin384readoutstripsperdetectorand4608 intotal. Between each pair of consecutive detectors inside a module, there is a gap 6mm ≈ wide that is effectively a dead area. A larger gap 2.0cm wide is present between ≈ the two modules that contributes to the dead area as well. Electronic noise gives a small contribution compared to the signals from e amounting to 2keV that is of − ≈ littlerelevanceforthemeasurements. Dependingontheenergylossinthetarget,the electronsimpingeondifferentstrips. Thecorrelationintimebetweenthesignalsofthe e inthetargetandinthePTStagsthephoton;thepositiononthePTSmeasuresthe − photonenergy. ThetriggerforreadingoutthetargetandPTSdataisgivenbythedelayedLINACpre- trigger; itis readoutindependentlyfromthe ST data. Thispointhasgreatrelevance forthefollowinganalysis. 6 Figure4: GeometryofthespectrometermagnetMdrawninGEANT3includingthePTSdetectorsSdis- playedwithane (enteringfromtheright)irradiatingaγrayinthetargetTandhittingthePTSatP.Photons − arerepresentedbydashed(blue)linesandelectrons bysolid(red)lines. Inthiseventtheγrayenergyis 75MeV. ≈ 3. TheMonteCarlosimulation A proper characterization of the BTF requires a careful comparison of the data withadetailedMonteCarlosimulation.ThesimulationisrealizedusingtheGEANT3 package[12]. Thesimulationincorporatesadescriptionoftheelectronbeamdelivered bytheacceleratorcomplexwithbeamparametersdeterminedpartlyfromdesignval- uesandpartlyfrommeasurements. Thenumberofe perbunchN canbefixedtoan − e integervalueorcanfollowaPoissondistributionaveragedatanyrealvalueN . e Thematerialdistributionofthebremsstrahlungtargetandofthespectrometerissimu- latedindetail. Thetargetandthepipecanbesimulatedinairorinvacuuminvarious configurations. The defaultconfigurationis the one actually used duringdata taking withthetargetandthepipeinair. TheinteractionsofelectronsandphotonsaredrivenbytheGEANT3routineswiththe possibilitiesofswitchingonandofftherelevantphysicsprocesseslikeCoulombMul- tiple Scattering, bremsstrahlung,Comptonscattering, pair creationforallor onlyfor some of the materials. This option turnedout to be veryuseful in understandingthe behaviouroftheBTF/PTSsystem. Theenergycutsforthee andphotonsarekeptat ± theminimumallowedbytheprogram(100keV).Agaugeofthequalityofthesecuts istheaverageenergylossofaminimumionizingparticlescrossinga 400µmthick ≈ siliconlayercomparabletoatargetdetectororaST layerthickness: itis 100keV. ≈ ThislevelofprecisionisrequiredtosimulatespurioushitsinthetargetandintheST thatcanaffectthemeasurement. The digitization simulation in the silicon micro-strip detectors is based on a simpli- 7 fied model: the charge released in the volume below each strip is collected by the strip without accountingfor diffusion and charge trapping. Exploitingthe capacitive coupling [13], the charges collected on all strips are fed into the readout strips with appropriate coefficients as described in [3]. The noise is simulated simply adding a Gaussiandistributedchargeoneachstriparoundacluster;thewidthisdeterminedby thedataandamountto 2keV. ≈ Thee beamisgeneratedinsidethelaststraightsectionoftheaccelerator 5cmup- − ≈ streamthetargetwithabeamspotofellipticalshapewitha2DGaussiandistribution, with angular divergences perpendicular to the beam generated according 2 separate Gaussian distributions and with a Gaussian distributed momentum spread. The mo- mentumspreadisprovidedbytheDAΦNEstaff,whiletheotherbeamparametersare directlymeasured. 3.1. Thesimulatedphotonbeam ThephotonbeamdirectedtotheSTissimulatedthroughtheinteractionofthee − beam with the target. The photongenerationis due to the bremsstrahlungeffect and followsEq.2intheAppendix. Thisformulashowsanapproximate1/E dependency, γ thatisapowerspectrumwithindex 1. Moreprecisely,afitofEq.2intheinterval ≈ − 0.05 1.00withapowerspectrumreturnsanindex 1.2. − ≈− ThesimulatedenergyspectrumofthemostenergeticγraysreachingtheST(butnot necessarilyinteractingwithit)isshowninFig.5 withapowerspectrumfitreturning anindex 1.2asexpectedbytheanalyticalformula.Thenumberofe sperbunchis − ≈− setto N = 1withoutPoissonfluctuation. ThesameresultisobtainedwhenN = 3.5 e e with Poisson fluctuation. This result is notobviousbecause of the energydependent interactionsalongthepaththatcouldchangethespectrum,thatturnouttobesmall. Anotherimportantelementthatcharacterizesthebeamisthefractionofmulti-photon events.Becauseinanastrophysicalenvironmenttherearenosuchevents,theymustbe consideredbackgroundandmustbeminimized. Ifaneventhastwoormorephotons with energy above the detection threshold in the ST (about few tens of MeV), they can interact simultaneously in the ST. The reconstruction software, designed for the astrophysicalenvironment,isnotfittoidentifysucheventsandwillmostlikelyfailor returnincorrectenergyanddirection. Thepercentagefractionofmulti-photonevents aboveathresholdisshowninFig.6. EvenforeventswithN = 3.5,thefractionisnot e larger than a few % even for E as small as 10 MeV. Thereforetheir contributionto γ errorsinthemeasurementoftheSTperformancesisatmostofcomparablesize. Arelatedbutsomehowdifferentissueisthenumberoflowenergyphotons,sayE < γ 10MeV,accompanyingaphotonintheSTenergyrange(E >30MeV).Thisphotons γ are not enough energetic to convertin a e+e pair detectable in the ST, but they can − interactincoincidencewithaphotonofhigherenergygeneratingspurioushitsthatcan influencetheproperreconstructionoftheevent. 4. Resultsanddiscussion TheanalysisofthetargetandthePTSdataallowsthevalidationoftheMonteCarlo simulationrequiredtocorrelatetheγ-rayenergyandthePTShitposition. 8 Figure5:Spectrumoftheγ-raybeamreachingtheSTfitwithapowerlawα/Eβ. 4.1. Thebremsstrahlungtargetdata Theanalysisofthetargetdatastartsfromlookingforstripsaboveathreshold,then neighbouringstripsaregroupedintoclusters. Theclustercoordinateisobtainedcalcu- latingitscentroidbyweightingeachstripcoordinatewiththechargecollected. Ideally,eachclustershouldsignalahitofonee in atargetdetectorandthepassage − ofeache shouldbesignaledbyonehitineachtargetdetector.Inpracticethereisthe − possibilityofinefficiencyinthedetectionofe hits,noisehits,multipleclustersdueto − asinglee andsingleclustersonthesametargetdetectorassociatedtomultiplee s. − − Theefficiencyofthehitsearchingalgorithmismeasuredbyselectingtheeventswith onehitonthreetargetdetectorsandzeroonthefourth.Thisnumberistobecompared with the events with one hit on each target detector. With the available statistic, no eventsatisfiesthisrequirement,sothattheefficiencyisbasically100%. Thefractionofnoiseinducedhitscanbeestimatedbyrequiringonehitononetarget detectorandzerohitontheothers.Alsointhiscase,noeventsatisfiesthisrequirement andthereforethefractionofnoisyhitsisbasically0%. Particularlyinterestingsamplesarethe0-clusterevents,wherenoclusterisdetectedin thetarget,andthe1-clusterones,whereoneclusterpertargetdetectorisdetected. For the considerationsdetailed above, the first sample can be safely associated to events with 0-e events; even these events are triggered because the target signal is not re- − quiredbythetriggerlogic. The1-clustersamplemostlyoverlapswith1-e eventsand − isusedinthefollowingforcharacterizingthebeam. Themaingoalofthesemeasure- 9 Figure6: Probabilities(in%)ofmulti-photoneventsversusEγ thresholdforNe = 1(fixed,reddots)and Ne=3.5(Poissondistributed,greensquares). mentsisinferringthebeampropertiestobeusedintheMonteCarlogeneration. 4.1.1. Beamsizes Thebeamsizesaremeasuredonlywith1-clustersample. Thebeamprofilesusing thefirst x andy measuredcoordinatesinthe targetareshownin thetoprowofFig.7 with the results of Gaussian fits superimposed. Using the second x and y measured coordinatesinthetargetgivescompatiblebeamsizes. Thebeamsizesareσ 1.5mmandσ 0.5mmwithasignificantnonGaussiantail x y ≈ ≈ iny. Thisnumbersarerepresentativebutsubjecttosignificantvariationsfordifferent runs,duetochangesinthebeamsetting. 4.1.2. Beamdivergences Angulardivergencesaremeasuredusingthe1-clustersample. Theestimatoristhe difference between the cluster coordinates(x(y),i (1,2)) on the target divided by i i ∈ theirdistanced x(y) s =(x x )/d x 2 1 x − s =(y y )/d (1) y 2 1 y − InFig.7(bottomrow)thedistributionsofs ands areshown.TheGaussianfitreturns x y σ(s ) 5.7mradandσ(s ) 4.2mrad. x y ≈ ≈ 10