ebook img

characteristics of creepage discharges along ester-pressboard interfaces under ac stress PDF

213 Pages·2012·20.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview characteristics of creepage discharges along ester-pressboard interfaces under ac stress

CHARACTERISTICS OF CREEPAGE DISCHARGES ALONG ESTER-PRESSBOARD INTERFACES UNDER AC STRESS A thesis submitted to The University of Manchester for the degree of PhD in the Faculty of Engineering and Physical Sciences 2012 XIAO YI School of Electrical and Electronic Engineering 2 Contents Contents Contents ........................................................................................................................................................ 3 List of Figures ................................................................................................................................................. 7 List of Tables .................................................................................................................................................13 Declaration ...................................................................................................................................................15 Copyright Statement .....................................................................................................................................17 Acknowledgement ........................................................................................................................................19 ABSTRACT .....................................................................................................................................................21 Chapter 1 Introduction ...........................................................................................................................23 1.1 Background ........................................................................................................................................... 23 1.1.1 Transformer insulation layouts .................................................................................................... 26 1.1.2 Transformer insulation design principle ...................................................................................... 28 1.1.3 Different insulating liquids for transformers ................................................................................ 33 1.2 Objectives of research ........................................................................................................................... 35 1.3 Outline of thesis..................................................................................................................................... 36 Chapter 2 Reviews on Discharge Phenomena in Liquid and Liquid-Solid Composite Insulation ..............39 2.1 Partial discharges in transformers and PD testing ................................................................................ 39 2.1.1 Partial discharges in transformers ............................................................................................... 39 2.1.2 PD detection and PD testing for transformers ............................................................................. 40 2.2 Streamer phenomena in liquid .............................................................................................................. 43 2.2.1 Mechanisms for streamers in insulating liquids .......................................................................... 45 2.2.2 Streamers under impulse stresses ............................................................................................... 46 2.2.3 Streamers under ac stress............................................................................................................ 54 2.3 Creepage discharges along liquid-solid interface .................................................................................. 62 2.3.1 Permittivity factor ........................................................................................................................ 63 2.3.2 Effects of solid orientations on streamer propagation ................................................................ 68 2.3.3 Effect of voltage polarity on creepage discharges ....................................................................... 72 2.3.4 Effect of solid spacer under dc stress........................................................................................... 76 3 Contents 2.3.5 Surface charging ........................................................................................................................... 78 2.3.6 Effect of oil ageing and reclamation ............................................................................................. 80 2.3.7 Effect of liquid type on creepage strength ................................................................................... 81 2.3.8 Creepage discharges under sustaining ac stress .......................................................................... 86 2.4 Summary of existing knowledge ............................................................................................................ 87 2.5 Forward looking remarks ....................................................................................................................... 89 Chapter 3 Experimental Description....................................................................................................... 91 3.1 Liquids under investigation .................................................................................................................... 91 3.2 Sample processing ................................................................................................................................. 91 3.3 Electrode configuration ......................................................................................................................... 93 3.4 Experiment description .......................................................................................................................... 94 3.4.1 Experiment setup ......................................................................................................................... 94 3.4.2 Measurement approaches ........................................................................................................... 96 Chapter 4 Creepage Discharge Characteristics on Pressboard Surfaces .................................................. 99 4.1 Voltage range for measurement ............................................................................................................ 99 4.2 The inception of creepage discharges ................................................................................................. 100 4.2.1 Definitions of PDIV ..................................................................................................................... 100 4.2.2 Procedures of PDIV measurement ............................................................................................. 101 4.2.3 PDIV results in open gap and on pressboard surface ................................................................. 102 4.3 Creepage discharges in MIDEL 7131 ................................................................................................... 104 4.3.1 Apparent charge measurement ................................................................................................. 104 4.3.2 Discharge current detection....................................................................................................... 107 4.3.3 Streamer channel visualization .................................................................................................. 110 4.3.4 Summary of discharge characteristics in MIDEL 7131 at 35.5 kV .............................................. 111 4.4 Creepage discharges in FR3 ................................................................................................................. 111 4.4.1 Apparent charge measurement ................................................................................................. 111 4.4.2 Discharge current detection....................................................................................................... 114 4.4.3 Streamer channel visualization .................................................................................................. 117 4.4.4 Summary of discharge characteristics in FR3 at 46.0 kV ............................................................ 117 4.5 Creepage discharges in Gemini X ........................................................................................................ 118 4.5.1 Apparent charge measurement ................................................................................................. 118 4.5.2 Discharge current detection....................................................................................................... 120 4.5.3 Streamer channel visualization .................................................................................................. 122 4 Contents 4.5.4 Summary of discharge characteristics in Gemini X at 50.0 kV ................................................... 123 4.6 Discussions .......................................................................................................................................... 123 4.7 Summary ............................................................................................................................................. 125 Chapter 5 Mechanism Investigations on Influence of Solid Surfaces on Creepage Discharges .............. 127 5.1 Creepage discharge tests on Perspex and glass .................................................................................. 128 5.1.2 Tests in Gemini X ........................................................................................................................ 134 5.2 Mechanisms for the influences of solid on discharges ........................................................................ 137 5.2.1 Introduction ............................................................................................................................... 137 5.2.2 Experimental evidence for the mechanisms for the influence of solid on discharges............... 139 5.3 Analysis on the correlations between consecutive discharges ............................................................ 144 5.3.1 Introduction of pulse sequence analysis.................................................................................... 146 5.3.2 Data analysis of test results using PSA ....................................................................................... 148 5.4 Summary ............................................................................................................................................. 156 Chapter 6 Surface Tracking on Pressboard Barriers .............................................................................. 159 6.1 Introduction ......................................................................................................................................... 159 6.2 Previous research on surface tracking of pressboard .......................................................................... 160 6.3 Experiment setup ................................................................................................................................. 161 6.3.1 Sample processing ..................................................................................................................... 161 6.3.2 Test configuration ...................................................................................................................... 162 6.4 Test results ........................................................................................................................................... 162 6.4.1 Initial conditions for surface tracking ........................................................................................ 162 6.4.2 Surface tracking process on pressboard in MIDEL 7131 ............................................................ 164 6.4.3 Surface tracking process on pressboard in FR3 ......................................................................... 172 6.4.4 Surface tracking process on wet pressboard in Gemini X .......................................................... 173 6.4.5 Extension of white mark at reduced voltage ............................................................................. 175 6.4.6 The gaseous nature of white marks ........................................................................................... 175 6.4.7 The carbonized tree-shaped marks on pressboard ................................................................... 177 6.4.8 The penetration of tree-shaped marks into pressboard ............................................................ 178 6.4.9 Surface tracking on composite pressboard structure ................................................................ 182 6.5 Discussions .......................................................................................................................................... 187 6.5.1 Two types of surface tree-shaped marks ................................................................................... 187 6.5.2 Surface tracking on pressboard barriers in transformers .......................................................... 189 6.5.3 Comparisons between esters and mineral oil ............................................................................ 189 5 Contents 6.6 Summary ............................................................................................................................................. 191 Chapter 7 Conclusions and Future Work .............................................................................................. 193 7.1 Concluding remarks ............................................................................................................................. 193 7.1.1 General ....................................................................................................................................... 193 7.1.2 Summary of test results and key findings .................................................................................. 194 7.2 Future work ......................................................................................................................................... 196 References .................................................................................................................................................. 199 Appendix I Additional Approaches for PSA Analysis ................................................................................... 209 Appendix II List of Publications ................................................................................................................... 213 6 List of Figures List of Figures Figure 1-1 Chemical structure of the anhydrob bbb -D-glucopyranose unit [1, 2] ...........................................24 Figure 1-2 Manufacturing process for pressboard [9] ................................................................................25 Figure 1-3 Failure modes for transformers of 15-25 years old [14] ............................................................26 Figure 1-4 Structure of oil-pressboard composite insulation system in transformer .................................27 Figure 1-5 ac design curves for (a) bulk oil, (b) creepage path [24] ............................................................29 Figure 1-6 Experiment verifying effect of angle rings on creepage discharge elimination and flashover prevention [24] ....................................................................................................................................31 Figure 1-7 An example of cumulative stress calculation [18] ......................................................................32 Figure 1-8 Basic molecular structures of mineral oil [30] ...........................................................................34 Figure 1-9 Typical molecule formulae of synthetic and natural ester [32] ..................................................34 Figure 2-1 Typical PD measurement circuit using pulse current method [48] ...........................................41 Figure 2-2 Test circuit for partial discharge calibration and measurement [48] ........................................42 Figure 2-3 Time sequence for application of test voltage with respect to phase to earth for transformer PD test [9] ...........................................................................................................................................42 Figure 2-4 Luminous streamer channels in mineral oil captured by streak camera and corresponding current signals ....................................................................................................................................45 Figure 2-5 Setup for streamer study under impulse [22] ............................................................................46 Figure 2-6 Typical shadowgraphs of streamers [68] ...................................................................................47 Figure 2-7 Average velocity and streamer modes in mineral oil (10 cm gap) [22, 55, 75] ...........................49 Figure 2-8 Typical images of positive streamers of different modes [55] ....................................................49 Figure 2-9 Propagation velocity of streamers versus voltage (10 cm gap) [23] ...........................................50 Figure 2-10 Current and light emission signal of streamer in cyclohexane [76] .........................................50 Figure 2-11 Influence of external hydrostatic pressure on streamer current (1.8 mm gap, 1.2 µm tip, 10 kV, in cyclohexane) [56] ......................................................................................................................51 Figure 2-12 Current signals for the 2nd (left: without front pulses) and the 3rd mode (right: with front pulses) positive streamers in natural ester [21] ..................................................................................51 Figure 2-13 50% breakdown voltage V and acceleration voltage V for different gaps under 0.4/1400 b a µs step impulse [23] ............................................................................................................................53 Figure 2-14 Breakdown voltage versus gap distance under impulse voltages in mineral oil ......................53 Figure 2-15 Positive and negative breakdown voltage versus gap distance for mineral oil under lightning impulse [20] ........................................................................................................................................54 Figure 2-16 Breakdown probability for each polarity at different pressures [83] ......................................54 Figure 2-17 ac breakdown voltage versus gap distance in divergent field in mineral oil [84] ....................57 Figure 2-18 Schematic diagram for two ac positive streamer modes [85] ..................................................57 7 List of Figures Figure 2-19 Effect of size of earthed plane electrode (left, high voltage at needle side, 3 µm tip, 5 cm gap) and high voltage connection (right: 3 µm tip, 5 cm gap) on streamer length [87] ............................. 57 Figure 2-20 Breakdown from burst type to direct type with trigger wire shortened [73] .......................... 58 Figure 2-21 Average breakdown strength and streamer frequency at various oil conditions and geometries [73] ................................................................................................................................... 59 Figure 2-22 Correlation between positive streamer length and ac instantaneous voltage or impulse crest voltage [88, 89] ................................................................................................................................... 60 Figure 2-23 Streamer inception field under ac and impulse stresses with different electrode sizes [55].... 61 Figure 2-24 Comparison for breakdown voltage between ac stress and impulse stress in mineral oil (10mm sphere-plane, 1mm gap) [83] ................................................................................................. 61 Figure 2-25 Equivalent model of solid-liquid interface [93] ....................................................................... 64 Figure 2-26 Flashover strength along solid in uniform field as function of permittivity of solid materials [93] ...................................................................................................................................................... 64 Figure 2-27 Electrodes for ac flashover test on different solid spacers [94] ............................................... 65 Figure 2-28 Flashover voltage with different spacer materials [94] ........................................................... 65 Figure 2-29 Comparison of dielectric performance between traditional pressboard and PMP conditioned pressboard [95] ................................................................................................................................... 66 Figure 2-30 Winding model for dielectric tests for traditional pressboard and PMP conditioned pressboard [95] ................................................................................................................................... 66 Figure 2-31 Effect of permittivity match between solid and liquid on flashover [96] ................................ 68 Figure 2-32 Layouts of solid barriers in impulse creepage discharge tests ................................................ 68 Figure 2-33 Comparison between different layouts and polarities, tests on hard glass at ± 50 kV [97, 98] ............................................................................................................................................................ 69 Figure 2-34 50% breakdown voltage versus needle tip-barrier distance (total gap is 10 cm, the radius of pressboard barrier disk is 7.5 cm) [99] .............................................................................................. 70 Figure 2-35 Streamer velocity versus voltage for tests with vertical pressboard barrier (gap 10 cm) [99] 70 Figure 2-36 Velocity of positive impulse streamer with and without pressboard [99] ................................ 71 Figure 2-37 Conceptual sketch indicating half of sphere enclosing streamer is removed by pressboard [64] ............................................................................................................................................................ 71 Figure 2-38 Positive streamer velocity in open gap and on pressboard surface [100] ................................ 72 Figure 2-39 Electrodes for Nakao’ s impulse creepage tests (10 µm tip) [29] ............................................. 72 Figure 2-40 Setup to study creepage streamer on solid rod under screening effect [101] .......................... 73 Figure 2-41 Relationships between streamer length and electric potential of solid surface [101] .............. 73 Figure 2-42 Setup for study of surface groove effect on creepage streamer [102] ...................................... 74 Figure 2-43 Effect of groove on creepage streamer [102] ........................................................................... 74 Figure 2-44 Electrodes to study influence of solid surfaces on streamers .................................................. 75 Figure 2-45 Influence of solid spacers on time to breakdown at different gap lengths [103] ..................... 75 Figure 2-46 Influence of paper surface on time to breakdown [103] .......................................................... 75 Figure 2-47 Electric field measured by Kerr effect ..................................................................................... 76 8 List of Figures Figure 2-48 Study on dc conduction phenomenon along HDPE-oil interface [108] ...................................77 Figure 2-49 Effect of surface charging on positive streamer propagation [101] .........................................78 Figure 2-50 Setup to study effect of surface charging on flashover [109] ...................................................79 Figure 2-51 Decay of surface charges on pressboard [109] .........................................................................79 Figure 2-52 Effect of surface charging on flashover strength [109] ............................................................79 Figure 2-53 Time constant to achieve steady state in two liquids [110] ......................................................80 Figure 2-54 Setup and oil condition to study effect of oil quality on flashover [112] ..................................81 Figure 2-55 Flashover voltages along pressboard impregnated with types of liquids [112] .......................81 Figure 2-56 Electrode used for creepage test by Weidmann and Cooper Power Systems [113] .................82 Figure 2-57 Creepage breakdown voltage for mineral oil and FR3 with gaps of 10 mm, 20 mm and 35 mm [113] .............................................................................................................................................83 Figure 2-58 Creepage breakdown stress with 1% probability versus gap distance [113] ...........................83 Figure 2-59 Impulse creepage dielectric tests on coil to coil electrodes with pressboard spacers [114] .....84 Figure 2-60 Impulse creepage dielectric tests on phenolic tap selector [114] ..............................................84 Figure 2-61 Needle vertical to rod electrode with pressboard barrier [115, 116] ........................................85 Figure 2-62 Creepage streamer length with applied voltage in three liquids [115, 116] .............................85 Figure 2-63 Breakdown voltage of natural ester and mineral oil in needle-plane geometry under positive lightning voltages [117] .......................................................................................................................86 Figure 2-64 Streamer velocity versus voltage (needle to plane, 40 µm tip, 100 mm gap) [117] ..................86 Figure 2-65 Electrodes for partial discharge tests [24, 104] .......................................................................87 Figure 3-1 Test vessel used for the experiments ..........................................................................................94 Figure 3-2 Schematic diagram of the experiment circuit ............................................................................95 Figure 3-3 Set up for shadowgraph visualization ........................................................................................97 Figure 4-1 Four PDIV tests conducted on one pressboard sample ........................................................... 102 Figure 4-2 Q-φ PD patterns in open gap in MIDEL 7131 at various voltages .......................................... 104 Figure 4-3 Q-φ PD patterns on pressboard in MIDEL 7131 at various voltages ...................................... 105 Figure 4-4 Maximum PD amplitudes in open gap and on pressboard in MIDEL 7131 ........................... 106 Figure 4-5 Minimum phase angles for PD occurrences in open gap and on pressboard in MIDEL 7131 106 Figure 4-6 Current signals of discharges in MIDEL 7131 at 35.5 kV ....................................................... 107 Figure 4-7 Current signals of negative discharges with small continuous dc components in MIDEL 7131 .......................................................................................................................................................... 108 Figure 4-8 Current signals of positive discharges with large front pulse in MIDEL 7131 ....................... 109 Figure 4-9 Maximum pulse peaks of discharge current signals in open gap and on pressboard in MIDEL 7131 ................................................................................................................................................... 109 Figure 4-10 Maximum sustaining time of discharge current signals in open gap and on pressboard in MIDEL 7131 ..................................................................................................................................... 110 Figure 4-11 Streamer images in open gap and on pressboard in MIDEL 7131 at 35.5 kV ....................... 111 Figure 4-12 Q-φ PD patterns in open gap in FR3 at various voltages ...................................................... 112 9 List of Figures Figure 4-13 Q-φ PD patterns on pressboard in FR3 at various voltages .................................................. 113 Figure 4-14 Maximum PD amplitudes in open gap and on pressboard in FR3 ....................................... 113 Figure 4-15 Minimum phase angles for PD occurrence in open gap and on pressboard in FR3 ............ 114 Figure 4-16 Current signals of discharges in FR3 at 46.0 kV ................................................................... 115 Figure 4-17 Current signals of negative discharges with small continuous dc components in FR3 ......... 115 Figure 4-18 Current signals of positive discharges with large front pulse in FR3 ................................... 116 Figure 4-19 Maximum pulse peaks of discharge current signals in open gap and on pressboard in FR3116 Figure 4-20 Maximum sustaining time of discharge current signals in open gap and on pressboard in FR3 ................................................................................................................................................... 116 Figure 4-21 Streamer images in open gap and on pressboard in FR3 at 46.0 kV .................................... 117 Figure 4-22 Q-φ PD patterns in open gap and on pressboard in Gemini X ............................................. 119 Figure 4-23 Maximum PD amplitudes in open gap and on pressboard in Gemini X .............................. 119 Figure 4-24 Minimum phase angles for PD occurrence in open gap and on pressboard in Gemini X .... 120 Figure 4-25 Current signals of discharges in Gemini X at 50.0 kV .......................................................... 121 Figure 4-26 Negative discharge current with continuous dc component in Gemini X ............................. 121 Figure 4-27 Positive discharge currents with large front pulse in Gemini X ........................................... 122 Figure 4-28 Streamer images in open gap and on pressboard in Gemini X ............................................. 122 Figure 5-1 PD patterns for one minute in open gap and on solid surfaces at 39.0 kV ............................. 129 Figure 5-2 Maximum PD amplitudes in open gap and on solid surfaces ................................................. 130 Figure 5-3 Minimum PD occurrence phase angles in open gap and on solid surfaces ............................. 131 Figure 5-4 Discharge current signals in open gap and on solid surfaces in FR3 at 39.0 kV .................... 132 Figure 5-5 The longest streamer channels in both half cycles in open gap for FR3 at 43.0 kV ................ 133 Figure 5-6 The longest streamer channels in both half cycles on Perspex in FR3 at 43.0 kV .................. 133 Figure 5-7 Negative streamers on Perspex and on glass in Gemini X at 50.0 kV ..................................... 135 Figure 5-8 Negative discharge current on Perspex and glass in Gemini X at 50.0 kV ............................. 136 Figure 5-9 Discharge initiated from small oil wedge between needle and glass in Gemini X at 50.0 kV . 137 Figure 5-10 Discharges at zero-crossing instant of applied ac voltage on Perspex in mineral oil at 50.0 kV .......................................................................................................................................................... 140 Figure 5-11 Sketch showing influence of space charges on streamer at zero-crossing instant ................. 141 Figure 5-12 Streamer channel and residual low density channels of five consecutive discharges on Perspex surface in FR3 at 43.0 kV ................................................................................................... 142 Figure 5-13 Creepage discharge signals in FR3 at 46.0 kV ...................................................................... 145 Figure 5-14 Streamer shapes corresponding to each discharge current signals in Figure 5-13 ............... 145 Figure 5-15 Basic principles of the PSA method [151] .............................................................................. 146 Figure 5-16 PSA results for PDs before and after treeing initiation in polyethylene [149] ...................... 148 Figure 5-17 Traditional PSA on PDs in open gap and on pressboard in FR3 at 46.0 kV ......................... 149 Figure 5-18 An example of discharges occurring in 24 consecutive ac cycles on pressboard in FR3 at 46.0 kV ..................................................................................................................................................... 150 10

Description:
2.3 Creepage discharges along liquid-solid interface . Figure 2-15 Positive and negative breakdown voltage versus gap distance for mineral oil under lightning impulse [20] . Figure 2-26 Flashover strength along solid in uniform field as function of permittivity of solid materials. [93] .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.