Characterisation of highly active nuclear waste simulants Neepa Paul Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Institute of Particle Science and Engineering School of Chemical and Process Engineering September 2014 ii The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The title of the publications: Characterising highly active nuclear waste simulants. Paul, N., Biggs, S., Edmondson, M., Hunter, T. N. & Hammond, R. B. Synthesis of nuclear waste simulants by reaction precipitation: Formation of caesium phosphomolybdate, zirconium molybdate and morphology modification with citratomolybdate complex. Paul, N., Biggs, S., Edmondson, M., Hunter, T. N. & Hammond, R. B., Maxwel, L. The candidate confirms contribution to all publications included carrying out relevant experimental studies, obtaining data, analysis of data and writing of the paper. Contribution of co-authors included discussion of results, proof reading and making relevant amendments. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2014 The University of Leeds and Neepa Paul iii Dedicated to my parents Ananta Sindu and Nomita Paul iv Acknowledgements I would like to express gratitude to my supervisors, Simon R. Biggs, Robert B. Hammond, Timothy N. Hunter and Michael J. Edmondson (NNL). for giving me the opportunity to carry out this PhD research in the Institute of Particle Science and Engineering (IPSE) at the University of Leeds and in the National Nuclear Laboratory (NNL) at Sellafield, and their constant support and assistance throughout this project. I would also like to thank the nuclear and crystallisation group in IPSE. I am very grateful to the EPSRC, NNL and Sellafield Ltd. for the support of an Industrial CASE award scholarship and the opportunity to work on an industrially motivating project and widening my knowledge on nuclear waste processing. In particular I would like to thank the HALES team at NNL/Sellafield Ltd for their support. I would like to especially thank my wonderful parents, sisters, Anamika and Jessica, my brother in law, Nikhil, and my amazing nephew, Hari for their endless support throughout my Ph.D. Last but not least I would like to thank my lovely Fiancé, Avi for the continuous encouragement and for being my rock! Thank you to all my family and friends! v Abstract Nuclear power is a non-carbon emitting energy resource generating 18% of electricity to the UK. As with any type of industrial process the waste management strategy is an important step to define considering the environmental, economic and political factors. However, the nuclear industry faces ongoing challenges to underpin a well-defined waste treatment strategy due to the high heat load and the radioactive nature of the products produced. Reprocessing of spent nuclear fuel produces a highly active liquor (HAL) waste stream. HAL is currently stored in a number of highly active storage tanks (HASTs). Within the HASTs, solid materials are known to have precipitated from the HAL over time. Particle simulants provide a route for understanding the physical behaviour, it is the synthesis of the particle simulants and the characterisation of these solid-liquid systems that are the interest of this study. An understanding of the HAL waste properties is required for its safe transport, storage and eventual disposal of the HASTs are to be safely emptied and decommissioned. Collaboration with the National Nuclear Laboratory (NNL), at Sellafield UK, provided the opportunity to manufacture the HAL simulants, caesium phosphomolybdate (CPM) and zirconium molybdate (ZM), on larger scale. Manipulation of the aspect ratio of ZM particles is also investigated. The initial step of the synthesis produces spherical CPM which leads to the production of cubic ZM, the final step requires the addition of an organic additive, citric acid, where cuboidal zirconium citratomolybdate (ZMCA) is formed. Molecular modelling analysis revealed growth inhibition of the {2 0 0}, {-2 0 0}, {0 2 0} and {0 -2 0} faces, due to greater number of Zr sites for citratomolybdate complex affiliation. Distinct particle properties are established for CPM, ZM and ZMCA and compared to a common oxide particle material titanium dioxide (TiO ). 2 The results of this study highlight the influence of key aspects of the HAL particulates, such as size and shape, on relevant solid-liquid properties such as sedimentation and rheology. The influence of bulk liquid properties such as electrolyte concentration and pH were also investigated. Sedimentation behaviour was characterised by fitting the experimental data to the Richardson-Zaki model, yielding a fitting parameter n (cognate to particle size and shape) and thus demonstrated a settling relationship with particle shape, sphere > cubic > cuboidal. vi The rheological behaviour explored was categorised into four groups: (i) flow behaviour data was fitted to a simplified Cross model yielding two parameters K (related to viscosity) and n (extent of shear-thinning); (ii) dependency of viscosity on particle volume fraction was characterised using the Krieger-Dougherty model yielding fitting parameter [µ] (particle’s contribution to suspension viscosity) and maximum packing fraction , this m demonstrated the relationship, cuboidal > sphere > cube; (iii) yield stress was characterised using an empirical model derived by Heymann et al (2002) yielding a fitting parameter 𝜎∗ (cognate to particle shape and size) and demonstrating a relationship, sphere > cuboidal > cubic; (iv) characterisation of compressive yield stress demonstrated the relationship, cuboidal > cubic > sphere. The results indicate various possible behaviours within the tanks which may impact the storage, remobilisation and pipeline transport of this class of nuclear waste. Ultimately, it is of importance to establish the effect of solid- liquid properties on the behaviour of HAL for current processing, post operational clean out (POCO) and life-time assessment. vii Table of Contents Acknowledgements .................................................................................... iv Abstract ........................................................................................................ v Table of Contents ...................................................................................... vii List of Figures .......................................................................................... xiii List of Tables ........................................................................................... xxii List of Acronyms .................................................................................... xxiv 1 Introduction .............................................................................................. 1 1.1 Sustaining nuclear power ................................................................ 2 1.2 Organisation of the UK nuclear industry ......................................... 4 1.3 Research aims and objectives ........................................................ 4 1.4 Research application ...................................................................... 6 1.5 Thesis delivery ................................................................................ 9 2 Fundamentals of nuclear power and The Nuclear Fuel Cycle ............ 11 2.1 Nuclear Physics ............................................................................ 12 2.2 Nuclear power generation ............................................................. 15 2.2.1 Mining and milling of uranium ore ............................................ 15 2.2.2 Purification of uranium oxide ................................................... 16 2.2.3 Enrichment of uranium (U235) ................................................... 16 2.2.4 Fuel manufacturing .................................................................. 17 2.2.5 Nuclear fuel reactors ............................................................... 17 2.2.5.1 Gas reactors ..................................................................... 18 2.2.5.2 Pressurised water reactors (PWR) .................................... 18 2.3 Reprocessing of spent fuel............................................................ 19 2.3.1 Evaporator operation and design ............................................. 20 2.3.2 Storage of highly active liquor .................................................. 23 2.3.3 Vitrification of high level waste ................................................. 26 2.3.4 Waste Disposal ........................................................................ 27 2.4 Conclusions .................................................................................. 27 3 Synthesis and particle characterisation of nuclear waste simulants 28 3.1 Introduction ................................................................................... 29 3.2 Literature review ........................................................................... 29 3.2.1 Particle synthesis of nuclear waste simulants .......................... 29 viii 3.2.1.1 Influence of citric acid on molybdenum ions ...................... 32 3.2.2 Solid chemistry of HAL ............................................................ 33 3.2.2.1 Barium/strontium nitrate .................................................... 33 3.2.2.2 Magnesium lanthanide ...................................................... 34 3.2.2.3 Zirconium phosphates ....................................................... 34 3.2.2.4 Caesium phosphomolybdate ............................................. 34 3.2.2.5 Zirconium molybdate ......................................................... 35 3.2.3 Fundamentals of particle science ............................................ 35 3.2.3.1 Brownian motion ............................................................... 36 3.2.3.2 Contributing Forces of Interaction ..................................... 36 3.2.3.2.1 Van der Waals forces .................................................. 36 3.2.3.2.2 Electric double layer forces .......................................... 38 3.2.4 DVLO Theory ........................................................................... 40 3.2.5 Fundamentals of particle characterisation techniques ............. 42 3.2.5.1 Scanning electron microscopy (SEM) ............................... 42 3.2.5.2 Energy dispersive X-ray (EDX) ......................................... 43 3.2.5.3 Laser diffraction techniques for particle size distribution ... 44 3.2.5.4 X-ray diffraction technique (XRD)...................................... 47 3.2.5.5 Zeta potential measurements ............................................ 47 3.2.6 Particle Characterisation Techniques of Nuclear Waste .......... 49 3.2.7 Literature review conclusion .................................................... 51 3.3 Materials and Methods .................................................................. 51 3.3.1 Pre synthesised materials ........................................................ 51 3.3.2 Particle synthesis ..................................................................... 52 3.3.2.1 Synthesis of caesium phosphomolybdate (CPM) .............. 53 3.3.2.2 Synthesis of zirconium molybdate (ZM) ............................ 54 3.3.2.3 Synthesis of zirconium citratomolybdate (ZMCA) – Method 1 55 3.3.2.4 Synthesis of zirconium citratomolybdate (ZMCA) – Method 2 56 3.3.3 Particle characterisation .......................................................... 56 ix 3.3.3.1 Sample Preparation .......................................................... 56 3.3.3.2 Particle shape ................................................................... 57 3.3.3.3 Particle Size ...................................................................... 57 3.3.3.4 Particle density .................................................................. 57 3.3.3.5 Particle stability ................................................................. 58 3.3.3.6 Crystalline structure .......................................................... 58 3.3.3.7 Elemental analysis ............................................................ 58 3.4 Results and discussion ................................................................. 59 3.4.1 Particle synthesis ..................................................................... 59 3.4.1.1 Synthesis of Caesium phosphomolybdate ........................ 59 3.4.1.2 Synthesis of zirconium molybdate ..................................... 60 3.4.1.3 Staged synthesis of zirconium citratomolybdate with Method 1 62 3.4.1.4 Synthesis of ZMCA – Method 2 ........................................ 66 3.4.2 Particle characterisation .......................................................... 71 3.4.2.1 Particle shape ................................................................... 71 3.4.2.2 Particle density .................................................................. 71 3.4.2.3 Particle size ....................................................................... 72 3.4.2.3.1 Particle size distribution of non-spherical particles ...... 74 3.4.2.4 Particle stability ................................................................. 77 3.4.2.5 Crystalline structure of nuclear waste simulants ............... 78 3.5 Conclusions .................................................................................. 81 4 Morphological prediction of zirconium molybdate ............................. 83 4.1 Introduction ................................................................................... 84 4.2 Underlying science of crystallography ........................................... 84 4.2.1 Crystal lattice in two dimensions .............................................. 84 4.2.2 Crystal lattice in three dimensions ........................................... 85 4.2.3 Symmetry operators ................................................................ 87 4.2.3.1 Point Groups and Space Groups ...................................... 87 4.2.3.2 Space group Representation ............................................ 88 4.2.3.3 Point group Representation .............................................. 88 x 4.3 Molecular modelling techniques and underlying science .............. 88 4.3.1 Atomistic force field ................................................................. 89 4.3.2 Lattice energy calculation ........................................................ 90 4.3.3 Energy minimisation ................................................................ 91 4.3.4 Morphological prediction .......................................................... 91 4.3.4.1 Bravis-Friedel-Donnay-Harker (BFDH) model ................... 91 4.3.4.2 Surface energy model ....................................................... 92 4.3.4.3 Attachment energy model ................................................. 92 4.4 Literature review ........................................................................... 92 4.5 Materials and methods .................................................................. 97 4.5.1 Crystal structures ..................................................................... 98 4.5.2 Molecular visualisation............................................................. 98 4.5.3 BFDH calculation ..................................................................... 98 4.5.4 Lattice energy minimisation ..................................................... 99 4.5.5 Surface and attachment energy calculation ........................... 101 4.6 Results and Discussion ............................................................... 102 4.6.1 Crystal and surface chemistry ............................................... 102 4.6.1.1 Surface chemistry of α-ZrMo2O8 .................................... 104 4.6.1.2 Surface chemistry of β-ZrMo2O8 ..................................... 106 4.6.2 BFDH prediction using Materials Studio ................................ 108 4.6.3 Lattice energy minimisation ................................................... 110 4.6.4 Surface and attachment energy morphological prediction ..... 111 4.6.5 Crystal chemistry of ZMH ...................................................... 121 4.6.6 Effect of citric acid on ZMH morphology ................................ 124 4.7 Conclusions ................................................................................ 128 5 Influence of particle properties on sedimentation behaviour .......... 130 5.1 Introduction ................................................................................. 131 5.2 Literature review ......................................................................... 131 5.2.1 Sedimentation fundamentals ................................................. 131 5.2.1.1 Particles falling under gravity through a fluid ................... 132 5.2.2 Settling regimes ..................................................................... 134
Description: